
FPGA-based SoC for Real-Time Network Intrusion
Detection using Counting Bloom Filters

Jared Harwayne-Gidansky, Deian Stefan and Ishaan Dalal
The Center for Signal Processing, Communications and Computer Engineering Research

The Cooper Union for the Advancement of Science and Art
51 Astor Place, Room 406B, New York, NY 10003 USA

{harway, stefan, ishaan}@cooper.edu

Abstract—Computers face an ever increasing number of
threats from hackers, viruses and other malware; effective
Network Intrusion Detection (NID) before a threat affects end-
user machines is critical for both financial and national security.
As the number of threats and network speeds increase (over 1
gigabit/sec), users of conventional software based NID methods
must choose between protection or higher data rates.

To address this shortcoming, we have designed a hardware-
based NID system-on-a-chip using data structures called Count-
ing Bloom Filters (CBFs). Our design has extremely high
throughput (up to 3.3 gigabits/sec) and can successfully detect
and mitigate known threats, and is, to our knowledge, the only
known CBF based NID system-on-a-chip to be implemented on
a Virtex 4 FPGA.

In this project, we present the first optimized, Counting Bloom
Filter based Network Intrusion Detection FPGA SoC (system-on-
chip) implemented on a Virtex 4 FPGA: our design is scalable
through further parallelization and, to our knowledge, is one of
the highest throughput NID systems in existence.

Index Terms—Data structures, Computer network security,
Field programmable gate arrays

I. INTRODUCTION

Viruses, worms, and hacker attacks on networks cost billions
of dollars (Klez virus: $9 billion [1]) and affect hundreds of
thousands of users (MSBlast worm: over 350,000 hosts) [2].
Additionally, recent high profile attacks on our national secu-
rity infrastructure—such as the infiltration of DoD networks
by Chinese hackers [3]—reveal that defense against network
intrusion is now a matter of not just financial, but also national
security.

It is incorrect to assume that each user or individual machine
on a network is secure [4]. This is due to the large number of
machines that need to be secured; each of which requires time,
technical expertise and constant vigilance to ensure protection
against the latest threats. To address these short comings
organizations are moving toward Network Intrusion Detection
(NID): preemptive detection of hacking attacks, worms, and
other threats present in data when it enters the network, i.e.
before it can reach the user’s machine.

Network Intrusion Detection involves looking at patterns
in network data that match known signatures stored in an
existing threat-database. Currently, NID is performed using

The design and results presented here were part of an undergraduate project,
advised by I. Dalal, at the Cooper Union

dedicated devices from manufacturers such as Cisco. These
devices are essentially full-blown computers using software
solutions such as pattern matching with hash tables to perform
NID [5]. However, as both network data rates and the number
of potential threats increase, the ability to effectively scan net-
work data in real time using such devices becomes impractical.
For example, while Gigabit (1000 megabits/sec) networks are
increasing in popularity, a typical Cisco NID device [5] has
a maximum throughput of only 150 megabits/sec.

As a result, there has been a move toward custom hardware
implementations of network intrusion detection which can
have significantly higher throughput [2], [6]. Rather than fab-
ricate custom ICs, Field-Programmable Gate Arrays (FPGAs)
are used for this purpose. FPGAs are reconfigurable chips
that contain programmable logic and can perform multiple,
complex operations in parallel, and have become the dominant
platform for hardware–based NID. Such NID devices can
offer real-time protection against a wide array of threats while
achieving throughputs of over 1 gigabit/sec [7]. To ensure
the highest possible throughput we used Bloom filters an
efficient data structure for hardware-based pattern matching.
Bloom Filters store a compact randomized representation of
the threat-database, allowing for a number of advantages over
traditional hash tables which have a large amount of overhead
and require enough memory to store the full threat-database.
The basic Bloom Filter can be improved into a Counting
Bloom Filter which allows for even more flexibility.

In this project, we present the first optimized, counting-
bloom-filter-based Network Intrusion Detection “system-on-
chip” (i.e., on a single FPGA chip) implemented on a Virtex
4 FPGA: our design is scalable through further parallelization
and, to our knowledge, is one of the highest throughput NID
systems in existence.

