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ABSTRACT
Stochastic simulations and other scientific applications that depend
on random numbers are increasingly implemented in a parallelized
manner in programmable logic. High-quality pseudo-random num-
ber generators (PRNG), such as the Mersenne Twister, are often
based on binary linear recurrences and have extremely long peri-
ods (more than 21024). Many software implementations of such
PRNGs exist, but hardware implementations are rare. We have
developed an optimized, resource-efficient parallel framework for
this class of random number generators that exploits the under-
lying algorithm as well as FPGA-specific architectural features.
The framework also incorporates fast “jump-ahead” capability for
these PRNGs, allowing simultaneous, independent sub-streams to
be generated in parallel by partitioning one long-period pseudo-
random sequence.

We demonstrate parallelized implementations of three types of
PRNGs – the 32-, 64- and 128-bit SIMD Mersenne Twister – on
Xilinx Virtex-II Pro FPGAs. Their area/throughput performance is
impressive: for example, compared clock-for-clock with a previ-
ous FPGA implementation, a “two-parallelized” 32-bit Mersenne
Twister uses 41% fewer resources. It can also scale to 350 MHz
for a throughput of 22.4 Gbps, which is 5.5x faster than the older
FPGA implementation and 7.1x faster than a dedicated software
implementation. The quality of generated random numbers is veri-
fied with the standard statistical test batteries diehard and TestU01.
We also present two real-world application studies with multiple
RNG streams: the Ziggurat method for generating normal random
variables and a Monte Carlo photon-transport simulation.

The availability of fast long-period random number generators
with multiple streams accelerates hardware-based scientific simu-
lations and allows them to scale to greater complexities.
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1. INTRODUCTION
Random numbers are at the core of a wide variety of scien-

tific and computational applications, such as the simulation of
stochastic processes, numerical integration by random sampling
(Monte Carlo) and cryptography. Since these applications can
often be parallelized in a coarse or fine-grained fashion, they have
increasingly been implemented on FPGAs in recent years. FPGA-
based simulations exist for fields as diverse as cellular biochemical
interactions [25], the modeling of interest rates on stock derivatives
and radiation/photon transport [22].

The quality of the random number generator (RNG) used for an
application can critically affect the accuracy of its results/outputs;
there are numerous examples of ‘high-quality RNGs’ that were
found to be statistically ‘bad’ [1, 2, 5] and led to ‘systematically
inaccurate’ results [26] in simulations using them. Thus, as
applications are parallelized on to FPGAs, RNGs that can provide
fast streams of statistically reliable random numbers are required.

In this paper, we develop parallelized architectures for the long-
period class of RNGs that have been well-proven for use in
software applications. Also presented are parallelized hardware
implementations of three variants of the Mersenne Twister [18]
long-period RNG family, as well as a ‘jump-ahead’ technique that
allows partitioning of one long RNG output sequence into multiple
independent sub-sequences. Two sample applications (a Monte
Carlo simulation and the Ziggurat algorithm for generating normal
random variates) complete the hardware framework.

1.1 Types of Random Number Generators
Random number generators (RNG) fall into two broad classes:

true RNGs and pseudorandom RNGs.
True Random Number Generators (TRNGs) implemented in

hardware are based on an underlying random physical process,
such as sampling a fast clock by a slow trigger from amplified
thermal noise in a resistor [4]. TRNGs usually need special
hardware, are too slow for computational applications (on the order
of tens to hundreds of kilobits/sec) and cannot be made to repeat a
specific output sequence.

Computational applications almost always use pseudorandom
number generators (PRNGs). PRNGs are deterministic algorithms,
producing output that behaves statistically like a sequence of



independent random numbers. PRNGs are implemented as a
recurrence, and their output sequence will eventually repeat. The
length of the sequence is called the period of the PRNG. PRNGs
have an internal state that must be initialized with a ‘seed’; all
outputs (and future states) are derived from this initial state. PRNG
sequences are therefore repeatable if initialized with the same seed.

An example of a classical PRNG still sometimes used in practice
[5] is the Multiplicative Linear Congruential Generator, whose
state at step n is the integer xn, with the recurrence:

xn D .axn�1/ mod m; (1)

where m and a are positive integers.
Note: We shall refer to PRNGs as simply RNGs from this point.

1.2 Requirements for ‘Good’ RNGs
Random number requirements for simulation and cryptography

applications differ. Simulations usually require random variables
from specific distributions (normal, exponential, etc.) that are pro-
duced by transforming uniformly distributed independent random
numbers. A ‘good’ RNG must also have a long period that exceeds
the maximum possible number of random inputs a simulation
would need over its expected run-time. Statistical analysis suggests
that, to err on the safe side, the period should be the square or even
the cube of that maximum [10].

The RNG must be efficiently implementable, be repeatable (for
debugging or re-running a simulation) and be portable across dif-
ferent hardware/software platforms. Additionally, the paramount
criterion for cryptographic use is unpredictability; no computation-
ally feasible algorithm should be able to predict future values of
the output sequence based on knowledge of its previous values.
Unpredictability is different from simply being sufficiently random
based on statistical analysis. For example, if an adversary has
access to the output of a linear RNG, they can discover the
recurrence defining the PRNG (by using the Berlekamp-Massey
algorithm [16]) and predict or generate future output; this would be
disastrous for a cryptographical application.

For applications that need multiple input variables as well as
simulations that implement variance reduction [8] (explained in
section 2.2), RNGs with the above-mentioned properties that also
provide multiple independent streams are desirable.

1.3 Outline
We are interested in RNGs whose recurrence is linear and

defined in binary, i.e. over the finite (or Galois) field GF(2) with
elements f0; 1g (as opposed to the integer-based recurrence of (1)).
All arithmetic for these GF(2)-linear RNGs is performed modulo
2 and can be implemented very efficiently in hardware using
elementary bit-wise operations such as exclusive-ORs (XORs), bit-
masks and shifts.

