COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

Analysis and Implementation of eSTREAM
and SHA-3 Cryptographic Algorithms

by

Deian Stefan

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Engineering

May 10, 2011

Advisor

Dr. Fred L. Fontaine

COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

This thesis was prepared under the direction of the Candidate’s Thesis
Advisor and has received approval. It was submitted to the Dean of the
School of Engineering and the full Faculty, and was approved as partial
tulfillment of the requirements for the degree of Master of Engineering.

Dr. Simon Ben Avi
Dean, School of Engineering

Dr. Fred L. Fontaine
Candidate’s Thesis Advisor

Abstract

Invaluable benchmarking efforts have been made to measure the perfor-
mance of eSTREAM portfolio stream ciphers and SHA-3 hash function can-
didates on multiple architectures. In this thesis we contribute to these ef-
forts; we evaluate the performance of all eSSTREAM ciphers and all second-
round SHA-3 candidates on NVIDIA Graphics Processing Units (GPUs).

Complementarity, we present the first implementation of the cube at-
tack in a multi-GPU setting. Our framework proves useful in the practi-
cal analysis of algorithms by providing a generic black box interface and
speedup factors over 100x. Demonstrating its use we analyze two eS-
TREAM stream ciphers, MICKEY v2 and Trivium. We find that MICKEY
is not susceptible to low-degree cube attacks, while our Trivium analysis
confirms previous results, in addition to several new equations applicable
to a partial key recovery.

We also extend the linear differential cryptanalysis framework intro-
duced by Brier, Khazaei, Meier and Peyrin at ASTACRYPT 2009 using two
new trail search algorithms, and several optimizations. We find several
collision and second preimage attacks on simplified and round-reduced
variants of BLAKE and CubeHash, two SHA-3 second round candidates.
Using the extended framework we also present improved collision attacks
on CubeHash, when compared to previous results. In combination with
the condition function concept, our new trail search algorithms lead to
much faster collision attacks. We demonstrate this by providing a real col-
lision for CubeHash-5/96. Additionally our randomized trail search finds
highly probable linear differential trails and leads to significantly better
attacks for up to eight rounds of CubeHash.

Acknowledgments

I would like to thank my advisor Fred L. Fontaine for his encouragement
and support on this work and my Electrical Engineering studies at The
Cooper Union. I am especially grateful for his efforts in providing an ex-
cellent environment, the S*ProCom? lab, in which I have flourished as both
a student and researcher; our collaboration is one of the most rewarding
and influential experiences to date.

I am grateful to Peter Cooper and The Cooper Union for providing me
with the opportunity to gain an exceptional education. I am thankful for
having had the opportunity to work with and study under Jeff Hakner,
Danfeng Yao, Kausik Chatterjee, William Donahue, and Alan Berenbaum.
They have in many ways influenced my choice to pursue research studies.

I would like to thank all my coauthors for the fruitful discussions and
great moments we exchanged. In particular, I would like to thank David
B. Nummey, Christopher Mitchell, Jared Harwayne-Gidansky, Ishaan L.
Dalal, and Matthew Epstein. Furthermore, I am especially grateful to Arjen
K. Lenstra, Joppe Boss and Shahram Khazaei for my summer study at
LACAL, the work of which led to this thesis.

Finally, I would like to thank my friends and family for supporting
me during my studies. Most of all, I am grateful to my parents for their

ongoing support and encouragement.

Contents

List of Figures
List of Tables
List of Algorithms
1 Introduction
1.1 Stream Ciphers
1.2 Hash Functions
1.3 High-Performance Cryptologic Computing
14 Related Work
1.5 Contributions
1.5.1 Implementation Contributions
1.5.2 Analysis Contributions,
1.6 ThesisOutline e
2 Target primitives
21 eSTREAM Stream Ciphers
211 Trivium e
212 MICKEY v2 e
2.2 SHA-3Candidates
221 BLAKE
222 CubeHash
3 SMP and GPU Parallel Programming
31 OpenMPandSMPs
3.1.1 SMP Architectures
3.1.2 OpenMP Programming
32 CUDAand GPUs e s e
3.2.1 GPU Architectures
322 CUDA Programming

CONTENTS vi
4 Cube Attack 54
4.1 Preliminaries. e 55
42 Preprocessing 60
421 Finding Maxterms 61

42.2 Superpoly Reconstruction 65

43 Online Attack 68]

5 Linear Differential Cryptanalysis (711
5.1 Constructing Differential Trails
51.1 Notation e

512 Raw Probability (74

5.1.3 Forward Differential Trails 76

5.14 Reverse Differential Trails [77]

5.1.5 Randomized Differential Trails 78

5.2 Finding Collisions Using Condition Functions /9
5.3 Freedom Degrees Use: Dependency Table 3Dl

6 Cryptography and Cryptanalysis on GPUs o1]
6.1 GPU Implementation of eSSTREAM Ciphers. 93
6.1.1 gSTREAM Framework 93

6.1.2 Implementation of eSSTEAM Ciphers 96l

6.2 GPU Implementation of SHA-3 Candidates 100l
6.2.1 AES-Inspired SHA-3 Candidates

6.2.2 Other SHA-3 Candidates 104

6.3 Multi-GPU Implementation of the Cube Attack 108]
6.3.1 Finding Maxterms [110]

6.3.2 Superpoly Reconstruction

6.3.3 Performance Measurements.

7 Cryptanalysis Results 117
7.1 Applying the Cube Attack 117
711 Trivium e e 118

712 MICKEY e 118

7.2 Applying Linear Differential Cryptanalysis 1211
721 BLAKE e 122

722 CubeHash 123

8 Conclusion 136
A BLAKE Constants [138]
B MICKEY v2 Constants 141
C Software Implementation of Grain 143]

CONTENTS vii

D gSTREAM API and Implementations 148
D.1 gSTREAM APL 148]
D.2 MICKEY v2 Example Implementation 159
D.3 Trivium Example Implementation 172l

E XOR-Shift RNG Implementation 184

F Differential Trails 187
E1 BLAKE differential trails 187
E2 CubeHash-+/{10,20,24,36,96} differential trails 190

Bibliography 213l

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1
4.2

6.1
6.2
6.3
6.4

7.1
7.2

Uniform memory access architectures
Non-uniform memory access architectures B2
Fork-join programming model B3
GT200 Texture Processor Cluster 43
Multi-block parallel reduction using shared memory. 52l
Preprocessing phase of the cube attack 601
On-line phase of the cube attack 69
Program flow using the gSTREAM framework.. 94
32-bit Grain Core i7 960 (2.8GHz) benchmarking results 99
Finding a maxterm for high-dimensional cube [110]
Finding a maxterm for medium-dimensional cube 111
Linear differential framework using OpenMP 121l
CubeHash’s Compress), « « v v v v v v v i e e e

viii

List of Tables

2.1 eSTREAM portfolio algorithms.
2.2 SHA-3 second-round candidates. 20]
3.1 Commonly used parallel construct clauses.
3.2 Clauses supported by the work-share constructs.. B7
3.3 Commonly used synchronization constructs. 47
3.4 Commonly-used OpenMP runtime functions. 42]
6.1 Performance estimates for SSTREAM ciphers 97
6.2 GPU performance results and estimates for eSSTREAM ciphers . . . B8
6.3 Mix-column estimates [103]
6.4 Count of AES-like operations in SHA3-candidate designs
6.5 GPU performance estimates for non-AES SHA3-candidates
6.6 GPU performance results for SHA-3 non-AES based candidates . . . [109
6.7 Cube attack finding maxterms performance 114
6.8 Cube attack superpoly reconstruction performance 115l
7.1 Trivium analysis, confirming existing results 119
7.2 Trivium analysis, new results 120
73 BLAKE32analysisresults 122
74 BLAKE64 analysisresults
7.5 Minimal number of conditions found forA =3