We first present the probabilistic mathematics that are the
basis of Bloom Filters, and the evolution of Bloom Filters
into Counting Bloom Filters. We then discuss the design
process and computer architectural challenges in hardware
implementations of Bloom Filters. Finally, we use hardware
Counting Bloom Filters to set up a Network Intrusion De-
tection system, test it with real-world threats and present
performance benchmarks.

Outline

The outline of our paper is as follows:
• Overview of Bloom Filters and Hash Functions:

The structure and mathematical background of Bloom
Filters, followed by performance analysis. •Choosing a
hardware-efficient hash function for Bloom Filters.

• Counting Bloom Filters (CBFs) and overview of
FPGAs: The limitations of Bloom Filters, and their
evolution into CBFs. •Discussion of trade-offs in CBF
design. •A brief introduction to FPGAs and their suit-
ability for Bloom Filter implementation.

• Hardware Implementations: Three Bloom Filters and
three Counting Bloom Filters running at up to 3.3 giga-
bits/sec. •Design results and conformance to theoretical
predictions.

• Network Intrusion Detection using Counting Bloom
Filters: Discussion, implementation and analysis of an
innovative one-chip system for real time, full-speed (giga-
bit ethernet) detection of network threats using hardware
Counting Bloom Filters.

• Conclusion: Review of presented material, summary of
results, and discussion of future work.

II. OVERVIEW OF BLOOM FILTERS AND HASH FUNCTIONS

A Bloom Filter is a data structure used to determine if a
given piece of data belongs to a set [8], [9]. To perform
this “pattern-matching”, Bloom Filters do not store the full
set, but only a much smaller randomized representation; this
makes them much more efficient than conventional hash tables
[10].

A. Definition

The goal of the Bloom Filter is to determine if a given
piece of data (e.g., network packet) belongs to a predefined set
(e.g., threat-database). Bloom Filters consist of two key parts:
an array of bits (known as the Bloom array and initialized to
ZEROs) and one or more hash functions. The Bloom array has
a length of m-bits and a total of k hash functions. First, the
Bloom Filter must be programmed with a predefined set which
consists of n elements. This is accomplished by hashing each
element of the set through the k hash functions; the output of
the hash functions are used as indices (addresses) for the m-bit
array and the bits at the corresponding addresses are ‘set’ (i.e.
changed to ONE).

After programming, to check if a piece of data is a member
of the set (known as querying), that data is hashed. If all the
corresponding bits of the Bloom array are set (ONE), then that
piece of data is almost certainly part of the predefined set;
if any of the corresponding bits are not set (ZERO), the data
is definitely not a part of the set (i.e., for NID, there is no
threat). The check thus consists of performing an AND logical
operation on the corresponding bits and checking if the output
is ZERO or ONE.

Thus, a Bloom Filter can definitely tell if a piece of data
does not belong to the set (i.e., is not a threat), but there is
a very small chance of a false positive: data is identified as

H(·)
U V

D

C

B

A

1

2

5

3

6

4

(a) An ideal hash function,
H; no collisions.

1

2

5

3

6

4

G(·)
U V

D

C

B

A

(b) A non-ideal hash func-
tion, G; note the collision.

Fig. 1. Ideal and non-ideal hash functions mapping set U to set V .

belonging to the set (a threat) when it actually is not. This false
positive probability can be controlled and made arbitrarily
small, so is not usually an issue.

B. Choosing Hash Functions for Hardware Bloom Filters

The Bloom Filter’s accuracy depends critically on the choice
of hash function [9]. A hash function is essentially a one-
way mapping between two sets. For two sets U and V , an
ideal (or perfectly random) hash function uniformly maps each
element in U to a unique element in V (Fig. 1a). Real-world
hash functions are rarely ideal and can have collisions, i.e. the
mapping is no longer unique and more than one element in
U may map to the same element in V (Fig. 1b). Expressed
mathematically, for elements x,y ∈ U , x 6= y, an ideal hash
function H(·) will have no collisions, i.e. H(x) 6= H(y); on the
other hand, for a non-ideal hash function G(·) collisions can
occur (i.e., G(x) = G(y)).