In particular, we focus on GF(2)-linear RNGs with extremely
long periods (� 219937�1, although we define ‘long’ as � 21024)
and proven statistical properties. The output stream of these long-
period RNGs can be partitioned to produce multiple independent
sub-streams. Using a recently proposed ‘jump-ahead’ technique,
the starting point of a new sub-stream can be quickly determined
from an existing sub-stream; this would allow multiple RNGs
to simultaneously generate independent sub-streams. The most
common long-period PRNG is probably the Mersenne Twister [18].
Despite being extremely popular for software simulation, very few
optimized hardware implementations exist in the literature.

This paper is organized as:

� Background and Related Work: Brief mathematical pre-
liminaries and the need for multiple streams. Related ef-
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Figure 1: Shift-register LFSR for polynomial z10 C z7 C 1

forts at implementing long-period GF(2)-linear PRNGs in
hardware, what differentiates our contribution and how it
advances the state of the art.

� Mathematical Structure: The matrix-recurrence structure
of the PRNGs as well as the practical word-wise implementa-
tion of such recurrences. The mathematical concepts behind
‘jumping ahead’ in an output sequence.

� Framework for Parallelized Implementation: Two me-
thodologies for parallelized implementations of long-period
GF(2)-linear PRNGs on FPGAs, including the degree of par-
allelization possible, how best to exploit FPGA architectural
features and the speed/resource usage tradeoffs involved.
Integrating multiple-stream RNGs and applications using a
soft microprocessor for control and jump-ahead.

� Implementations: FPGA implementations of three types of
long-period RNGs in various parallelized configurations on
the Virtex-II Pro FPGA using the principles of the frame-
work. Performance benchmarks and analysis. To our knowl-
edge, only one of these RNGs (32-bit Mersenne Twister) has
previously been implemented in hardware.

� Applications: Hardware implementations of two represen-
tative applications integrated with multiple RNG streams on
an FPGA: a uniform! normal distribution transform (Zig-
gurat) and a Monte-Carlo simulation of heat-transfer/photon-
transport.

� Statistical Testing and Conclusion: Verify that the outputs
of RNGs designed with our framework pass standard statis-
tical test batteries. Observations and conclusions.

2. BACKGROUND AND RELATED WORK
Let x D fxng be the binary sequence generated by the linear

recurrence over GF(2)

xn D a1xn�1 ˚ a2xn�2 ˚ � � � ˚ akxn�k ; (2)

where ai .i D 1; 2; : : : ; k/ are binary coefficients and ˚ is the

XOR. The maximal period of this sequence is 2k�1 and is achieved
only if its characteristic polynomial

P.z/ D zk C a1zk�1 C � � � C ak�1z C ak (3)

is primitive over GF(2)[5, 28]; such a recurrence is called a
maximal recurrence.

A classic example of a GF(2)-linear PRNG is the well-known
Linear Feedback Shift-Register (LFSR) [28]. LFSRs directly
implement maximal recurrences in the form of (3), with a shift
register holding the k-bit state vector. Each clock cycle, the state
is shifted to output one bit and the state bits corresponding to the
non-zero coefficients (or ‘taps’) of the polynomial are XOR’d and
fed back into the input. Fig. 1 shows a 10-bit maximal LFSR with
period 210 � 1 and characteristic polynomial z10 C z7 C 1.

Bit-output LFSRs with period 2k � 1 require k flip-flops and
become less area-efficient as their period (and the number of taps)



increases, especially for applications that need random words. Us-
ing word-wise (instead of bit-wise) recurrences led to Generalized
Feedback Shift Registers (GFSR) [12]. If x is the state vector
(array) for a GFSR and Mi are integer offsets, the linear recurrence
for word xŒj � is

xŒj � xŒj CM1�˚ xŒj CM2� (4)

GFSRs have certain drawbacks that were corrected by adding a
“twist” matrix (A) to the above recurrence,

xŒj � xŒj CM1�˚ .xŒj CM2�/A (5)

resulting in the Twisted GFSR (TGFSR) [17]. All the long-period
RNGs we use in this paper are derived from TGFSRs.

The representative for our class of long-period RNGs is the
Mersenne Twister (MT19937) [18], a TGFSR variant with 32-bit
outputs, a period of 219937 � 1 and excellent statistical properties.
MT19937 has become very popular for software simulations; for
example, it is the default RNG for Matlab, Maple, the R statistical
language and the GNU Scientific Library. Source codes for
MT19937 are available in a variety of languages.

2.1 Previous and Related Implementations
Despite its popularity, hardware implementations of MT19937

are rare in the literature [6, 7, 22, 27]. Most of these are straight-
forward unparallelized implementations of the original C-code,
with the exception of [6]. [6] includes a specific example of one of
our parallelization methodologies, but their implementation is un-
optimized and would require pseudo quad-ported block-memories
with data duplication to perform as described (contemporary FPGA
block RAMs are dual-ported at best).

Related work on GF(2)-linear PRNGs includes LFSRs designed
with recurrences that optimize logic-usage (LUTs) on FPGAs [29]
as well as combining multiple LFSR streams to increase the overall
period. These are not comparable to the long-period RNGs because
of their relatively short periods (< 2258); this is also true for
other RNGs such as KISS (period 2127). We also do not consider
hardware implementations of non-linear PRNGs such as cellular
automata, or of linear PRNGs with recurrences over other finite
fields or the integers.