7.6 Minimal number of conditions y found with the randomized search
7.7 Logarithmic theoretical complexities cy of improved collision attacks.127]

7.8 Cubehash (t,y) 128}
7.9 CubeHash collision complexities ¢y with 1-bit modifications
7.10 CubeHash collision complexities ¢y with 2-bit modifications
7.11 CubeHash collision complexities ¢y with 4-bit modifications 1301
7.12 CubeHash collision complexities cp with 8-bit modifications 1301
7.13 Number of conditions per round theoretical complexities. [133]
7.14 Partition sets for CubeHash-5/96 collision trail
Al BLAKEintial values 138
A.2 BLAKE permutation function 139

LIST OF TABLES

A.3 BLAKE constant values

List of Algorithms

2.1
2.2
2.3
24
2.5
2.6

2.7

4.1
4.2

51
52
53
54

Trivium state update function
MICKEY state update function
Clock, - clocking MICKEY’s r register
Clocks - clocking MICKEY’s s register
BLAKE’s compression function
BLAKE-32 G; function

Round funtion for CubeHash

Finding a maxterm
Superpoly reconstruction

Calculating the probabilistic-effect and dependancy tables
Creating input and output partitions of a condition function
Tree-based backtracking preimagesearch

Computing adaptive backtrack steps

xi

Chapter 1

Introduction

Security has become a crucial aspect in the design and use of computer systems
and networks. Whether one is designing a wireless communication system, web
application, or network protocol, addressing security is an essential engineering
criterion. Though a well-designed system is built from a multitude of compo-
nents, the use of cryptography as a building block is almost unanimous.
Cryptography is used to address many security issues, the most pertinent
of which are confidentiality, integrity, and authentication. Cryptography encom-
passes the design of (cryptographic) primitives, basic building blocks, and proto-
cols/schemes that use these building blocks to construct complex security systems.
Dually, cryptanalysis entails the analysis and evaluation of cryptographic algo-
rithms, including primitives and protocols. In this thesis we focus on the imple-
mentation and analysis of two kinds of cryptographic primitives: stream ciphers

and hash functions.

1.1 Stream Ciphers 2

1.1 Stream Ciphers

Stream ciphers are cryptographic algorithms that transform a stream of plaintext
messages of varying bit-length into ciphertext of the same length, usually by gen-
erating a keystream that is then XORed with the plaintext. Using a shared secret
key, stream ciphers can be used to provide confidentiality, i.e., restrict access to se-
cret data to the parties in possession of the key by encrypting the plaintext secret
data. In general, stream ciphers have very high throughput, strong security prop-
erties, and use few resources, thus making them ideal for mobile applications;
well-known examples of stream ciphers include the RC4 cipher used in 802.11
Wireless Encryption Protocol [50], EO cipher used in Bluetooth protocol [50], and
the SNOW 3G cipher used by the 3GPP group in the new mobile cellular stan-
dard [110].

Stream ciphers are widely-used primitives, core to many security systems,
and as such the security and efficiency of these primitives is crucial to many
applications. In this thesis, we focus on implementing the stream ciphers selected
for the eSTREAM portfolio, and analyzing a subset of them: the MICKEY v2
and Trivium stream ciphers. The eSTREAM portfolio is a result of the European
Union sponsored four-year project, whose gole was to identify new stream ciphers
as alternatives to widely-used, though cryptographically insecure, ciphers [27,74].
We believe that our implementations and analysis is a contribution to the efficient
use and better understanding of these ciphers.

Stream ciphers are designed to satisfy various security properties. Specifically,
we expect it to be infeasible to recover the secret key or internal state given the
keystream output. In this thesis we analyze the MICKEY v2 and Trivium steam

ciphers using the cube attack [45,46]. The cube attack is a very recent general

1.2 Hash Functions 3

cryptanalytic technique, that can be used to carry out algebraic attacks on cryp-
tosystems with low degree polynomials, a design weakness many stream ciphers
are susceptible to. Although the cube attack can be used to analyze a wide range
of primitives, including block ciphers and keyed hash functions, we limit our
analysis to Trivium and MICKEY v2 as our main contribution, in this aspect, is in

providing a multi-GPU cube attack framework.

1.2 Hash Functions

Like stream ciphers, hash functions are important cryptographic primitives. How-
ever, hash functions transform arbitrary-length input messages into fixed-length
message digests. They are used in many applications, notably in commitment
schemes, digital signatures and message authentication codes. To this end they
are required to satisfy different security properties. These security properties in-
clude i) preimage resistance, i.e., given f(x) it is infeasible to find x, ii) second
preimage resistance, i.e., given x it is infeasible to find x’ # x : f(x) = f(x/), and
iii) collision resistance, i.e., it is infeasible to find x,x’ : ¥’ # x and f(x) = f(x').
Informally, a hash function is collision resistant if it is practically infeasible to find
two distinct messages m1 and m; that produce the same message digest.

It is clear that the security properties of hash functions are desirable when
building security systems where integrity is a concern. For example, in a sys-
tem where two parties exchange secrets by employing a stream cipher a third
party modifying the exchanged ciphertexts could easily meddle with the stream.
Hence, a receiver could end up decrypting a message that was not sent by the
corresponding sender, but instead the man-in-the-middle. An approach address-

ing such issues consists of using message authentication codes (MACs) which

1.3 High-Performance Cryptologic Computing 4

produce a message digest that can only correspond to the MAC’d message. The
result is that the intermediary modifying intercepted messages will be detected as
it will not be able to produce a proper digest without the secret key. Among their
key role in signature schemes and other authentication methods, hash functions
are commonly used to construct MACs. The use of such authentication schemese
widely used, e.g., in web applications, highlights the significance of efficiently
implementing and analyzing the security properties of such primitives.

Though many existing applications already use standard hash functions, like
Message Digest 5 (MD5) and the Secure Hash Algorithm-2 (SHA-2), the design
and analysis of cryptographic hash functions have come under renewed interest
with the public competitio commenced by the US National Institute of Stan-
dards and Technology (NIST) to develop a new cryptographic hash algorithm
SHA-3. In this thesis we focus on the second-round SHA-3 candidates, present-
ing performance estimates supported by actual implementations. As in the stream
cipher case we also analyze a subset of these algorithms: BLAKE and CubeHash.

Similar to the cube attack framework, we use a generic linear differential crypt-
analysis framework to analyze BLAKE and CubeHash. Though linear differential
cryptanalysis is a more mature technique, widely applied to the analysis of many
cryptosystems, including block ciphers, and stream ciphers, we use the more re-

cent results targeting hash functions [34, 66].

1.3 High-Performance Cryptologic Computing

Racing with Moore’s law [80, 81], processor design techniques have shifted to-

wards incorporating multiple processors on a single die from the more tradi-

1See http:/ /csrc.nist.gov/groups /ST /hash/sha-3/index.html

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

1.3 High-Performance Cryptologic Computing 5

tional designs that simply increased the complexity of instructions and processor
frequency. This paradigm shift is increasingly being regarded as the many-core
revolution.