Collisions in a Bloom Filter lead to false positives and
decrease its effectiveness. Hence, hash functions for Bloom
Filters in hardware must not only be as close to ideal as possi-
ble (i.e., have a low collision rate), but also have low hardware
complexity (which allows for high throughput). Additionally,
since the length of the Bloom array varies depending on the
application, the hash function should have variable-length out-
puts. Given these requirements we used the H3 hash functions,
a member of the Universal Class of hash functions. These
hash functions are low-complexity randomized algorithms that
attempt to distribute the data inputs along the set of hash
outputs as evenly as possible; with the appropriate choice
of random numbers they have low collision rates and can be
configured for arbitrary length outputs [11]. H3 hash functions
are an excellent choice for Bloom Filters, and have recently
been successfully used for this purpose [7], [8].

C. H3 Hash Functions

Given its desirable properties (low-complexity and low
collision rate), we decided to use the H3 hash function.
H3 hash functions can be computed with only exclusive-OR
(XOR) operations, making them very efficient for hardware
implementation. Let us illustrate H3 hashes with an example.
If the data inputs to the hash function are, say, 8 bits and the
hash outputs must be 4 bits, we begin by choosing a matrix D

0 1 0 1 1 0 0 1

h1 h2 hk-1 hk

y

0

AND

1 1 1 1

h1 h2 hk-1 hk

xset element
hash functions

Bloom array

(a) Programming the filter (b) Checking membership

Fig. 2. (a) Programming a Bloom Filter (b) Querying a Bloom Filter; the
data being checked is not a member of the set (AND=0)

of eight 4-bit random numbers {d1, . . . ,d8}. Then, an element
x = 00011010 is hashed as:

D =

d1
d2
d3
d4
d5
d6
d7
d8

=

1100
0001
0100
1110
1001
0110
1101
1111

∴ h(x) = h(00011010)
= x ·D
= 0 ·d1⊕0 ·d2⊕0 ·d3

⊕1 ·d4⊕1 ·d5⊕0 ·d6

⊕1 ·d7⊕0 ·d8

= 1110⊕1001⊕1101

= 1010,

where · (AND) and ⊕ (XOR) are logical operations. The result
h(x) is used to address the bit array of the Bloom Filter; this is
demonstrated in Fig. 2. By using different random matrices, as
many different hash functions as necessary can be generated. It
is important to note that H3 hash functions behave like an ideal
hash function when used with real-world data. This is because
real-world data can be treated as random for the purposes of
determining hash function performance [12].

D. Formal definition of Bloom Filters

Mathematically, a Bloom Filter is defined as a compact
representation of a set S = {x1,x2, . . . ,xn} of n elements stored
in an array of m bits (all of which are initially ZERO); the k
hash functions {h1, . . . ,hk} are independent and have a range
of {1, . . . ,m} (i.e. each hash function maps uniformly to a
random number from 1 to m).

1) Programming the Bloom Filter (Fig. 2a): The set S must
first be programmed in the Bloom Filter (e.g., S can be a
certain set of known threats). For all x ∈ S, each x is hashed
by the k hash functions hi (1 ≤ i ≤ k) and the bits in the
Bloom array corresponding to the outputs hi(x) are set to ONE

as shown in Fig. 2a.
2) Querying the Bloom Filter (Fig. 2b): After the Bloom

Filter is programmed, it is put into operation. To check if an
item y is a member of S (e.g., for intrusion detection, does a
packet contain a virus signature y?), you must hash it with all
k hashes and then check to see if all the bits in the Bloom
array corresponding to hi(y) are set to ONE (Fig. 2b). If they
are not ONE, then y is definitely not a member of S; but, if they
are all ONEs, then we assume y is a member of S, although
it may not be with a very small finite probability (i.e. a false
positive) [9].

0
1
1
0

1
0
1
0

1
1
1
0

0
0
0
1

h1 h2 hk-1 hk

xset element
hash functions

counter array

+_ +_ +_ +_

Fig. 3. A Counting Bloom Filter with 4-bit up/down counters.