Since the original 32-bit Mersenne Twister, new variations in-
cluding a 64-bit version (MT19937-64) [20] and a 128-bit SIMD
(Single Instruction Multiple Data)-oriented Fast Mersenne Twister
(SFMT) RNGs have been published. Recently, a technique for fast
jump-ahead in the output sequences of these long-period RNGs
has also been proposed [3]. To our knowledge, no hardware
implementations for these long-period RNGs or jump-ahead exist
in the literature.

2.2 ‘Jumping Ahead’ and the Need for
Multiple Streams

Often, multiple random number inputs to an application are
supplied by running parallel copies of a PRNG that have been
seeded randomly. The implicit assumption that this produces
uncorrelated and non-overlapping sub-sequences of the original
PRNG sequence is not supported theoretically. In fact, inter-
sequence correlations have been found that affect simulation results
in such situations [26].

A valid method of producing parallel sub-sequences is by ‘jump-
ing’ copies of the basic long-period PRNG ahead in their output
sequence by an appropriate amount, which guarantees that the sub-
sequences will not overlap. Such a jump-ahead must be efficient,
i.e. it should not be necessary to go through an entire sub-sequence
to find the starting point for the next sub-sequence.

Multiple streams are also essential for simulations implementing
variance reduction techniques [8]. Essentially, simulating with
random inputs produces random outputs, and data is interpreted
by statistically analyzing outputs of simulations run a large number
of times and/or multiple simulations with varying parameters. If
the variance of the simulation output can be reduced without
affecting their expectation (mean), a smaller number of simulations
or shorter run-times may suffice leading to cost and time savings.

3. MATHEMATICAL STRUCTURE OF
GF(2)-LINEAR RNGS

3.1 Matrix Recurrence
Following the notation of [9], consider an RNG defined by a

matrix linear recurrence over the finite field GF(2):

xn D Axn�1; (6)

yn D Bxn; (7)

where xn is the k-bit state vector at step n, yn is the w-bit
output vector at step n (k and w are positive integers), A is a
k � k transition (or recurrence) matrix and B is a w � k output
transformation (or ‘tempering’) matrix, both with elements in
GF(2). The characteristic polynomial of the recurrence matrix A
is

P.z/ D det.zIC A/ D zk C a1zk�1 C � � � C ak�1z C ak ; (8)

where I is the identity matrix and each aj 2 GF(2). P.z/ must be

primitive if the RNG has a maximal period of 2k � 1.
For long-period RNGs, k is usually chosen to be a Mersenne

prime1 number to make testing the characteristic polynomial for
primitivity computationally feasible [19, 5]. The recurrence matrix
A is sparsely structured so that the new state xn in (6) can be
calculated with some extra word-wise binary operations on xn�1.
The output transformation matrix B is optional, i.e. it can simply
be a w � w identity matrix followed by w � k columns of zeros.
However, when better equidistribution (i.e., ‘randomness’) of the
lower-order bits (LSBs) of the output is desired, B can be a
Matsumoto-Kurita [17] ‘tempering’ matrix that applies additional
binary operations to the output of (6).

3.2 Practical Word-wise Recurrences
Practical implementations of long-period RNGs partition the

state vector x into N w-bit words such that k D Nw � r

(0 � r < w). The state vector is then updated one word xŒj �

at a time (0 � j < N ), where xŒj � is computed in general by
binary operations on one or more near recurrences (i.e. words that
immediately precede or follow xŒj � in x, excluding xŒj � itself) and
one or more far recurrences xŒj CMi �, where the Mi are positive
integer constants. It is easiest to illustrate this with an example.
Consider Fig. 2, which shows a twisted GFSR with one near and
one far recurrence. The recurrence for the current word xŒj � is
defined as

xŒj � .xŒj �w�r jj xŒj C 1�r /A˚ xŒj CM�; (9)

where w�r upper bits of xŒj � are concatenated (jj) with r lower bits
of the near recurrence word xŒj C1� into a w-bit word, upon which
bit-wise operations corresponding to a w � w-matrix A (not the
state recurrence matrix A) are performed. The result is then XOR’d
with the far recurrence word (xŒj CM�) to form the updated xŒj �;

1Mersenne primes are prime numbers that are also one less than a

power of two; 219937 � 1 is the 24th Mersenne prime.
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Figure 2: State Transition in a Generic GFSR
(block A implements the recurrence of (9); block B
the optional ‘tempering’ of section 3)

this is fed back into the shift register and the state vector shifts by
one word as shown in Fig. 2. Note that the number of upper/lower
bits in (9) are chosen so that actual length of the state vector k D
Nw � r is used instead of its effective length Nw. For r D 31 and
M D 397, (9) is the recurrence for the 32-bit Mersenne Twister
MT19937 with period 219937 � 1, i.e. w D 32, k D 19937 and
N D 624.

N w-bit registers can be used to directly implement the re-
currence, but this is not area-efficient. For MT19937, such an
implementation [6] required 20,101 Altera logic elements. Instead,
RAM is generally used to store the state vector and the addresses
for the current word and its recurrences ‘move’ (modulo N ) at each
step rather than the contents of the state vector.

3.3 Fast Jump-Ahead
Suppose we want to jump a long-period RNG with a k-bit state

vector, current state xn and a matrix recurrence (6), by � steps to
a new state xnC� (� is large, e.g. � > 2100). Naïvely, A� can be
pre-computed (mod 2) and then

xnC� D A�xn (10)

Using standard square-and-multiply exponentiation [5] takes
O.k3 log �/ operations and requires k2 bits for storing A� . For
large k such as with MT19937, the exponentiation is slow and the
19937 � 19937-bit A� needs� 47:4 megabytes of memory!