At the forefront of the many-core revolution are graphics processing units
(GPUs). The once game-specific processors have become very powerful and gen-
eral purpose processors. Modern GPUs are equipped with hundreds to thousands
of streaming processor cores, clocked at rates comparable with those of a CPU.
Thus, leveraging the vast computational power of these devices, we can build
secure systems that do not suffer in performance simply because of the added se-
curity features. Moreover, it is expected that new algorithms be designed for and
implemented on such platforms; for example, one of the motivations behind this
work is NIST’s predisposition for algorithms with greater flexibility [88] — they
state that is it preferable if “the algorithm can be implemented securely and efficiently
on a wide variety of platforms.”

In this thesis we evaluate the performance of the eSTREAM portfolio algo-
rithms and SHA-3 second round candidates. Given the general trend in architec-
ture design, the low prices, and wide availability, it is of valuable interest to evalu-
ate the performance of GPUs as cryptologic accelerators. For example, computing
the message digest or encryption of a batch of fixed-length input messages, e.g.,
in high-end servers, can be efficiently accomplished with the implementations
proposed in this work.

We further stress that these high performance devices can also be used to carry
out cryptanalytic attacks and evaluations. To this end, we implement the cube
attack to target a multi-GPU system and evaluate its performance when compared
to a CPU; we find the multi-GPU framework to provide speedup factors of up to

100x. A direct consequence of this is the ability to carry out more sophisticated

1.4 Related Work 6

attacks in less time, which further allows for the confirmation of existing and new
results by third party researches. Supporting this scientific endeavor we make

most of our code publicly available.

1.4 Related Work

The PlayStation 3 (PS3) video game console, which contains the Cell architecture,
has been previously used to find chosen-prefix collisions for the cryptographic
hash function MD5 [108]. Graphics cards have similarly been used for MD5 colli-
sion searches [22], password cracking [76], and accelerating cryptographic appli-
cations [75,109]. In [32] we presented our SHA-3 results; to the best of our knowl-
edge, there is no previous work implementing the eSTREAM stream ciphers or
second-round SHA-3 candidates on the NVIDIA GT200 GPUs.

In a closely related work, Kaminsky presented a parallel implementation of
cube testers with application to the CubeHash hash function in [65], and Lathrop
presented several cube attack results on SHA-3 cadidates in [71]. The best cube
attack results on Trivium are due to Mroczkowski and Szmidt [82], building on
the works of Dinur and Shamir [46], and Vielhaber [111]. In this work we present
a complimentary multi-GPU cube attack framework and as an example analyze
MICKEY v2 and Trivium. Our results confirm previously found attacks.

Chabaud and Joux [38] presented the first differential collision attack on SHA-0.
Using a linearized model of the hash function, they found message differences
that lead to a collision of the original hash function with a higher probability
than the birthday bound. Similar strategies were later used by Rijmen and Os-
wald [101] on SHA-1 and by Indesteege and Preneel [64] on EnRUPT.

Pramstaller et al. [99] related the problem of finding highly probable linear

1.4 Related Work 7

differences to the problem of finding low weight codewords of a linear code. A
recent work of Brier et al. [34,66] more precisely analyzed this relation for hash
functions whose non-linear operations only consist in modular additions. They
reformulate the problem of finding message pairs that conform to a linear dif-
ferential trail to that of finding preimages of zero of a condition function. The
search for such preimages is accelerated by the implicit use of message modifi-
cation techniques. Given a linear differential trail, the concept further allows to
estimate the corresponding complexity of the collision attack.

Section 2. B. 5 of [19] presents a complete survey of cryptanalytic results on
CubeHash. The currently best collision attacks on CubeHash-r/b for message
block sizes b = 32,64 were presented in [34]. For b = 32 they present attacks of

2541 and 21821 for r = 4 and r = 6 rounds, respectively. For b = 64

complexity
an attack of complexity 229 for 7 rounds is given. No collision attack for more
than 7 rounds was presented so far. Generic attacks are discussed by Bernstein in
the appendix of [18]. In [67] we presented the two different methods discussed in
this thesis for finding appropriate trails for variants of CubeHash, also discussed
in [66].

Similarly, for BLAKE, Aumasson et al. present several cryptanalysis results
in [8]. Various differential and invertibility properties of BLAKE’s compression
function are presented in [5]. Compared to their work, we present an analysis
of BLAKE's susceptibility to general linear differential attacks, by extending the

framework of [34], but do not, however, find any attacks better than those men-

tioned in [5, 8].

1.5 Contributions 8

1.5 Contributions

The contributions of this thesis can be divided into two categories: implementa-
tions and analysis. Below we state these contribution, relating them to existing

work in literature.

1.5.1 Implementation Contributions

We present a new software performance analysis of all eSSTREAM stream ciphers
and second-round SHA-3 candidate hash functions on the GPU. Our results are

four-fold:

1. We presents an in-depth performance analysis of all algorithms by investi-
gating their internal operations. It is worth noting that the aim of this work
is not to claim that our techniques are optimal (hence, the provided esti-
mates are indeed subject to change). Rather, our intended goal is to make a
fair, reliable, and accurate comparison between all eSTREAM stream ciphers
and, respectively, all second-round SHA-3 candidates. To facilitate the anal-
ysis of the SHA-3 candidates, we separate the AES-inspired candidates from
the others. For the former case, we make extensive use of the work by Osvik
et al. [95], which introduced the fastest results of AES on our target archi-
tecture. For the latter case, however, a more careful analysis, starting from

scratch, was required.

2. We propose specific optimization techniques for our target platform; in com-
bination with our estimation framework, more precise GPU estimates are

given for all algorithms.

3. We complement this framework by providing real implementations of all

1.5 Contributions 9

but one eSTREAM stream cipher, and, respectively, all non-AES based can-
didates on the target platform. We show that our techniques are indeed

applicable, and that the base estimates are usually realistic.

4. In implementing the eSSTREAM stream ciphers we developed an open source
GPU stream cipher framework, called gSTREAM. The framework provides
boiler-plate code for developers to easily port stream cipher implementa-
tions to the GPU; though we only show the implementation of the eSTREAM
ciphers, other ciphers can easily be used with gSTREAM. A stream cipher
implementation using gSTREAM transparently takes advantage of GPUs to

accelerate system components.
We also present and benchmark two cryptanalysis frameworks:

1. To our knowledge we present the first multi-GPU cube attack framework.
Our framework implements the preprocessing stage of the cube attack, i.e., it
consists of a maxterm search algorithm, superpoly reconstruction algorithm
and maxterm linearity test algorithm. As an example we apply the frame-
work to the MICKEY v2 and Trivium stream ciphers, measuring speedup

factors of up to 100x.

2. We extend the implementation of the linear differential framework pre-
sented in [34, 66] by parallelizing the code using OpenMP, providing sub-
byte message modification techniques, a reverse differential trail search al-
gorithm, an adaptive backtracking algorithm, and a generic interface. Our
framework provides for a linear speedup in the number of CPUs, the abil-
ity to find trails that are practical and leading to real collision, and finally
the ability to analyze algorithms other than CubeHash, previously limited
in [34].

1.5 Contributions 10

1.5.2 Analysis Contributions

Using the cube attack and linear differential cryptanalysis methods we analyze

four cryptographic primitives:

1. We use the multi-GPU cube attack framework to analyze simplified variants
of the MICKE v2 and Trivium stream ciphers. For the former, we do not
tfind any attacks using cubes of dimensions up to 20. However, for Trivium
we confirm previously found results and present several new equations that

can be used in an online attack to carry out a partial key recovery.

2. We use the linear differential framework to analyze variants of BLAKE and
CubeHash. We apply two different methods for finding appropriate trails,
including a reverse trail search and randomized trail search algorithm. For
toy versions of BLAKE we find two collision attacks on both the 32-bit and
64-bit variants. We also find a 2°% second preimage attack on the FLAKE32

variant with 5 rounds, only slightly better than the theoretical 2°12.