E. False Positive Probability

A false positive occurs when an element that is not in the
set is hashed and all the corresponding k bits in the Bloom
array turn out to be ONE; the probability of this occurring is

n · k
m

= ln(2), (1)

where k is the optimal number of hash functions for a given
m-bit Bloom array that will hold n entries.

A derivation of this can be found in the appendix.

III. COUNTING BLOOM FILTERS AND FPGA OVERVIEW

A major limitation of Bloom Filters is that once an element
has been programmed into the array, it cannot be deleted
without erasing and reprogramming the filter from scratch.
This is because there is no way to reset the bits corresponding
to one element to ZERO and ensure that none of those bits
were needed by another element still in the Bloom Filter. To
address this deficiency, Bloom Filters have been adapted into
Counting Bloom Filters (CBFs).

A CBF is identical to a standard Bloom Filter in concept, but
differs in implementation: the Bloom array for a CBF consists
of counters and not individual bits (Fig. 3). By using counters
for a CBF, you can add and remove items from the CBF.
Instead of setting a bit when programming it, you increment
(+1) the corresponding counters; when deleting an item you
decrement (−1) the corresponding counters. To query the CBF
for the existence of some piece of data, you check if all the
corresponding counters in the Bloom array are non-zero (like
checking if all corresponding bits are set to ONEs in a standard
Bloom Filter).

A. Designing Counting Bloom Filters

Since each counter in the CBF array has a limited size, some
new challenges are introduced, such as what to do if a counter
overflows because too many elements are added. Empirically,
a reasonable counter size that minimizes overflows for most
applications is four bits [9].

Regardless of the counter size, there is always the possibility
that you reach the maximum value of a counter and an
overflow occurs: in this situation it is best to leave the counter
at its maximum value [9]. While this could potentially cause
a false negative (which is impossible with standard Bloom
Filters), if the deletions from the CBF are more-or-less random
(as is the case with real-world data), and the counter is of

LUT

Block
RAM

Embedded
Processor

(PowerPC)

LUT LUT LUT

LUT LUT LUT LUT

Block
RAM

(a) Block diagram of an FPGA (b) ML403 dev. board
with the Virtex-4 FX12
FPGA (inset)

Fig. 4. FPGA structure and our FPGA system-on-chip

a reasonable size (i.e. 4 bits), the average time until a false
negative occurs is extremely large [9].

We used CBFs for our network intrusion detection as they
allow for dynamic re-programming (add/delete) of the filter.
This flexibility is highly desirable to ensure that the filter
is up to date, e.g. if a new worm outbreak occurs (add),
or if an attack is no longer a threat because the affected
software was patched (delete), etc. The CBFs drawbacks are
outweighed by their advantages, the abundant resources on the
FPGA (mitigating the memory requirement), and the very low
probability of a false negative.

B. Overview of FPGA Architecture

The Field Programmable Gate Array is made up of 4-bit
or 6-bit Look-Up Tables (LUTs) which can be programmed
to compute any Boolean function of 4 or 6 inputs, respec-
tively. Thousands of these LUTs make up an FPGA and
are connected by reprogrammable interconnects, allowing for
immense flexibility in implementing any digital function which
can be optimized by performing many operations in parallel.
Fig. 4a shows the basic structure of a contemporary FPGA;
apart from LUTs, the FPGA also contains blocks of fast static
random-access memories (block RAMs) and (optionally) an
embedded microprocessor, such as the PowerPC, to perform
control and data transfer functions. The FPGA chip itself is
usually integrated on a board that contains additional I/O and
storage peripherals such as Ethernet controllers, DDR RAM
modules, and serial ports.

The FPGA is an excellent platform for hosting a Bloom
Filter as it contains the fast RAM (i.e. Block RAMs) needed
to minimize the time it takes access the bit array, and its LUTs
are ideal for performing multiple H3 hashes (XOR operations)
in parallel. It is due to this fact that a number of Bloom
Filter implementations on FPGAs exist for applications such
as spell checking, medical imaging and network intrusion
detection [7], [8], [10], [13].