Recently, a faster approach has been proposed [3] based on the
characteristic polynomial (8) of A. The mathematical mechanics
are detailed in Appendix A. An auxiliary polynomial g.z/ that de-
pends on the size of the jump-ahead � and p.A/ is first computed;
g.z/ has at most k � 1 non-zero binary coefficients. Then, by
running the RNG through at most k � 1 states, the new state xnC�

can be calculated as the sum (XOR) of the states corresponding to
the non-zero coefficients of g.z/.

g.z/ must be calculated once for the type of RNG and is
independent of the actual value of the current state xn. The initial
states for a bank of b RNGs that differ by a constant � can be
calculated by iteratively jumping one RNG with state xn ahead as

xnC.bC1/� D A�xnCb�

The g.z/ is calculated on a computer; the actual implementation of
the jump-ahead is discussed in the next section.

4. THE HARDWARE FRAMEWORK
We now discuss the architectural optimizations underlying our

two methodologies for parallelizing long-period RNGs, the method-
ologies themselves, their trade-offs and the structure of the overall
framework.

4.1 General Optimizations

� Buffering Near Recurrences: To save reads, near recurrences
can be buffered for re-use.

� Dual-port Memories/Read-before-Write: Block RAMs on
contemporary FPGAs are usually dual-ported, supporting
two asynchronous operations to independent addresses per
cycle. Based on the recurrence for a particular RNG, both
ports can be used to reduce overall block RAM usage.

Additionally, block RAMs may allow ‘Read-before-Write’
operation, where the old data at an address is output while
simultaneously writing new data to that address. This feature
can almost universally save one read access per cycle by
writing the updated (feedback) output to the address of a
word that needs to be read for a future calculation. This
word is a constant offset away from the original address
(depending upon pipelining and other factors) and is output
as part of the write operation. If correctly implemented,
the exploitation of read-before-write behavior does not affect
the recurrence equation of the RNG since both near and far
recurrences are constant relative offsets themselves.

� DSP logic blocks: Many contemporary FPGAs include a
certain number of specialized blocks targeted toward DSP
multiply/add operations. These blocks may be used to
calculate the multi-bit word-wide operations in the RNG
recurrence (although the specific implementations in this
paper do not do so). The DSP blocks may be more speed-
efficient than equivalent logic, and if thse DSP blocks would
be unused otherwise, certainly more area-efficient as well.

Two Parallelization Methodologies
We formulate two different methodologies for parallelizing long-
period RNGs in hardware: (1) Interleaved Parallelization (IP) and
(2) Chunked Parallelization (CP). Constraints on the degrees of
parallelization possible for both of these differ depending on the
characteristics of the RNG and result in varying trade-offs between
throughput (clock frequency � degree of parallelization) and area
(resource usage). We discuss the methodologies, their constraints
and analyze the trade-offs.

4.2 Interleaved Parallelization (IP)
Since both near and far recurrences occur at constant offsets,

we can generate more than one random number in parallel if the
N -word state vector is interleaved across multiple memory banks.
Consider interleaving an RNG with an N -word state vector across
a set of banks fbi W 0 � i < ˇg. There are two possibilities for
the number of banks; ˇ is either a factor of N , i.e. N mod ˇ D 0

and all banks contain N=ˇ words; or, it is not a factor of N and
at least one bank contains a fewer number of words than the rest.
In the latter case, any recurrence addresses Œ.j CMi / mod N � that
initially point to such a bank for j C Mi < N will point to a
different bank for j CMi � N .

Interleaved parallelization is inefficient when the number of
banks ˇ is not a factor of N because of the additional condi-
tional routing logic (e.g. multiplexers) required. The number of
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(efficient) interleaved parallelizations possible is therefore the set
fˇWˇ is a factor of N g. Then, each bank bi (0 � i < ˇ) contains
the state-vector word indices satisfying j mod ˇ D i , while
the corresponding recurrences are found in banks corresponding
to Œ.j C Mi / mod N � mod ˇ. Asymptotically, as ˇ ! N ,
the parallelization approaches that of the N individual registers
mentioned in section 3.2 and implemented in [6]; the increase in
throughput is not proportional to the increase in area and routing
complexity.

For a long-period RNG with w-bit words and q far recurrences,
assume that the word to be updated is itself included in the
recurrence equation and all near recurrences are buffered. If this
RNG is interleave-parallelized across ˇ banks and each bank has d

v-bit wide read/write operations available per cycle, the number of
random words � output per cycle by this configuration is

� D ˇ
vd

wq.1C q/
(11)

Fig. 3 shows a 4-interleaved parallelization for MT19937 where
N D 624 and each 32-bit word xŒj � depends on itself, the near
recurrence xŒj C 1� and one far recurrence xŒj CM� (all modulo
N ; M D 397). Note that the use of read-after-write or specific
pipelining is not shown for clarity. q D 1, and if each bank has
exclusive use of one dual-port block RAM, from (11), � D 4

random 32-bit outputs are generated per clock. These are illustrated
as yŒ0�, yŒ1�, yŒ2� and yŒ3�.

Thus, interleaved parallelization of a long-period RNG can be
extremely flexible and scalable depending on how N factors, and
provides a constant number of outputs per clock. The primary
trade-off is the amount of memory ‘slack’ (under-utilization of full
block RAM capacity), which increases jointly with the degree of
parallelization and the number of far recurrences in the RNG.

