
COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

Analysis and Implementation of eSTREAM

and SHA-3 Cryptographic Algorithms

by

Deian Stefan

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Engineering

May 10, 2011

Advisor

Dr. Fred L. Fontaine

COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

This thesis was prepared under the direction of the Candidate’s Thesis
Advisor and has received approval. It was submitted to the Dean of the
School of Engineering and the full Faculty, and was approved as partial
fulfillment of the requirements for the degree of Master of Engineering.

Dr. Simon Ben Avi
Dean, School of Engineering

Dr. Fred L. Fontaine
Candidate’s Thesis Advisor

Abstract

Invaluable benchmarking efforts have been made to measure the perfor-
mance of eSTREAM portfolio stream ciphers and SHA-3 hash function can-
didates on multiple architectures. In this thesis we contribute to these ef-
forts; we evaluate the performance of all eSTREAM ciphers and all second-
round SHA-3 candidates on NVIDIA Graphics Processing Units (GPUs).

Complementarity, we present the first implementation of the cube at-
tack in a multi-GPU setting. Our framework proves useful in the practi-
cal analysis of algorithms by providing a generic black box interface and
speedup factors over 100�. Demonstrating its use we analyze two eS-
TREAM stream ciphers, MICKEY v2 and Trivium. We find that MICKEY
is not susceptible to low-degree cube attacks, while our Trivium analysis
confirms previous results, in addition to several new equations applicable
to a partial key recovery.

We also extend the linear differential cryptanalysis framework intro-
duced by Brier, Khazaei, Meier and Peyrin at ASIACRYPT 2009 using two
new trail search algorithms, and several optimizations. We find several
collision and second preimage attacks on simplified and round-reduced
variants of BLAKE and CubeHash, two SHA-3 second round candidates.
Using the extended framework we also present improved collision attacks
on CubeHash, when compared to previous results. In combination with
the condition function concept, our new trail search algorithms lead to
much faster collision attacks. We demonstrate this by providing a real col-
lision for CubeHash-5/96. Additionally our randomized trail search finds
highly probable linear differential trails and leads to significantly better
attacks for up to eight rounds of CubeHash.

Acknowledgments

I would like to thank my advisor Fred L. Fontaine for his encouragement

and support on this work and my Electrical Engineering studies at The

Cooper Union. I am especially grateful for his efforts in providing an ex-

cellent environment, the S�ProCom2 lab, in which I have flourished as both

a student and researcher; our collaboration is one of the most rewarding

and influential experiences to date.

I am grateful to Peter Cooper and The Cooper Union for providing me

with the opportunity to gain an exceptional education. I am thankful for

having had the opportunity to work with and study under Jeff Hakner,

Danfeng Yao, Kausik Chatterjee, William Donahue, and Alan Berenbaum.

They have in many ways influenced my choice to pursue research studies.

I would like to thank all my coauthors for the fruitful discussions and

great moments we exchanged. In particular, I would like to thank David

B. Nummey, Christopher Mitchell, Jared Harwayne-Gidansky, Ishaan L.

Dalal, and Matthew Epstein. Furthermore, I am especially grateful to Arjen

K. Lenstra, Joppe Boss and Shahram Khazaei for my summer study at

LACAL, the work of which led to this thesis.

Finally, I would like to thank my friends and family for supporting

me during my studies. Most of all, I am grateful to my parents for their

ongoing support and encouragement.

Contents

List of Figures viii

List of Tables x

List of Algorithms xi

1 Introduction 1
1.1 Stream Ciphers . 2
1.2 Hash Functions . 3
1.3 High-Performance Cryptologic Computing 4
1.4 Related Work . 6
1.5 Contributions . 8

1.5.1 Implementation Contributions 8
1.5.2 Analysis Contributions . 10

1.6 Thesis Outline . 11

2 Target primitives 12
2.1 eSTREAM Stream Ciphers . 13

2.1.1 Trivium . 14
2.1.2 MICKEY v2 . 16

2.2 SHA-3 Candidates . 19
2.2.1 BLAKE . 20
2.2.2 CubeHash . 25

3 SMP and GPU Parallel Programming 28
3.1 OpenMP and SMPs . 29

3.1.1 SMP Architectures . 30
3.1.2 OpenMP Programming . 31

3.2 CUDA and GPUs . 42
3.2.1 GPU Architectures . 43
3.2.2 CUDA Programming . 45

v

CONTENTS vi

4 Cube Attack 54
4.1 Preliminaries . 55
4.2 Preprocessing . 60

4.2.1 Finding Maxterms . 61
4.2.2 Superpoly Reconstruction . 65

4.3 Online Attack . 68

5 Linear Differential Cryptanalysis 71
5.1 Constructing Differential Trails . 73

5.1.1 Notation . 74
5.1.2 Raw Probability . 74
5.1.3 Forward Differential Trails . 76
5.1.4 Reverse Differential Trails . 77
5.1.5 Randomized Differential Trails 78