IV. HARDWARE IMPLEMENTATIONS AND ANALYSIS

Before moving on to Network Intrusion Detection, we first
designed, optimized and implemented the necessary Bloom
Filters on the FPGA. We have implemented three Bloom
Filters in both standard and Counting variants on the Xilinx
Virtex-4 FX12 FPGA hosted on the ML403 development

TABLE I
RESULTS FOR BLOOM FILTER PROTOTYPES

(k=8 HASHES, m=16,384 BITS; 4 BLOCK RAMS EACH)

Bloom Filter
Input Size Freq

Slices
Throughput

(bytes) (MHz) (Gbps)

Regular 2 205.1 127 3.28

4 216.0 254 6.91

8 200.6 529 12.8

Counting 2 205.3 185 3.28

4 203.9 319 6.52

8 201.6 594 12.9

board (Fig 4b). The FPGA consists of 5,472 slices (a slice
contains two LUTs), 36 block RAMs (of 18-kbits each), and an
embedded PowerPC 405 processor. The embedded processor
eliminates the need for a separate computer to perform control
functions such as TCP/IP network communication, making
intelligent decisions in the NID threat detection process, etc;
this enabled us to make this a “system-on-a-chip.”

A. Standard Bloom Filter Implementation

The Bloom array (m = 16384-bits) is stored in Block RAM
on the FPGA. To maximize throughput and minimize the
control and routing logic, we give each hash function exclusive
access to the block RAM via a dedicated I/O port. We achieve
this as follows: since each block RAM has two I/O ports (i.e.,
you can perform two independent reads/writes to different
addresses per clock cycle), and we have k = 8 hashes, we
split the bit array across k

2 = 4 block RAMs that contain
m
4 = 16384

4 = 4096 bits each. While each hash function has to be
modified so its output falls within the range of its “exclusive”
block RAM, this does not effect the false positive rate or the
effectiveness of the Bloom Filter [7]. An AND gate is used to
perform the final membership check.

B. Counting Bloom Filter Implementation

As described in section III, going from a standard Bloom
Filter to a counting Bloom Filter design simply involves
modifying the Bloom array so that each “bit” is a 4-bit
counter instead. We implemented our CBF by storing the
counter values in block RAM; each block RAM (there are
36 on the FPGA) has a capacity of 18-kbits. The RAM
was used at a 4-bit depth, and 4-bit adders were included
to increment/decrement the RAM counters while comparators
were used to check if the counters were ‘set’ (i.e., its value
was greater than zero). Using the LUTs as the “counters”
was considered (as a counter is a 4-bit Boolean function) but
rejected due to an insufficient number of LUTs on the FPGA
and the large routing overhead which would have substantially
decreased performance.

CBFs are somewhat slower at programming than a standard
Bloom Filter: while the standard Bloom Filter takes one clock
cycle to change a bit, the CBF takes two clock cycles to
modify a counter; the original value must be read, incremented
(for an add) or decremented (for a delete), and then written

Bit Array

H1 H8…
8-byte CBF

Bit Array

Pre
Processing

PowerPC
Processor

Data
In

Checked
Data Out

H1 H8…
4-byte CBF

Bit Array

H1 Hk…
2-byte CBF

Hash Table
(RAM)

H1 H8

2-byte CBF

Alert to
Destination

NID System on a Chip

Fig. 5. A simplified block diagram of our NID design.

back to update the counter. The extra programming time is
immaterial since after the initial programming, the CBF array
only needs occasional reprogramming (for updates). We note
that checking (reading) the CBF array, which is by far the
major operation in an NID device, only requires a single clock
cycle; thus, using CBFs has negligible effect on throughput
compared to standard Bloom Filters.

Our maximum throughput was approximately 3.3 Gbps; a
complete summary of our results for the CBF prototype can
be found in Table I.

V. APPLICATION: NETWORK INTRUSION DETECTION

As mentioned earlier, networks face a large variety of threats
from hackers and malware that can cause damage in the
billions of dollars and breach national security. Assuming
that end-users can protect their systems is both inaccurate
and ineffective. Detecting malicious data or events at the
network boundaries (Network Intrusion Detection) allows for
preemptive and broader protection from threats and creates a
single point to maintain network security (as opposed to at
every machine in the network). The NID device is installed at
the gateway to the network it is protecting.