4.3 Chunked Parallelization (CP)
Chunked parallelization (CP) is based on buffering/re-using not

only the near recurrences like IP, but also one far recurrence to
further reduce memory accesses. CP splits sequential sections
(chunks) of the state vector across a number of banks to make this
possible. In effect, the updated output of one bank is not only fed
back to that bank, but also used to compute the recurrence equation
for a word in another bank (for which this updated result is a far
recurrence). The reduced number of read accesses usually result
in CP using fewer block RAMs than the same degree of IP. Fig.
4 illustrates degree-3 chunked parallelization for MT19937, where
each word xŒj � in the state vector depends on one near recurrence
xŒj C 1� (buffered; not shown) and only one far recurrence,
xŒ.j CM/ mod N �. The equivalent pseudo-code is shown in Fig.
5.

x[0]

x[1]
A

x[227]

x[228]

x[397]

x[453]

A

x[623]

A

B

To Simulation

B B

y[0] y[227] y[454]

x’[0] x’[227]
x’[454]

x’[0]
x’[227]

x[226]

x[454]

x[455]

Figure 4: 3–Chunked Parallelization for MT19937
(case xŒ0� xŒ397� : : : xŒ227� xŒ0� : : : xŒ454� xŒ227�)

A 3–CHUNKED PAR. CONFIG. FOR MT19937./

1 for j  0 to .N �M � 1/

2 do xŒj � xŒ.j CM/ mod N �

3 xŒj C .N �M/� xŒj �

4 xŒj C 2.N �M/� xŒj C .N �M/�

Figure 5: Pseudocode for the 3-CP MT19937 of Fig. 4

Calculating the number of chunks and chunk lengths (or equiv-
alently, start/end points) is a heuristic process that depends on the
position of the far recurrence(s) fMi g. Pick one Mi ; calculate the
set of points P D f.l �Mi / mod N g for l D 0; 1; : : : ; lmax < N

and sort P in increasing (or decreasing) order. P now contains
sequential starting points for an lmax-chunked parallelization. As
lmax ! .N �1/, the average length of the chunks in P approaches
gcd.N; Mi /.

For the long-period RNGs we are interested in, Mi are generally
primes and very rarely factors of the respective N (except for the
special case MT19937�64, discussed in section 5.2). This leads
to a situation where at least one ‘orphan’ chunk has a different
length than the other (equal) chunks. This phenomenon, with its
associated conditional routing overhead and fluctuating output rate,
is generally unavoidable for chunked parallelization.

While FIFOs can be used to solve the variable output rate issue,
the preferred alternative is to just discard the outputs from the
orphan chunk(s). Usually, a CP configuration can be found that
leads to relatively large, equal-sized chunks with only one relatively
small orphan chunk.

We have written an algorithm that will enumerate P for various
Mi and lmax to deliver one or more ‘optimized’ CP configurations
(such as the one just mentioned). Future work includes deriving
analytic expressions (or an algorithm with faster convergence) for
optimized CP configurations.

4.4 Interleaved or Chunked?
In general, for a given degree p, a p-IP parallelized configuration

has lower routing complexity and higher (or constant-rate) through-
put compared to a p-CP configuration; the p-CP on the other hand
uses relatively fewer resources than the p-IP. The exceptions to
these observations include cases such as:

� If the RNG has a far recurrence that is a factor of N . This
occurs for the 64-bit MT19937�64 (N D 312, M D 156)
and a hybrid 2-CP implementation (discussed in section 5.2)
has comparable throughput to a 2-IP implementation while
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using fewer resources.

� If conserving block RAM usage is critical (and the variable
output rate is not a problem): MT19937 as 3-CP uses 2 block
RAMs and is comparable in throughput to the 3-IP (which
uses 3 block RAMs).

� If, for the N -word state-vector of a given long-period RNG,
N does not factor into small primes. Consider the WELL
RNGs [21], which are generalizations of the TGFSR con-
cept. Suppose an application requires a parallelized version
of the WELL44497RNG (period 244497�1; not implemented
here), for which the 1391-word state vector N factorizes as
13 � 107. Therefore, only a 13-IP or 107-IP implementation
is possible. If even the 13-IP would be over-engineering for
the application, chunked-parallelization must be considered.

A 6-CP implementation would result in throughput compa-
rable to a (hypothetical) 6-IP, while using less than half the
block RAMs and nearly half the logic resources of a 13-IP
version. In this case, the 6-CP would consist of six chunks
of length 229 each plus an ‘orphan’ of length 17, whose
output is discarded. Note that such discarding is not done
in the 3-CP illustration of Fig. 4 because its orphan chunk is
relatively large; a FIFO must be used if compensation for the
variable output rate is necessary.

Thus, if the RNG state-vector length N factors into small prime
numbers, an IP implementation is usually the best choice. If it does
not, or if an exceptional situation such as those just discussed arises,
CP implementations should be considered.

4.5 Formalizing the Framework
The output(s) of IP/CP long-period RNGs are directly connected

in parallel via the logic fabric to the destination application on the
FPGA to achieve the highest possible throughput. However, an
integrated multiple-stream RNG and parallelized application setup
also requires the following essential functions without including
dedicated circuitry for each.

1. Seed RNGs when necessary.

2. Efficiently perform the state-vector reads, XORs and write-
backs needed for fast jump-ahead.

3. Provide a large secondary memory to store data, e.g. simula-
tion results.

4. Allow control of the RNGs and/or application(s) via a PC;
allow data transfer to a PC.

Table 1: Properties of linear recurrences for three Mersenne
Twisters: 32-bit (MT-32), 64-bit (MT-64) and 128-bit (SFMT)

RNG MT-32 MT-64 SFMT

k 19937 19937 19937
w 32 64 128
State N 624 312 156
Near rec. 1 1 2
Far rec. 1 1 1

Elementary Operations for Recurrence

XOR/Shift/Mask 6/3/12 6/3/12 4/10/4

Elementary Operations for Tempering

XOR/Shift/Mask 4/4/2 4/4/3 N/A

For these, we complete the framework by adding a soft micro-
processor (MicroBlaze for Xilinx) to the FPGA running the RNGs
and the application(s) as shown in Fig. 6. Each parallelized RNG
as well as the application/simulation is connected via 32-bit, point-
to-point Fast Simplex Links (FSL) to a MicroBlaze processor. The
FSL endpoint on the RNG side is a simple finite state machine
(FSM) that can pause/continue the RNG and perform state vector
reads/writes. Unless a specific seed or seed vector is programmed,
the processor initializes the state of each RNG (through the FSM)
with the multiplicative congruential generator from [5] that is also
used in the MT19937-reference code [18]. We note that any user-
provided seed or seed-vector must be sufficiently random (i.e.,
roughly equal numbers of 1s and 0s). If this is not the case, the
state vector starts out in an ‘excess-zero’ condition and the output
of the RNG will be biased (i.e., a higher number of 1s over 0s, or
vice versa) until it ‘recovers’ (becomes statistically random) after a
certain number of cycles.