5.2 Finding Collisions Using Condition Functions 79
5.3 Freedom Degrees Use: Dependency Table 85

6 Cryptography and Cryptanalysis on GPUs 91
6.1 GPU Implementation of eSTREAM Ciphers 93

6.1.1 gSTREAM Framework . 93
6.1.2 Implementation of eSTEAM Ciphers 96

6.2 GPU Implementation of SHA-3 Candidates 100
6.2.1 AES-Inspired SHA-3 Candidates 101
6.2.2 Other SHA-3 Candidates . 104

6.3 Multi-GPU Implementation of the Cube Attack 108
6.3.1 Finding Maxterms . 110
6.3.2 Superpoly Reconstruction . 113
6.3.3 Performance Measurements . 113

7 Cryptanalysis Results 117
7.1 Applying the Cube Attack . 117

7.1.1 Trivium . 118
7.1.2 MICKEY . 118

7.2 Applying Linear Differential Cryptanalysis 121
7.2.1 BLAKE . 122
7.2.2 CubeHash . 123

8 Conclusion 136

A BLAKE Constants 138

B MICKEY v2 Constants 141

C Software Implementation of Grain 143

CONTENTS vii

D gSTREAM API and Implementations 148
D.1 gSTREAM API . 148
D.2 MICKEY v2 Example Implementation 159
D.3 Trivium Example Implementation . 172

E XOR-Shift RNG Implementation 184

F Differential Trails 187
F.1 BLAKE differential trails . 187
F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 190

Bibliography 213

List of Figures

3.1 Uniform memory access architectures 31
3.2 Non-uniform memory access architectures 32
3.3 Fork-join programming model . 33
3.4 GT200 Texture Processor Cluster . 43
3.5 Multi-block parallel reduction using shared memory. 52

4.1 Preprocessing phase of the cube attack 60
4.2 On-line phase of the cube attack . 69

6.1 Program flow using the gSTREAM framework. 94
6.2 32-bit Grain Core i7 960 (2.8GHz) benchmarking results 99
6.3 Finding a maxterm for high-dimensional cube 110
6.4 Finding a maxterm for medium-dimensional cube 111

7.1 Linear differential framework using OpenMP 121
7.2 CubeHash’s Compressrlin . 126

viii

List of Tables

2.1 eSTREAM portfolio algorithms. 13
2.2 SHA-3 second-round candidates. 20

3.1 Commonly used parallel construct clauses. 34
3.2 Clauses supported by the work-share constructs. 37
3.3 Commonly used synchronization constructs. 41
3.4 Commonly-used OpenMP runtime functions. 42

6.1 Performance estimates for eSTREAM ciphers 97
6.2 GPU performance results and estimates for eSTREAM ciphers . . . 98
6.3 Mix-column estimates . 103
6.4 Count of AES-like operations in SHA3-candidate designs 105
6.5 GPU performance estimates for non-AES SHA3-candidates 107
6.6 GPU performance results for SHA-3 non-AES based candidates . . . 109
6.7 Cube attack finding maxterms performance 114
6.8 Cube attack superpoly reconstruction performance 115

7.1 Trivium analysis, confirming existing results 119
7.2 Trivium analysis, new results . 120
7.3 BLAKE32 analysis results . 122
7.4 BLAKE64 analysis results . 123
7.5 Minimal number of conditions found for λ = 3 125
7.6 Minimal number of conditions y found with the randomized search 126
7.7 Logarithmic theoretical complexities c∆ of improved collision attacks.127
7.8 Cubehash (t, y) . 128
7.9 CubeHash collision complexities c∆ with 1-bit modifications 129
7.10 CubeHash collision complexities c∆ with 2-bit modifications 129
7.11 CubeHash collision complexities c∆ with 4-bit modifications 130
7.12 CubeHash collision complexities c∆ with 8-bit modifications 130
7.13 Number of conditions per round theoretical complexities. 133
7.14 Partition sets for CubeHash-5/96 collision trail 135

A.1 BLAKE intial values . 138
A.2 BLAKE permutation function . 139

ix

LIST OF TABLES x

A.3 BLAKE constant values . 140

List of Algorithms

2.1 Trivium state update function . 15
2.2 MICKEY state update function . 17
2.3 Clockr - clocking MICKEY’s r register 18
2.4 Clocks - clocking MICKEY’s s register 18
2.5 BLAKE’s compression function . 22
2.6 BLAKE-32 Gi function . 23

2.7 Round funtion for CubeHash . 27

4.1 Finding a maxterm . 66
4.2 Superpoly reconstruction . 68

5.1 Calculating the probabilistic-effect and dependancy tables 87
5.2 Creating input and output partitions of a condition function 88
5.3 Tree-based backtracking preimage search 89
5.4 Computing adaptive backtrack steps 90

xi

Chapter 1

Introduction

Security has become a crucial aspect in the design and use of computer systems

and networks. Whether one is designing a wireless communication system, web

application, or network protocol, addressing security is an essential engineering

criterion. Though a well-designed system is built from a multitude of compo-

nents, the use of cryptography as a building block is almost unanimous.