For several round parameters r and message block sizes b we present bet-
ter collision attacks on CubeHash-r/b than those presented so far. Specif-
ically, we analyze new variants of CubeHash-r/b for r € {1,...,10} and
b € {10,20,24, 36,96}, find collisions of CubeHash-5/96 and give a theoreti-

cal attack of CubeHash-8/96 with estimated complexity of 28

compression
function calls. This improves over the generic attack with complexity of

about 2128 and is the first collision attack on more than 7 rounds.

1.6 Thesis Outline 11

1.6 Thesis Outline

This thesis is organized as follows. In Chapter 2| we introduce the eSTREAM
and SHA-3 algorithms, detailing the designs of the four algorithms we analyze.
Chapter |3| introduces the OpenMP and CUDA programming models we use to
implement our high-performance frameworks. In Chapter 4 and Chapter [5] we,
respectively, describe the cube attack and linear differential cryptanalysis frame-
works. Then, in Chapter [f|and Chapter /] we present our implementation evalua-

tion and cryptanalysis results, respectively. We conclude in Chapter

Chapter 2
Target primitives

As previously mentioned, stream ciphers and cryptographic hash functions are
widely-used primitives, core to many security systems. The security and effi-
ciency of these primitives is crucial to many applications, and therefore, much
research effort has been put into addressing these issues. In this thesis, we focus
on analyzing and implementing various stream ciphers and cryptographic hash
functions. Specifically, we evaluate the performance of the eSTREAM portfolio
stream ciphers and Secure Hash Algorithm-3 (SHA-3) second-round candidates.
Additionally, we cryptanalyze the stream ciphers Trivium and Mutual Irregular
Clocking KEYstream generator (MICKEY), and hash functions BLAKE and Cube-
Hash. Below, we briefly introduce the eSTREAM project and SHA-3 competition,
along with a more detailed description of the four algorithms we analyze. We

leave the analysis and implementation details to later chapters.

12

2.1 eSTREAM Stream Ciphers 13

Profile 1 (Software) | Profile 2 (Hardware)

HC-128 [117] Grain v1 [59]
Rabbit [31] MICKEY v2 [11]
Salsa20/12 [16] Trivium [42]

SOSEMANUK [15] —

Table 2.1 eSTREAM portfolio algorithms.

2.1 eSTREAM Stream Ciphers

The European Union sponsored the four-year eSTREAM project in the hopes of
identifying new stream ciphers as alternatives to the widely-used, though cryp-
tographically insecure, ciphers [27,74]. Moreoever, the project was initiated as
a response to the failed attempt of the earlier New European Schemes for Sig-
natures, Integrity, and Encryption (NESSIE) project to identify new promising
stream ciphers [100]. The goal of the eSTREAM project was to create a portfolio
of novel stream cipher designs that address security, performance, and resource-
utilization. Submissions were considered for either high-performance software-
oriented ciphers (Profile 1), or low-power and low-resource hardware-oriented
ciphers (Profile 2). However, some submissions were initially considered for
both profiles. Since the September 2008 revision [9,10], the eSTREAM portfo-
lio contains seven algorithms, listed in Table In this thesis, we implement all
but the SOSEMANUK stream cipher and analyze Trivium and MICKEY v2, two
hardware-oriented stream ciphers. Below, we focus on the details of Trivium and
MICKEY v2; we refer to the references given in Table [2.1| for details on the other

ciphers.

2.1 eSTREAM Stream Ciphers 14

211 Trivium

Trivium is a synchronous stream cipher designed by De Canni‘ere and Preneel [41-
43]. The cipher was selected to be part of the eSTREAM portfolio as one of the
promising hardware-oriented stream ciphers to be widely adopted. Trivium sup-
ports 80-bit keys and up to 80-bit initial values, with which it can generate up to
264 keystream bits. The very simple design structure makes Trivium a desirable
target for cryptanalysts. Much effort has been put into breaking round-reduced
versions of the cipher [3,46,79,103,111], yet, the full Trivium has withstood these

efforts and remains secure.

Algorithm Specification

Trivium operates on a 288-bit internal state s = sy, ..., 5283, which is organized as
three shift registers of length 66, 69, and 66 respectively [79]. When clocking a
register, the non-linear combination of several bits from one of the other registers
is mixed with bits from its own state. During the state update (register clocking)
the output of the three registers is combined to generate the keystream output.
Although the three-register description is constructive in making several crypt-
analytic observations on Trivium [79], we focus on a ‘vectorized” approach. We
assume that 288-bit operations such as shifts are available, when describing the
algorithm.

Given a 80-bit key k = ki, ..., kg and 80-bit initial value IV = IVj,..., Vg,

the Trivium algorithm can be broken down into two steps:
1. Key and IV setup:

e Setsq,...,sg to k.

e Setsogy,...,s174 to IV.

2.1 eSTREAM Stream Ciphers 15

Algorithm 2.1: Trivium state update function

Data: Internal state s = s, .. ., Soss.
Result: Clocked state s = sq, ..., Soss.
Output: Keystrem output z.

1 begin

2 1 < Se6 D S93;

3 ty «— s162 D s177;

4 t3 < $243 D S28s;

5 z— 1 Pty@ts; // Keystream output bit
6 t1 < t1 @ (591 A 592) D 5171

7 |ty ta® (s175 A S176) D S264;

8 t3 — t3@ (S286 A 5287) D 59

9

s<—s>»1;
10 S93 < 13,
11 S94 < t1;

12 S178 < to;

® Set S, 5287, S2s8 to 1’s, and remaining bits to 0’s.
286, 5287 g

* Clock the state Npre = 4 -288 times, disregarding the output.
2. Keystream generation: clock the state and return the output.

Denoting a i-bit right shit of « by a » i, XOR by @, and bitwise-AND by A,
the state update (clocking function) is given in Algorithm Note that with the

exception of line[9} all operations are on single bits.

Brief Design Rationale

As can be inferred from the above description, Trivium’s design is “an exercise
in exploring how far a stream cipher can be simplified without sacrificing its se-
curity, speed or flexibility” [42]. Despite its simplity, the design does not trade
security for speed or area. Consider, for example, the non-linear state update.
This protects against correalation attacks that attempt to recover the state from ei-

ther the keystream bits alone, or a combination of keystream and state bits [41,42].

2.1 eSTREAM Stream Ciphers 16

The non-linear state update used in Trivium does, however, makes the analysis
of its period more difficult to determine. However, the designers estimated the
probability that a cycle (after a large number of iterations) is smaller than 280 to

be negligible (272%8) [42].

2.1.2 MICKEY v2

MICKE is a synchronous stream cipher selected for Profile 2 of the eSTREAM
portfolio, along with Trivium and Grain. MICKEY was designed by Babbage
and Dodd [11], targeting applications requiring high security ciphers in resource-
constrained environments. The design is based on the mutual (and irregular)
clocking of two shift registers. MICKEY provides for the secure generation of 2%

keystream bits using a 80-bit key and (at most) 80-bit IV.

Algorithm Specification

The MICKEY algorithm has an internal state of 200 bits, evenly divided between
registers r = rg,...,799 and s = sp,...,599. Similar to Trivium, MICKEY uses
a state update function througout the algorithm. However, its update function,
called ClockKG, is slightly more complex than that of Trivium. ClockKG takes a
mixing bit m and input bit i as parameters, thus we denote it by ClockKG(m,1).
Before delving into the details of the update funciton, we note that, like most

stream ciphers, the MICKEY algorithm may be split into two steps:
1. Key and IV setup:

e For each IV bit IV; : 0 < i < 79, update the state with ClockKG(1, IV;).

e For each key bit k; : 0 < i < 79, update the state with CLockKG(1, k;).