The JA (Jump-Ahead) unit connected to the MicroBlaze consists
of k-bit storage in block RAM and wide XORs for ‘accumulating’
the intermediate state vectors when jumping an RNG ahead. A
256 MB DDR DRAM module is attached to the MicroBlaze via
a DDR controller core on the On-chip Peripheral Bus (OPB) and
provides storage for simulation results or debug data. Finally,
FPGA/MicroBlaze programming and control/data transfer to a PC
are via the built-in JTAG interface.

5. IMPLEMENTATIONS
We have implemented three different long-period RNGs in

various interleaved and chunked parallelization configurations as
well as a multiple stream configuration with 6 copies of one RNG
and jump-ahead. Table 1 lists the characteristics of these RNGs

including length of the state vector k (the period is 2k � 1), native
word width w, the state size N (in w � bit words), the number
of near/far recurrences and the number of elementary word-width
binary operations necessary to compute the recurrence equation as
well as that for the ‘output transformation/tempering’ (if any).

The implementations were targeted to the Xilinx Virtex-II Pro
XC2VP30-7 (hosted on the XUPV2P evaluation board). The
designs were coded in VHDL and synthesized with Synplify Pro
9.0.1. The initial designs only had as many pipeline registers/delays
as necessary to ensure state consistency for the given parallelized
configuration. Compiled designs were then simulated in Modelsim
6.2c and timing analysis performed for further optimization.



Table 2: Various Interleaved and Chunked Parallelizations for the 32-bit Mersenne Twister MT19937

Par. Type None 2-IP 3-IP 4-IP 8-IP 3-CP 11-CP

Slices 78 159 222 290 566 207 1038
18k BRAMs 2 2 3 4 8 2 7
Freq (MHz) 348.4 349.4 265.1 277.7 283.5 258.3 235.7
Thruput (Gbps) 11.15 22.36 25.45 35.54 72.58 24.03 82.96

Table 3: Selected parallelizations for other long-period RNGs

RNG MT19937-64 SFMT19937
Par. Type None 2-IP 2-CP None 5-CP

Slices 218 269 246 155 735
18k BRAMs 2 4 2 4 16
Freq (MHz) 339.8 342.9 333.3 260.5 168.0
Thruput (Gbps) 21.75 43.90 42.67 33.34 107.51

5.1 32-bit Mersenne Twister (MT19937)
We have used MT19937 [18] as the long-period RNG repre-

sentative of its class while discussing the mathematical back-
ground and the structure of the parallelization framework. It is
used extensively for software simulation and is the only long-
period RNG for which published hardware implementations exist
(for benchmarking). Therefore, we have implemented a non-
parallelized version, four interleaved (of degrees 2, 3, 4 and 8)
and two chunked (degrees 3 and 11) parallelized configurations for
MT19937 .

Table 2 shows the resource usage and maximal performance
statistics for each of these configurations.

5.2 64-bit Mersenne Twister (MT19937-64)
MT19937�64 [20] is a 64-bit version of MT19937 whose re-

currence leads to an interesting optimization for a 2-CP imple-
mentation. MT19937�64 has an N D 312 word state and each
word xŒj � depends only upon one near (xŒj C 1�) and one far
(xŒ.j C 156/ mod 312�) recurrence. 156 D 312=2, and therefore
the far recurrence for xŒ0� is xŒ156�, and the far recurrence for
xŒ156� is the (updated) xŒ0�. Chunked parallelization can now be
implemented using only one I/O operation per random number
generated; also, only two 18-kilobit dual-port block RAMs are
necessary since the 64-bit words can be split over two 32-bit ports.
The results in table 3 show that this 2-chunked implementation uses
half the block RAMs, while maintaining throughput comparable to
a standard 2-interleaved parallelization.

5.3 128-bit SIMD-oriented Fast
Mersenne Twister (SFMT19937)

Introduced very recently in [24], SFMT is a Mersenne Twister
variant optimized for CPUs with instruction sets that support 128-
bit Single-Instruction Multiple-Data (SIMD) vector operations,
such as SSE/SSE2 (x86) and Altivec (PowerPC). While [24] dis-
cusses an SFMT with the standard period 219937 � 1 (SFMT19937
), code is available for longer periods up to .2216091 � 1/.
SFMT19937 is reported to be between 2–4� faster than MT19937
in software. Since single-cycle 128-bit accesses need 4�32-bit
block RAM ports (with a lot of ‘slack’ memory), we have only
implemented a 5-CP version as proof of concept.
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5.4 Jump-ahead with six MT19937 RNGs
The fast jump-ahead technique for generating multiple indepen-

dent sub-streams [3] and the overall framework was tested as proof-
of-concept by implementing six identical 2-IP MT19937 PRNGs
on the Virtex-II Pro FPGA and setting their initial states apart by
21000. The auxiliary polynomial g.z/ was calculated on a PC using
the Number Theory Library2 (NTL) and, along with the jump-
ahead procedure, programmed into the MicroBlaze.