We have designed and implemented a Network Intrusion
Detection (NID) device using Counting Bloom Filters to detect
and mitigate threats before they enter a network.

Fig. 5 shows the structure of our NID device. The input
data—Ethernet packets (frames)—is fed to the preproces-
sor which extracts the IP packet, stripping the headers and
forwarding the host information to the PowerPC and the
TCP/UDP payload to the Counting Bloom Filters. The filters
take 2-, 4- and 8-byte data inputs respectively; this is because
the threat patterns (such as ILOVEYOU for the Love Bug worm)
can be of variable size; the preprocessor must be used to
keep track of patterns longer than 8-bytes—we have not
implemented this capability yet.

A flow chart showing how our NID device operates is shown
in Fig. 7. After the CBFs, an intelligent processor is needed
to analyze the output of the CBFs and decide if a threat is
detected. Instead of offloading this to a separate computer or
microprocessor (e.g., as is done in some commercial NID
systems [5]) we decided to design the NID device as a
complete system-on-chip by using the embedded PowerPC
processor. Once the PowerPC detects a threat from the CBF
outputs, it eliminates the possibility of a false positive by

128 256 512 1024 1536 2048
0

0.5

1

1.5

2

2.5

3

Signatures in the CBF

P
er

ce
n

t
o

f
F

al
se

 P
o

si
ti

ve
s

Experimental
Theoretical

(a) 2-byte Bloom filter results

128 256 512 1024 1536 2048
0

0.5

1

1.5

2

2.5

3

Signatures in the CBF

P
er

ce
n

t
o

f
F

al
se

 P
o

si
ti

ve
s

Experimental
Theoretical

(b) 4-byte Bloom filter results

128 256 512 1024 1536 2048
0

0.5

1

1.5

2

2.5

3

Signatures in the CBF

P
er

ce
n

t
o

f
F

al
se

 P
o

si
ti

ve
s

Experimental
Theoretical

(c) 8-byte Bloom filter results

Fig. 6. Experimental vs. Theoretical False Positive Rates for (a) a 2-byte
Bloom filter, (b) a 4-byte Bloom filter and (c) a 8-byte Bloom filter (m =
16384-bits, k = 8 hash functions and n = 128, . . . ,2048 elements)

verifying if that piece of data in question is present in the
secondary hash table (stored in DDR RAM on the FPGA
board). Note that this hybrid “bloom filter + small secondary
hash table” approach is much faster and uses less memory
than a full hash-table approach.

If the threat is confirmed, the NID device drops the
data packet and sends an Internet Control Message Protocol
(ICMP) datagram of type DESTINATION UNREACHABLE with
explanation code “Host administratively prohibited” to the
source of the malicious packet. Furthermore, a UDP packet
is sent to a logging facility where the system administrator
can further analyze the alerts. The NID device can also take
more drastic steps such as IP blocking of known/persistent
hosts to avoid denial of service attacks on the NID device.
Additionally, since we use CBFs–as opposed to standard
Bloom Filters–an administrator is able to modify the database
(add or remove signatures) in real-time using the serial port on
the ML403 development board to rapidly respond to emerging
threats.

NID System-on-a-Chip: Testing and Performance

For our proof-of-concept NID implementation, we chose
a realistically-sized n = 2048 element data set containing
signatures for a variety of intrusions: viruses, trojans, worms,
denial of service attacks, brute-force unauthorized access
attempts and spam. The signatures are based on a subset of
the malicious payloads included in the industry-standard Snort
(ver. 2.4) rule-set [14].

Given n = 2048, with the additional constraint of a small
false positive probability (< 2.5%), to arrive at an optimal
Bloom array length of m = 16384 bits and k = 8 hash functions
(this was done using eqns. (5) and (6) found in the Appendix).
Since the signatures vary in length, each Bloom Filter accepts
a different-sized input: 2-, 4-, or 8-bytes respectively.

In evaluating the performance of the Bloom Filters we
programmed each of the filters with an increasing number of
elements, from n = 128 to 2048, based on the Snort rule-set
and custom-crafted signatures, testing the false positive rate
on simulated traffic. It is important to note that the custom-
crafted signatures were used in cases where the number of
Snort payload signatures was not sufficient (i.e. < n).