1Unless explicitly noted, from this point, when referring to MICKEY we imply MICKEY v2.

2.1 eSTREAM Stream Ciphers 17

* Update the state Npre = 100 times with ClockKG(1,0).

2. Keystream generation: update the state with ClockKG(0, 0) and return ro @ sg

as the keystream output.

Following [11], ClockKG is described in Algorithm The core functions
Clock, and Clocks, used on lines |§] and |7] to carry out the actual state update,
are presented in Algorithm [2.3|and Algorithm [2.4] respectively. The constant tap

vector T, and bit vectors Cy, Cq, Fy, and F; are given in Appendix

Algorithm 2.2: MICKEY state update function
Input : Mixing bit m.
Input bit i.
Data: Internal state ¥ = rg,..., 799 and s = sy, . .., Sgg.
Result: Clocked state r = rg,...,7r99 and s = sy, . .., Sgg.

1 begin

2 Cr < 534 Doy,

3 Cs < Se7 D133;

4 ir<—i@(s50/\m);
5 Iy < 1;

6 r < Clock,(7, iy, ct);
7 s « Clocks(s, is,Cs);

We note that the two (vectorized) algorithms Clock, and Clocks, individually
clocking the r and s registers, respectively, are equivalently expressing the original
individual-bit descrition of [11], though in a more compact form. For example,

line B]is equivalent to the following line from [11]: 7} = r;_; for 1 <1 < 99; rj = 0.

Brief Design Rationale

As explained in [11], MICKEY uses the r register to guarantee the period and local
statistical properties of the keystream generator. We observe that when updating

r (using Clock,) with the control bit ¢, = 0, the update of r is linear, i.e., r simply

2.1 eSTREAM Stream Ciphers

18

Algorithm 2.3: Clock, - clocking MICKEY’s r register

Input : Internal state regiester r = ry, ..., 799.
Input bit i,.
Control bit c,.
Output: Clocked state register r' = r{, ..., 1.
1 begin
2 | fe—r99®@iy
3 r—r>»1;
4 if f =1 then
5 L ' —7r@®T;// if i is a tap position, add f
if ¢, = 1 then
7 | V=1 ®r;
8 return r’;

Algorithm 2.4: Clocks - clocking MICKEY’s s register

Input : Internal register state s = sy, ..., S99.
Input bit is.
Control bit c;.
Output: Clocked register state s’ = s, ..., 54q.
1 begin
2 | f < 899@Dis;
3 | Se—(>1)D((s®Cy) A ((s«1)dCq));
4 56 —0;
5 Sgg < S98;
6 if f =1 then
7 if c, =0thens « s ®Fy;
8 L elses’ —s'@F

9 return s’;

2.2 SHA-3 Candidates 19

behaves like a linear feedback shift register—a common approach to guaranteeing
the period of a cipher. Conversely, when the control bit ¢, = 1, the update function
is effectively clocking r a total of 2°° — 157 times [11]. The careful and irregular
variable clocking protects against several statistical attacks attempting to guess
the number of times the state has been clocked.

Complementary to the r register, MICKEY’s s register provides for high non-
linearlities in the keystream and state bits. More specifically, the goal of the s
register (and its update function) is to address correlation and distinguishing
attacks, as explained in [11]. Finally, because bits from both registers are used to
(mutually) control the state update functions, as shown in ClockKG, divide-and-
conquer attacks become infeasible, i.e., it is not possible to predict future r (or s)

values with full knowledge of only one register’s state.

2.2 SHA-3 Candidates

Similar to the growing interest in stream cipher design and analysis research
as a result of eSTREAM, the design and analysis of cryptographic hash func-
tions have come under renewed interest with the public hash function competi-
tion [89] commenced by NIST. The goal of the competition is to develop a new
cryptographic hash algorithm to replace the current standard, SHA-2 [87]. The
new hash algorithm will be called ‘SHA-3" and will be subject to a Federal In-
formation Processing Standard (FIPS), similar to the Advanced Encryption Stan-
dard (AES) [90]. The competition is NIST’s response to recent advances in the
cryptanalysis of hash functions [44,69,72,106, 115], especially to serious attacks
against the widely-deployed algorithms MD5 [102] and SHA-1 [86]. Although

these cryptanalytic breakthroughs have no direct effect on SHA-2, a successful

2.2 SHA-3 Candidates 20

BLAKE [8] BMW [55] CubeHash [20] ECHO [13] Fugue [56]
Grestl [54] Hamsi [70] JH [118] Keccak [21] Luffa [37]
Shabal [33] SIMD [73] SHAuvite-3 [25] Skein [49] -

Table 2.2 SHA-3 second-round candidates.

attack on SHA-2 would have catastrophic effects on the security of applications
that rely on it. The structural similarities between SHA-2 and its broken ances-
tors have lead many cryptographers and cryptanalysts to believe that successful
attacks are reachable in the near future.

Since the commencement of the SHA-3 competition in October 2008, the num-
ber of candidate algorithms have been narrowed down (in July 2009) from 51 to
14 (second-round) candidates, shown Table to the 5 finalists (highlighted in
Table 2.2). The new hash function standard(s) will be announced in 2012. Similar
to the eSTREAM criteria, these candidates are reviewed based on security, cost,
and algorithmic and implementation characteristics [88]. In this thesis, we present
performance estimates for all 14 algorithms in addition to analyzing the BLAKE
and CubeHash hash functions. Below we focus on the latter, the details for the
remaining algorithms can be found in their corresponding NIST submission doc-

umentsEl

2.2.1 BLAKE

BLAKE is a family of hash functions designed by Aumasson et al. for the SHA-3
competition [8]. BLAKE is one of the 14 second-round candidates, having both

strong security and efficient implementation properties. The family consists of

2See http:/ /csrc.nist.gov/groups/ST/hash/sha-3/

http://csrc.nist.gov/groups/ST/hash/sha-3/

2.2 SHA-3 Candidates 21

BLAKE-{28, 32,48, 64}, each respecively corresponding to NIST’s requirement of
hash functions with output lengths of 1 = 224,256,384 and 512 bits.

The first two hash functions operate on 32-bit words, while the latter two
operate on 64-bit words. Additionally, we note that BLAKE-28 and BLAKE-48
are simply truncated versions of BLAKE-32 and BLAKE-64, respectively, with
different initial vectors. As BLAKE-64 is only a slightly modified 64-bit version of

BLAKE-32, we focus on the description of the latter.

Algorithm Specification

BLAKE-32 operates on a 512-bit internal state, composed of 16 words v = vy, ..., v1s.
Each v; is a 32-bit word, and all of the operations are truncated to the word length,
i.e., addition of two 32-bit words is truncated modulo 232. BLAKE is an iterated
hash function following the HAsh Iterative FrAmework (HAIFA) [24], and like

most iterated hash function it can be broken down into three steps:
1. Pad the input message M to a sequence of 512-bit blocks M’ = M| - - - || M}:

* Append a 1 bit to M.

¢ Append the least number of 0 bits to reach a length congruent to 447
mod 512.

* Append a 1 bit.

e Append the 64-bit representation of the message length ¢: [{]¢4.
Thus, M = M|10- - - 01/ [¢]ea-
2. Using the compression function, process every 512-bit block M.