Each jump (5 total) took approximately 36.113 ms, with the 2-IP
MT19937s clocked at 250 MHz and the MicroBlaze processor/Fast
Simplex Link bus at 100 MHz. This includes the overhead of
transmitting each state corresponding to a non-zero coefficient in
g.z/ to the MicroBlaze (via the FSL link) and accumulating it in
the jump-ahead (JA) unit, as illustrated in Fig. 6. The average
times for a large number of random jump-aheads with MT19937,
as described in [3], is 15.9 ms for a 32-bit Pentium 4 and 9.0 ms for
a 64-bit Athlon processor; these are not directly comparable to our
proof-of-concept FPGA implementation.

We expect jump-ahead performance to improve as this initial
implementation is optimized, e.g. by increasing the bandwidth of
the RNG !MicroBlaze link.

5.5 Analyses and Benchmarks
To our knowledge, the fastest FPGA implementations of any

long-period RNG reported in the literature are the MT19937 in [6],
on an Altera Stratix FPGA. We believe this is a fair comparison
since both the Altera Stratix and the Virtex-II Pro are based on a
1.5V, 0.13�m process. As shown in Table 2, the average through-
put of the 2-IP, 4-IP and 8-IP parallelized MT19937 implemented

2http://www.shoup.net/ntl/



Figure 8: Ziggurat partitioning of the normal distribution with
N D 10 rectangles and the tail T . Inset: Output from FPGA
implementation

on the Virtex-II Pro is� 4:8� that of their equivalents in [6], while
using between 21% to 41% less logic (assuming a Xilinx slice� 2
Altera logic elements). Since [6] only provides the actual number
of memory bits used and not the number or utilization of block
memories, we cannot make a direct comparison; however, since
the structure they describe requires pseudo-quad-ported memories,
probably synthesized from multiple dual-port blocks with data
duplication, we estimate they would use at least double the number
of block memories for similar degrees of parallelization.

As another comparison, the 2-IP implementation of MT19937 is
7:1� faster (22.36 Gbps) than an experimental run of the equivalent
C-code on a Pentium 4 processor at 3 GHz (3.14 Gbps at 100%
utilization).

Fig. 7 plots throughput vs. area for the 2-, 3-, 4- and 8-IP
implementations shown in Table 2, along with a linear least-squares
fit. The throughput/area efficiency for IP remains constant with
increasing degrees of parallelization. This does not seem to be
the case for chunked-parallelization, based on the two-data points
available (Table 2: 3-CP, 11-CP); CP efficiency decreases with
scaling.

If a specific long-period RNG is not mandated by an FPGA
application, our recommendation is to use the 2-chunk-parallelized
MT19937�64, which has the highest overall efficiency [i.e., max.
throughput/(slices�BRAMs)] of all RNGs implemented.

6. APPLICATIONS
Two different applications that require multiple random number

streams at varying rates have been implemented on the Virtex-II
Pro and coupled to the RNGs to test our integrated framework.
The applications have been pipelined and parallelized whenever
obvious. In the following sub-sections we briefly discuss the theory
behind each application and present notable observations about its
implementation.

6.1 The Ziggurat Method for generating nor-
mal Random Variables

Probably the most common non-uniform distribution that appli-
cations require random numbers from is the normal (or Gaussian)
distribution. An efficient approach for generating normal random

Table 4: Applications: Resources and Performance

App. Ziggurat Monte Carlo

Slices 1,227 2,466
18k BRAMs 2 4
18 � 18 Mult 21 64
Freq (MHz) 60 51

variables from uniform random numbers is the Ziggurat method
[15]. This is an acceptance/rejection method; given a set C for the
target distribution (normal), it picks random points from a discrete
superset B of C and checks to see if they are also in C before
keeping or discarding them.

The set C of points .x; y/ that make up the area of a decreasing
function f .x/ such as the normal distribution can be defined as
C D f.x; y/ W y � f .x/g. The Ziggurat method partitions the
normal distribution into N rectangles of equal area V to define a
superset B 	 C as

B D
0
@

N[
iD1

Ri

1
A [ T

where Ri (0 < i � N ) are the rectangles extending from x D 0

to x D xi and y D f .xi / to y D f .xi�1/ and T is the base
rectangle plus the tail area from x D x0 to x D1. Fig. 8 shows an
example with N D 10 rectangles overlaid on a plot of the normal
distribution for x � 0; � D 0 and �2 D 1.

The method can be summarized as:

1. Draw a random uniform number u

2. Choose a random index i with probability 1=N and assign u

to rectangle Ri by scaling it to x D uxi .

3. If 0 < i � N , check if x < xi�1 (i.e., does x 2 C—is it
under the curve of f .x/?). If yes, return x; else

4. Generate a random point y on the line segment yi�1 ! yi

and check if f .x/ � y (i.e., is x in the wedge area of
rectangle Ri (see fig. 8)). If yes, return x.

5. If i D 0, generate an x from the tail as described in [13]
(this involves at least one iteration of calculating the natural
logarithms of two uniform random numbers).

The efficiency of the algorithm is proportional to the number of
rectangles N ; for N D 128, it has a success rate of 98.78%,
and terminates at step 3 98.05% of the time (so that no log or
exponential calculations are required). In practice, the algorithm is
sped up by using pre-computed lookup tables for the static values
of xi and f .xi / used in comparisons.

We implemented the algorithm for N D 128. The chi-square
(�2) goodness-of-fit test was applied to a 3-million point output
data-set (inset of Fig. 8) and gave a �2 statistic of 298.62 and
p D 0:982 affirming the quality of the normal random variables
generated.

6.2 Monte Carlo: Light Propagation in
a Scattering Medium

Monte Carlo methods use stochastic models to simulate the
behavior of a process. We simulate light propagation/heat transfer
in a scattering medium (such as tissue) by a point source [23]. As
photons are absorbed, their location and the heat transferred are
recorded in bins in an absorption matrix corresponding to spatial
locations in the medium. The model is simplified and does not
include internal reflections.