Based on real world data [15] and the testing methodologies
presented in [16], we simulated random traffic on the order
of ≈ 70,000 connections of which 2.58% were attacks (i.e.,
connections whose payloads contained signatures which were
used to program the filters). The number of normal and attack
connections in a time interval were distributed according to a
Poisson process resulting in normal and “attack” intervals; in
an attack interval the majority of the connections had payloads
with malicious signatures [16].

Fig. 6 compares our Bloom Filter’s false positive rate
with the false positive rate of a theoretical Bloom Filter for
signatures of length 2-bytes (6a), 4-bytes (6b) and 8-bytes (6c).
As is apparent, our experimental false positive rates closely
track the theoretical values.

Ethernet packet (frame) enters the NID system

Pre-processor: remove headers, extract dataPre-processor: remove headers, extract data

Does any CBF (2/4/8-

byte) detect a threat?

PowerPC: is threat

a false positive?

No action;

forward

packet to

destination

No action;

forward

packet to

destination

Drop packet; terminate connection

NO THREAT!

Send alert to admin

Next packet...

YES

NO

YES

Fig. 7. Flowchart of Network Intrusion Detection using CBFs on an FPGA

VI. CONCLUSION

We presented a single-chip, FPGA-based hardware Network
Intrusion Detection (NID) system using Counting Bloom Fil-
ters. Our design identifies and can neutralize threats such as
hackers and viruses at the network boundary before they can
attack end-user computers. As network data rates increase,
such real-time preemptive action may prove impractical for
software NID solutions.

Counting Bloom Filters are efficient, randomized data struc-
tures that are much faster and use less memory than the hash
tables usually used in software applications. Consequently,
our NID device has a throughput of ∼3.3 Gbps—over an
order of magnitude higher than commercial software-based
NID systems.

Future work includes increasing the number and variety of
threat-signatures that the system can detect as well as full
scale testing on a live network. We hope that by increasing the
flexibility and speed of effective Network Intrusion Detection
we can help secure computers against malicious attacks,
reduce associated financial losses and prevent the compromise
of national security.

APPENDIX
FALSE POSITIVE PROBABILITY DERIVATION

Here we derive the probability of getting a false positive
when querying a Bloom Filter.

Consider an m-bit array; since the output of each hash
function is uniformly and independently distributed over the
range {1, . . . ,m}, the probability that a bit is set (i.e., ONE)
after a single hash of one element is 1

m . The probability that
a bit is not set (i.e., ZERO) is, therefore, (1− 1

m).
To program a Bloom Filter using k hash functions on a

set with n entries, a total of n · k hashing operations are

performed. The probability p that a bit is not set after the
filter is completely programmed is therefore

p = Prob(bit is not set) =
(

1− 1
m

)n·k
(2)

Assuming m is large (which is true in practice), p can be
approximated as

p≈ lim
m→∞

(
1− 1

m

)n·k
=

[
lim

m→∞

(
1+

1
−m

)−m
] n·k
−m

, (3)

where the expression inside the square brackets is the
definition of the exponential (e) function. Thus, the probability
p that a bit is not set is approximately

p = Prob(bit is not set)≈ e
−n·k

m (4)

The complementary probability (p′) that a bit is set to ONE

is simply p′ = (1− p). A false positive occurs when all k bits
for the entry being hashed are set to ONE, thus the false positive
probability, p(FP), is

p(FP) = Prob(k bits are set)

= (p′)k = (1− p)k

≈ (1− e−
n·k
m)k (5)

Given eq. (5), the false positive probability p(FP) is mini-
mized when

n · k
m

= ln(2), (6)

which also gives the optimal value for one of the three
variables {m,n,k} if the other two are kept constant; e.g., the
optimal number of hash functions k for a given m-bit Bloom
array that will hold n entries is k = m

n · ln(2).