3. Output the h bits of the last compressions’s output.

2.2 SHA-3 Candidates 22

Algorithm 2.5: BLAKE's compression function

Input : Chain value Wo=Hn .. ,h17
Message block m = my, ..., mis.
Salt s = sg,...,s3.
Counter ' = ¢, t].
Output: New chain value h' ™! = hg“, ..., hé“.

1 begin
// Initialization:
Up 01 Uy U3 hb hll hlz hé
) U4 U5 Vg 0y -]’lfl hl5 h16 h17
g U9 V10 U1 so®@co s1Dc1 202 s3Dc3
U12 U13 U4 V15 ty@cy ty@ces 1 @cs tDey

3 forr —0to N, —1do
// Column step:

4 Go(vo, V4, Vg, V12);

5 G1(v1, U5, V9, V13);

6 Go(v2, Ve, V10, V14);

7 G3(v3, v7, V11, V15);

// Diagonal step:

8 G4(v0, U5, V10, V15);

9 Gs(v1, V6, V11, V12);
10 G6(7)2, V7,08, 7)13),'
11 G7(U3,U4,09,014);

// Finalization:
12 | forj<—0to7do

1) .
13 h;-_'_ — h; (—DS(] mod 4) Dv; DUy,

We note that the BLAKE-64 hash function is identical except for the working sizes:
the v;’s are 64-bit words, the message blocks are 1024-bit, and the length is 128-bit.

The compression function, which we call Compress, takes as input a 8-word
chain value h' = hi, ..., é, a 16-word message block m = my,...,mys5, a 4-word
salt s = sg,...,s3, and a 2-word counter # = tf), ti, producing a new chain value
hitl = h6+1,. . .,héﬂ. The three-step Compress(h,m,s, t') function is given in Al-
gorithm The number of rounds N, for BLAKE-32 is 10, while for BLAKE-64
it’s 14.

2.2 SHA-3 Candidates 23

Algorithm 2.6: BLAKE-32 G; function
Data: Message block m = my, ..., ms.
Four state words a4, b, ¢, d.
Result: Transformed state words a, b, ¢, d.

[y

begin

2 | a<a+b+ (myo)®cy0it))
3 d— (d®a) > wy;

c«—c+d;

b— (bdc) > wy;

a<—a+Db+ (Mg (2i41)®Ch(21));
de— (d®a)>> wy;

c«—c+d;

b— (bdc) > ws;

(S I Y

© 0w 3 o

The core of the compression function is the G; function, a modification of Bern-
stein’s ChaCha cipher [17]. Denoting a right-rotate of a by i bits as & >> i, we
present the G; function in Algorithm The rotation constants wy, ..., ws are
{16,12,8,7} for BLAKE-32, and {32,25,16,11} for BLAKE-64. The ¢; constants
and permutation functions 0; (i) are given in Appendinx

Using the initial values given in Table of Appendix|A} Step 2 of the BLAKE
algorithm can be expressed according to the relation: h'*! «<— Compress(h', M., s,).
The counter # is the number of message bits in Mj|---|M!, excluding the bits
added by padding; if the last block contains only padding bits, then N = 0.

Finally, Step 3 simply consists of returning the (truncated) ™.

Brief Design Rationale

BLAKE’s design is based on pre-existing, and well-studied components [8]. As
mentioned, BLAKE's iteration mode is based on HAIFA, which allows for hash-
ing with salt and randomized hashing. Hashing with a salt is used in vari-

ous applications, the most common of which are password-based authentica-

2.2 SHA-3 Candidates 24

tion applicationﬂ a salt, usually a random nonce or counter, is used to effec-
tively provide a different hash function using a common algorithm [8]. More
importantly, the HAIFA iteration mode addresses some of the issues found in
the widely-used Merkle-Damgard construction (including resistance to preimage
and second-preimage attacks). The local wide-pipe structure, i.e., having an in-
ternal state larger than the chain-value, and message-dependent rounds provide
for security against collision-attacks [6,8]. Finally, the compression function being
based on the stream cipher ChaCha [17], which has better diffusion properties
over the well-regarded Salsa20 cipher [16], greatly increases the confidence in its

resilince to generic attacks.

Toy Versions

Encouraging external cryptanalysis, the designers provide four simplified, toy,
versions of BLAKE. Since part of our analysis is on the toy versions, the details of

the four variations, as described in [7], are given below:
BLOKE: The 0;’s are simply the identity.

FLAKE: The compression finction has no feedforward, i.e., line [13| of Algo-

rithm is changed to: h;-“ — V;@DV43
BLAZE: The c; constants of the G; functions are all 0.

BRAKE: Combination of BLOKE, FLAKE, and BLAZE.

3 For example, password authentication applications commonly store a salt along the hash of
the salt|password to prevent attackers from pre-computing tables that can be used in speeding up

a brute force password search.

2.2 SHA-3 Candidates 25

2.2.2 CubeHash

CubeHash, designed by Bernstein [18], is also a second-round candidate in the
SHA-3 competition along with BLAKE. The cryptographic hash function was
designed with tweakable parameters r,b, and h, which specify the number of
rounds, the number of bytes per message block, and the hash output bit length,
respectively. We denote the parametrized function as CubeHash-r/b. Currently,
the official proposal for all NIST-required digest lengths I = {224,256,384,512} is
CubeHash-16/32, truncated to the desired output bitlength. The initial proposal
of CubeHash-8/1 was tweaked to CubeHash-16/32 for the second round [19]; the
new parameter choices effectively speed up the function by a factor of 16, while
still keeping the security margin very high. Furthermore, the author explicitly
encourages external cryptanalysis with larger values of b and fewer number of

rounds 7.

Algorithm Specification

CubeHash operates on a 1024-bit internal state X, composed of 32 words X =
Xo, - - ., X31, where each X; of the internal state is a 32-bit word. All of CubeHash’s
operations (add, XOR, and rotate) are 32-bit operations, i.e., all additions are

modulo 232, The algorithm consists of five steps:
1. Pad the input message M to a sequence of b-byte blocks M’ = M()|| - - - | M},

* Append a 1 bit to the input message M.

* Append the least number of 0 bits required to reach a multiple of b-

bytes.

Thus, M’ = M|10- - -0.

2.2 SHA-3 Candidates 26

2. Initialize the internal state X:

* Set Xp to h/8, Xj to b, X5 to r, and the remaining X;’s to 0.

¢ Using a round function, transform the state through 10r identical rounds.
3. For every b-byte block M!:

e XOR M; into the first b-bytes of X.

¢ Transform the state through r identical rounds.
4. Finalize the state:

¢ XOR 1 into X3;.

¢ Transform the state through 10r identical rounds.

5. Output the first h bits of X.

Denoting an i-bit left rotate of a by # << i, the aforementioned round function

is given in Algorithm

Brief Design Rationale

Compared to most other SHA-3 second-round candidates, CubeHash has a very
simple design. The designer specifically avoids block counters, message padding
methods that append the message length to the input, or other techniques com-
monly used to prevent collision attacks. Shown in [19], the very large state
of CubeHash is itself a countermeasure against such attacks. Furthermore, the
high degree of symmetry in the cipher allows for very efficient hardware and
software implementations, while the constant-time operations and lack of com-
plex message-dependent lookups (common in many designs) prevents possible

timing-related attacks, such as cache attacks [94].