Fig. 6.2 presents a flowchart for the simulation. Photon packets
with initial weight w are created, injected into the medium and
propagated further by random distances 	s. 	s is calculated as
� ln 
=�t , where 
 is a uniform random variable and �t depends
on the absorption and scattering coefficients of the medium. At the
end of each propagation step, a fraction of the photon packet ‘splits’
and is absorbed into a bin (calculated from the position vector).

If the new weight of the remainder is ‘significant’, it is scattered

in the direction of a random unit vector Ek and propagated for
another step. However, if the weight is very small, the packet goes
into a roulette and its survival is determined by comparing a random
variable to a given chance of survival. If the photon packet survives,
its weight is increased and it is scattered and propagated further; if
not, the process starts all over with a new photon.

Calculating the unit vectors for direction changes and the norm
of the position vector (to determine the absorption bin) requires a
square-root, a divider and a number of multiplies leading to the
large logic usage in Table 4. A Monte Carlo simulation for 106

photons required approximately 141�106 random numbers and its
results are in agreement with the analytical diffusion equation for a
point source.

7. STATISTICAL TESTING
AND CONCLUSION

The word order in the output sequence of an interleave-parallel-
ized (IP) or chunk-parallelized (CP) long-period RNG is per-
muted compared to the sequential/software implementation.The
CP-versions may also discard portions of the sequence based on
their design. While neither parallelized implementation modifies

Start

Create photon packet with initial weight w, position

Er D .x; y; z/ D .0; 0; 0/ and direction Ed D .�x ; �y ; �z / D
.0; 0; 1/

Create photon packet with initial weight w, position
Er D .x; y; z/ D .0; 0; 0/ and direction
E� D .�x ; �y ; �z/ D .0; 0; 1/

Move packet a random distance 	s in the dir. E�

Heat bin i by .1 � a/w, update photon weight w D aw

Is the weight of the
packet very small?
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Figure 9: Monte Carlo simulation for light propagation in a
scattering medium

the linear recurrence equation defining the RNG, we subjected the
output of all the implementations in Tables 2 and 3 to two standard
statistical test batteries for empirically estimating random number
quality: Diehard [14] and Crush (from TestU01 [11]).

The IP– and CP–RNGs passed all the Diehard tests with p-
values between 0:0194 and 0:9882. All the tests in the Crush bat-
tery were passed except for the linear-complexity test for degrees
n > k, where k is the length of the state-vector for the RNG in
bits. Every RNG defined as a linear recurrence will fail this test
since any bits following a k�bit sub-sequence can be expressed as
linear combinations of those previous k bits. As expected from the
theory, neither IP- nor CP-parallelizations have had any effect on
the inherently high quality of the random numbers generated by
the long-period RNGs.

Conclusion
We have developed a hardware framework for generating multiple
independent random number streams from ‘long-period’ pseudo-
random number generators such as the Mersenne Twister. Within
the context of this framework, we presented two general archi-
tectures for parallelizing long-period RNGs in hardware. The
architectures exploit the properties of the linear recurrence defining
the RNGs to minimize I/O accesses from block RAM and thus
maximize throughput.

We have also implemented various configurations of three dif-
ferent variants of the Mersenne Twister on the Xilinx Virtex-II
Pro FPGA. To our knowledge, based on a review of the literature,
one is the fastest existing hardware implementation of the 32-bit
Mersenne Twister while the other two have been implemented in
hardware for the first time. A proof-of-concept implementation for
the recently proposed ‘fast-jump ahead’ technique of advancing an
RNG is also discussed, thus allowing multiple independent, non-
overlapping sub-streams to be generated.

Finally, we complete our framework by testing the RNGs with
two different applications: the Ziggurat method for generating
normal random variables and a Monte Carlo simulation for photon-
transport. Future work includes extending the framework the to the
WELL family of RNGS, optimizing it for newer FPGA architectures
(such as the Virtex-5) and improving the speed of the jump-ahead
technique.

The availability of such a hardware framework and fast par-
allelized implementations of well-proven long-period RNGs with
multiple streams can accelerate existing hardware-based scien-
tific applications and simulations and also encourage parallelized
FPGA implementations of complex simulations that are currently
software-only.
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APPENDIX
A. THE MATHEMATICS OF JUMP-AHEAD

We briefly elaborate on the math behind the fast jump-ahead
discussed in section 3.3, as proposed in [3]. From the Cayley-
Hamilton theorem, the recurrence matrix A in (6) satisfies its own
characteristic equation, i.e.

p.A/ D Ak C a1Ak�1 C � � � C ak�1AC akI D 0 (12)

Let a polynomial

g.z/ D z� mod p.z/ D ˛1zk�1 C � � � C ˛k�1z C ˛k ; (13)

which can be pre-computed in O.k2 log �/ time [5]. Also, g.z/ D
z� C p.z/q.z/ for some q.z/; since p.A/ D 0,

g.A/ D A� D ˛1Ak�1 C � � � C ˛k�1AC ˛kI

and the new state (10) can be computed as

A�x D .˛1Ak�1 C � � � C ˛k�1AC ˛kI/x
D A.: : : A.A.A˛1xC ˛2x/C ˛3x/C : : :

C ˛k�1x/C ˛kx
(14)

by the standard Horner’s method for polynomial evaluation. Effec-
tively, the RNG is run for .k�1/ steps and the states (k-bit vectors)
corresponding to the non-zero ˛i in (14) are XORd together. While
O.k2/ bitwise operations are still needed, memory requirements
are reduced to k-bits of storage for the accumulator.