REFERENCES

[1] R. Lemos, “Counting the cost of slammer,” CNet, Feb. 2003.
[2] J. W. Lockwood, J. Moscola, M. Kulig, D. Reddick, and T. Brooks,

“Internet worm and virus protection in dynamically reconfigurable
hardware,” in Proc. of Mil. and Aero. Programmable Logic Device
(MAPLD), Sep. 2003.

[3] J. Swartz, “Chinese hackers seek U.S. access,” USA Today, Mar. 2007.
[4] B. Achoido and M. Kessler, “Worm, virus threat grows,” USA Today,

Apr. 2003.
[5] “Installing Cisco intrusion prvention system appliances and modules

5.1,” Cisco.
[6] M. Attig and J. Lockwood, “SIFT: SNORT intrusion filter for TCP,” in

Proc. 13th Symp. on High Performance Interconnects, Aug. 2005, pp.
121–127.

[7] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep packet inspection using parallel bloom filters,” in Hot Intercon-
nects, Aug. 2003, pp. 44–51.

[8] I. L. Dalal and F. L. Fontaine, “A reconfigurable FPGA-based 16-channel
front-end for MRI,” in 40th Asilomar Conf. on Sigs., Sys. and Comps,
2006, Oct./Nov. 2006, pp. 1860–1864.

[9] A. Broder and M. Mitzenmacher, “Network applications of Bloom
Filters: A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[10] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table
lookup using extended bloom filter: an aid to network processing,” in
SIGCOMM ’05, 2005, pp. 181–192.

[11] M. Ramakrishna, E. Fu, and E. Bahcekapili, “A performance study of
hashing functions for hardware applications,” in Int’l Conf. Computing
and Information, 1994, pp. pp. 1621–1636.

[12] M. Mitzenmacher and S. Vadhan, “Why simple hash functions work:
exploiting the entropy in a data stream,” in Proc. of the 19th annual
ACM-SIAM SODA, 2008, pp. 746–755.

[13] M. Attig, S. Dharmapurikar, and J. Lockwood, “Implementation re-
sults of bloom filters for string matching,” in 12th Symp. on Field-
Programmable Custom Computing Machines, Apr. 2004, pp. 322–323.

[14] M. Roesch, “SNORT-lightweight intrusion detection for networks,” in
LISA 1999: USENIX 13th Systems Administration Coinferecne, Nov.
1999, pp. 229–238.

[15] R. Lippmann, R. Cunningham, D. Fried, I. Graf, K. Kendall, S. Webster,
and M. Zissman, “Results of the DARPA 1998 Offline Intrusion Detec-
tion Evaluation,” in Recent Advances in Intrusion Detection, vol. 99,
1999, pp. 829–835.

[16] J. Cabrera, B. Ravichandran, and R. Mehra, “Statistical Traffic Modeling
for Network Intrusion Detection,” in Proceedings of the 8th International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems. IEEE Computer Society Washington, DC,
USA, 2000, pp. 466–473.

Jared Harwayne-Gidansky (S’06–GS’08) received
the B.E. degree in Electrical Engineering from the
Cooper Union for the Advancement of Science and
Art. He is currently a Graduate Electrical Engi-
neering student at The Cooper Union, a Graduate
Research Fellow with the S*ProCom2 research lab-
oratory at Cooper Union, and a reviewer for IEEE
Potentials. His interests include Control Theory,
Stochastic Processes, Signals Processing, Program-
ming, and Applied Mathematics.

Deian Stefan (S’06) will receive the B.E. degree
in Electrical Engineering in 2009 from the Cooper
Union for the Advancement of Science and Art.
He is currently an Undergraduate Research Fellow
in the S*ProCom2 research laboratory at Cooper
Union; his interests include signal processing, re-
configurable systems, cryptography, and operating
systems.

Ishaan Dalal (S’02–GS’07) received the B.E. de-
gree in Electrical Engineering from the Cooper
Union for the Advancement of Science and Art in
2006. Since then, he has been a Graduate Research
Fellow with the S*ProCom2 research laboratory at
Cooper Union and an Adjunct Instructor of Elec-
trical Engineering. His interests include statistical
signal processing, information theory and system de-
sign for communications. He is currently pursuing a
doctorate in Electrical Engineering at the University
of Texas-Austin.