2.2 SHA-3 Candidates

27

Algorithm 2.7: Round funtion for CubeHash

Data: Internal state X, ..., X31.
Result: Round transformed internal state X, ..., X31.

begin
fori <— 0 to 15 do

L Xiv16 < Xi + Xit16s

Xi— X, K7
5 fori — 0to7 do Swap(X;, Xj18);
6 fori — 0to 15 do Xl' <« Xi @ Xi+16;
7 foreach i € {16,17,20,21,24,25,28,29} do Swap(Xj, X;12);
8 fori <— 0to 15 do
9 L Xiv16 < Xi + Xit16;
Xi— X;i 17,

1 foreach i€ {0,1,2,3,8,9,10,11} do Swap(X;, Xji4);
12 fori —0to15do X; — X;® Xii16;
13 foreach i € {16,18,20,22,24,26,28,30} do Swap(Xj, X;11);

Chapter 3

SMP and GPU Parallel Programming

Although the transistor count per chip is still doubling every two years according
to Moore’s law [80, 81],'traditional” processor (CPU) design techniques that in-
crease clock rates and add complex features are no longer advancing at a match-
ing pace. Among other limitations, power dissipation has become an increasingly
difficult problem for high clock rate processor designs. Alternative approaches,
the most successful of which is the multi-core, have become the norm [97]. Rather
than adding more complex functional units that run at very high speeds, multi-
core CPUs take advantage of the increasing data- and task-parallelism to keep up
with Moore’s law. Incorporating multiple processors on a single die, the multi-
core CPU is a direct improvement on multiprocessor designs, which have been
extensively used in server environments for many years [61]. Additionally, many
CPU manufactures are persistently researching methods to increase the number
of cores on a die—Intel’s recent release (for research) 48-core Single-chip Cloud
Computer [63] is an example of this progress.

Similar to the CPU design trend to achieve tera-scale computing, addressing

the increasing computational requirements of graphics-related applications (e.g.,

28

3.1 OpenMP and SMPs 29

games and high-definition video) graphics processing units (GPUs) have become
very powerful and highly-parallel processors. Many GPUs are equipped with
hundreds to thousands of streaming processor core For example, the NVIDIA
GTX 285, GTX 480, and ATI Radeon 5870 have 240, 480, and 1600 streaming
processors, respectively. Additionally, these streaming processors are clocked at
reasonably high clock rates, when compared to CPU clock rates, usually between
850 MHz and 1.5 GHz. The vast raw computational power of modern GPUs has
incited research interest in computing outside the graphics-community. Recently,
GPUs have become a common target for numerically-intensive applications given
their ease of programming (relative to previous generation GPUs), and ability to
outperform CPUs in data-parallel applications by orders of magnitude.

In this chapter we review the shared-memory parallel computer (SMP) program-
ming paradigm with Open Multi-Processing (OpenMP) and GPU parallel pro-
gramming with the compute unified device architecture (CUDA). We limit our
discussion as it pertains to programming SMPs and GPUs for cryptologic appli-

cations; for more complete introductions to these topics see [39] and [68].

3.1 OpenMP and SMPs

There are a number of application programming interfaces (APIs) that facilitate
parallel programming for multiprocessor and multi-core architectures. Of these,
the most commonly used APIs are Message-Passing Interface (MPI) [53], POSIX
threads (Pthreads) [107], and OpenMP [30]. In parallelizing various parts of out
cryptanalytic attacks, discussed in Chapters |5/ and 4, we use OpenMP for its sim-

I These streaming processors or ‘cores’, as named by ATI and NVIDIA, are essentially complex

arithmetic logic units (ALUs).

3.1 OpenMP and SMPs 30

plicity and support for incremental parallelization.

Parallelizing already-implemented algorithms using MPI and Pthreads usu-
ally requires major code rewriting and explicit handling of thread launch, join,
and communication. Conversely, with OpenMP little effort is required to paral-
lelize data- or thread-parallel programs. One may incrementally parallelize dif-
ferent sections of the code without having to focus on low-level thread execution
and communication details. Moreover, the programmer focuses on algorithm par-

allelization, rather than the threading details.

3.1.1 SMP Architectures

As previously mentioned, we limit our OpenMP programming details to architec-
tures where the address space is shared, i.e., SMPs, and the caches are coherent.
Extending OpenMP to large-scale clusters is beyond the scope of this chapter and
we refer to [62] for details (or taking a MPI+OpenMP hybrid approach). Follow-
ing [39], our definition of SMP encompasses all shared-memory architectures, in-
cluding uniform memory access (UMAH) architectures and cache-coherent non-uniform
memory access (cc-NUMA) architectures. UMA architecture, shown in Figure
consists of multiple processors, each with its own private cache, sharing a single
main memory. In this architecture, memory access latency is the same for all the
processors (hence the name uniform memory access) and a cache coherence pro-
tocol is usually implemented to address inconstancies that might arise if multiple

CPUs operate on the same data.

2Note that, in literature, processors implementing the UMA architectures are often called sym-
metric (shared-memory) multiprocessors, which is also abbreviated by SMP. In this thesis, when
using the term SMP we do not explicitly imply symmetric shared-memory multiprocessors, rather

we refer to the more-general shared-memory parallel computer architecture.

3.1 OpenMP and SMPs 31

CPU, CPU, CPU, CPU

Figure 3.1 Uniform memory access architecture with n processors,
caches ($), main memory and input/output (I/O) system.

Although most of the current multi-core processor designs are UMA multi-
processors, NUMA scales beyond the 10-16 core UMA systems and is a popular
architecture for multiprocessor designs. Unlike UMA, in NUMA, the memory (in
addition the cache) is distributed among the CPU nodes. As shown in Figure
the latency of CPUj accessing data from CPU,’s memory is considerably greater
than that of a nearby processor, hence the name non-uniform memory access. We
point out that Figure (3.2 has been simplified for clarity; it is very common for the
processor nodes to be multi-core processors. Additionally, although it is possi-
ble to handle the cache coherency problem in software, popular multiprocessor
NUMA architectures commonly implement this in hardware and are referred to

as cache-coherent NUMA architectures.

3.1.2 OpenMP Programming

The OpenMP C/C++ and Fortran APIs are composed of compiler directives
(to create threads and distribute work), a runtime library (to provide for thread

and environment information at runtime), and environment variables (to control

3.1 OpenMP and SMPs

32

Figure 3.2 Non-uniform memory access architecture with n intercon-
nected nodes. Each node consists of a CPU, local caches, memory and
an I/O system.

the parallelism). The programming paradigm use by OpenMP is the fork-join

model [39], shown in Figure In this programming model, a single thread

(called the master thread) forks into multiple threads, working in parallel and usu-

ally on different cores. Once the parallel work is completed, the threads join

(to possibly combine results) and the master thread continues execution. In Fig-

ure we denote a thread by -~»», a point where the master thread forks by o,

and a point where the team of threads join by e. As shown in the figure, there

can be multiple parallel and multiple intermediate serial sections of an OpenMP-

parallelized program. Moreover, the number of threads per parallel section (or

block) need not always equal the number of cores—the number of threads may

be specified at compile-time or dynamically set at runtime.

W N e

3.1 OpenMP and SMPs 33

mE VNV V.V Zu] AT
A A N
4 4
//’)'MEL\\\\ /WDMMA}EL\\ /z/a,l:lvvvvvv)ll\\\\
AP~ - SOAAAAADT - - ——->D~vvvv)|:|———}ovwvv)0§—’—->|:|MANv)l:|——-§ovvv)
*l:l-'wvvv)l:r’/ SDAAAAA>T *\‘D-'vvvvv)lj"/
R\ R Y /
m] O m} O

Figure 3.3 Fork-join programming model. The master thread forks (at
the green (circle) synchronization point) into a number of threads which
work in parallel (highlighted in pink) and join at a later point (indicated
by the red (circle) synchronization point).

Creating Threads

To create a group of threads, i.e., fork, in an OpenMP C program, the programmer
pre-pends a parallel directive (also known as parallel construct) to a (compound)
statementﬁ Consider the following trivial example:

#pragma omp parallel

printf("Thread %d in parallel block!\n”,omp_get_thread_num());
1

The first line is the OpenMP parallel directive that instruct the C compiler to
parallelize the code in the compound statement. The compound statement, in
this case, is a simple statement that uses the OpenMP runtime library function
omp_get_thread num() to get the thread id of the current thread and prints it using
printf(...). On a quad-core machine the example produced the following output:

Thread 3 in parallel block!
Thread 2 in parallel block!
Thread 1 in parallel block!
Thread O in parallel block!
As the example shows, the threads in a parallel region are not necessarily sched-

uled to execute in sequential order, i.e., thread n can finish executing ahead of

thread m : n > m, and thus care must be take avoid programming dependencies

3We assume the reader is familiar with the C programming language. For a reference, see [57].

3.1 OpenMP and SMPs 34

Clause Description

if(expression) If the compile-time expression evaluates to false, the block

is not executed in parallel, i.e., it is inactive.

num_threads(expression) The expression (must evaluate to positive integer) specifies

the number of threads per team.

private(ideny, . . .,iden,,) Make the variables ideny, . . .,iden, private to the thread.

firstprivate(ideny, . . .,iden,,) Extend private() to initialize variables to the respective

values set before reaching parallel region.

shared(ideny, . . .,iden,,) Share the variables ideny, . . .,iden, amongst all threads.

default({none, shared}) Specify the data-sharing attribute of all variable used in

the parallel region and declared before the directive.

reduction(op:ideny, . . .,iden,) | Perform a parallel reduction on shared variables

ideny, . . .,iden, using operator op.

Table 3.1 Commonly used parallel construct clauses.

on the scheduler’s algorithm.
More formally, the parallel construct has the form:
#pragma omp parallel [clauseg],[clause], ..., [clause;]

where the optional clauses are used to specify various attributes of the parallel
region following the pragma directive. We present some of the most commonly
used clauses in Table the interested reader is referred to [39] for additional
details and a more complete list of clauses. We note that since the if clause speci-
ties whether the parallel region is active or inactive, and the num_threads specifies
the number of threads executing the parallel region, each may only appear once
in the directive.

To clarify the use of the if, num_threads, private, and firstprivate clauses consider

© e N Ul ke W N e

T S S S
S © ®» 9 o G & @ N = o

N
=

3.1 OpenMP and SMPs 35

the following C OpenMP function.

void simple_example(void) {
int i=0x2A, j=0x539, s=0xA5;
int iter=0;

for(iter=0;iter<2;iter++) {
printf(”Iteration %d...\n” iter);
#pragma omp parallel num_threads(5) \
private(i) firstprivate(j) if(s!=0xBADCAFE)
{

printf(“Thread %d: i=0x%08X, j=0x%08X, s=0x%08X\n",
omp_get_thread num(),ij,s);

i=0OxDEADBEEF; j=0xBADFO00D;
if(omp_get_thread num()==4) { s=0xBADCAFE; }

printf(” %d: i=0x%08X, j=0x%08X, s=0x%08X\n”,
omp_get_thread num(),ij,s);
} /* implicit barrier /
printf(”Serial : i=0x%08X, j=0x%08X, s=0x%08X\n\n",ij,s);
¥
}

We first point out that in the variable s, which does not appear in any clause,
is a shared variable. Unless the default(none) clause is explicitly used, and thus
every variable must explicitly appear in a shared, private, or firstprivate clause,
the compiler implicitly uses the default(shared) clause. Furthermore, a barrier is
implicitly inserted at the end of the parallel compound statement where threads
join (each waiting until the last thread completes execution of the block). On a

quad-core machine the example produced the following output:

Iteration O...

Thread 0: i=0x54E9B300, j=0x00000539, s=0x000000A5

Thread 1: i=0xF33875D5, j=0x00000539, s=0x000000A5
1: i=0xDEADBEEF, j=0xOBADFOOD, s=0x000000A5

Thread 3: i=0x00000000, j=0x00000539, s=0x000000A5
3: 1=0xDEADBEEF, j=0xOBADFOOD, s=0x000000A5
0: i1=OxDEADBEEF, j=0xOBADFO00D, s=0x000000A5

Thread 4: i=0x00000000, j=0x00000539, s=0x000000A5
4: i=0xDEADBEEF, j=0xOBADFOOD, s=0xOBADCAFE

3.1 OpenMP and SMPs 36

Thread 2: i=0x00000000, j=0x00000539, s=0x000000A5
2: 1=0xDEADBEEF, j=0xOBADFOOD, s=0x0BADCAFE
Serial : i1=0x0000002A, j=0x00000539, s=0xOBADCAFE

Iteration 1...

Thread 0: i=0x54E9B300, j=0x00000539, s=0x0BADCAFE
0: 1=OxDEADBEEF, j=0xOBADFOOD, s=0x0BADCAFE

Serial : i1=0x0000002A, j=0x00000539, s=0xOBADCAFE

Notice that the number of threads in the first iteration is equal to the expres-
sion in the num_threads clause, 5. Additionally s is set to 0XBADCAFE in the first
iteration, and thus, the if clause evaluates to false in second iteration—the parallel
block is inactive and only executed by the master thread. For both iterations, we
highlight (in red) the output of the private variable i before setting it to a new
value on line 12; unlike j, which appears in the firstprivate clause, the value of
i upon enterance to the parallel block is unknown. Additionally, as one would
expect, modifying a private variable in the parallel block has no effect on the out-
side scope; as shown by the “Serial...” output lines, the changes on line 12 to i
and j do not appear outside the parallel block. Finally, note that the modification
of the shared variable s by thread 4 is read by thread 2 (highlighted in blueﬂ

Assigning and Sharing Work

In the previous section we introduced the parallel construct which is used to cre-
ate a team of threads to execute a block of code. However, in practical applica-
tions, we usually want to distribute the work amongst the different threads. As
explained in [39], to do this, OpenMP provides three different constructs: for,

sections, and single. The for (or loop) construct breaks the iterations of a for-loop

4This latest-modification read is, however, not deterministic; to guarantee coherence one must
use barriers or atomically update the value. In this example, thread 2 could likely have read the

old value.

1

2

3

3.1 OpenMP and SMPs 37

Clause Description

lastprivate(ideny, . . .,iden,,) Extend private() to set the variables outside the construct

to last respective values in the parallel block.

copyprivate(ideny, . . .,iden,,) Broadcast the value of the private variables ideny, . . .,iden,,

to other threads upon exiting single construct block.

nowait Ignore any implicit barriers.
ordered Execute parallel block of code in-order.
schedule(kind|, size]) Specify the loop iteration distribution amongst threads.

Table 3.2 Clauses supported by the work-share constructs.

amongst the various threads; the sections construct explicitly divides the work
into sections to be executed in parallel by different threads; and the single con-
struct specifies a block that is to only be carried out by one thread.

In addition to the private, firstprivate, shared, and reduction clauses, the loop
construct also supports the lastprivate, ordered, schedule, and nowait clauses. Sim-
ilarly, the sections construct has addtional suport for the lastprivate and nowait
clauses, while the single construct only supports the private, firstprivate, copyprivate,
and nowait clauses. Table 3.2 gives a brief explanation of these clauses.

We refer the interested reader to [39] for a more formal description of the
work-sharing constructs and their clauses and,