Cryptography is used to address many security issues, the most pertinent

of which are confidentiality, integrity, and authentication. Cryptography encom-

passes the design of (cryptographic) primitives, basic building blocks, and proto-

cols/schemes that use these building blocks to construct complex security systems.

Dually, cryptanalysis entails the analysis and evaluation of cryptographic algo-

rithms, including primitives and protocols. In this thesis we focus on the imple-

mentation and analysis of two kinds of cryptographic primitives: stream ciphers

and hash functions.

1

1.1 Stream Ciphers 2

1.1 Stream Ciphers

Stream ciphers are cryptographic algorithms that transform a stream of plaintext

messages of varying bit-length into ciphertext of the same length, usually by gen-

erating a keystream that is then XORed with the plaintext. Using a shared secret

key, stream ciphers can be used to provide confidentiality, i.e., restrict access to se-

cret data to the parties in possession of the key by encrypting the plaintext secret

data. In general, stream ciphers have very high throughput, strong security prop-

erties, and use few resources, thus making them ideal for mobile applications;

well-known examples of stream ciphers include the RC4 cipher used in 802.11

Wireless Encryption Protocol [50], E0 cipher used in Bluetooth protocol [50], and

the SNOW 3G cipher used by the 3GPP group in the new mobile cellular stan-

dard [110].

Stream ciphers are widely-used primitives, core to many security systems,

and as such the security and efficiency of these primitives is crucial to many

applications. In this thesis, we focus on implementing the stream ciphers selected

for the eSTREAM portfolio, and analyzing a subset of them: the MICKEY v2

and Trivium stream ciphers. The eSTREAM portfolio is a result of the European

Union sponsored four-year project, whose gole was to identify new stream ciphers

as alternatives to widely-used, though cryptographically insecure, ciphers [27,74].

We believe that our implementations and analysis is a contribution to the efficient

use and better understanding of these ciphers.

Stream ciphers are designed to satisfy various security properties. Specifically,

we expect it to be infeasible to recover the secret key or internal state given the

keystream output. In this thesis we analyze the MICKEY v2 and Trivium steam

ciphers using the cube attack [45, 46]. The cube attack is a very recent general

1.2 Hash Functions 3

cryptanalytic technique, that can be used to carry out algebraic attacks on cryp-

tosystems with low degree polynomials, a design weakness many stream ciphers

are susceptible to. Although the cube attack can be used to analyze a wide range

of primitives, including block ciphers and keyed hash functions, we limit our

analysis to Trivium and MICKEY v2 as our main contribution, in this aspect, is in

providing a multi-GPU cube attack framework.

1.2 Hash Functions

Like stream ciphers, hash functions are important cryptographic primitives. How-

ever, hash functions transform arbitrary-length input messages into fixed-length

message digests. They are used in many applications, notably in commitment

schemes, digital signatures and message authentication codes. To this end they

are required to satisfy different security properties. These security properties in-

clude i) preimage resistance, i.e., given f (x) it is infeasible to find x, ii) second

preimage resistance, i.e., given x it is infeasible to find x1 � x : f (x) = f (x1), and

iii) collision resistance, i.e., it is infeasible to find x, x1 : x1 � x and f (x) = f (x1).

Informally, a hash function is collision resistant if it is practically infeasible to find

two distinct messages m1 and m2 that produce the same message digest.

It is clear that the security properties of hash functions are desirable when

building security systems where integrity is a concern. For example, in a sys-

tem where two parties exchange secrets by employing a stream cipher a third

party modifying the exchanged ciphertexts could easily meddle with the stream.

Hence, a receiver could end up decrypting a message that was not sent by the

corresponding sender, but instead the man-in-the-middle. An approach address-

ing such issues consists of using message authentication codes (MACs) which

1.3 High-Performance Cryptologic Computing 4

produce a message digest that can only correspond to the MAC’d message. The

result is that the intermediary modifying intercepted messages will be detected as

it will not be able to produce a proper digest without the secret key. Among their

key role in signature schemes and other authentication methods, hash functions

are commonly used to construct MACs. The use of such authentication schemese

widely used, e.g., in web applications, highlights the significance of efficiently

implementing and analyzing the security properties of such primitives.

Though many existing applications already use standard hash functions, like

Message Digest 5 (MD5) and the Secure Hash Algorithm-2 (SHA-2), the design

and analysis of cryptographic hash functions have come under renewed interest

with the public competition1 commenced by the US National Institute of Stan-

dards and Technology (NIST) to develop a new cryptographic hash algorithm

SHA-3. In this thesis we focus on the second-round SHA-3 candidates, present-

ing performance estimates supported by actual implementations. As in the stream

cipher case we also analyze a subset of these algorithms: BLAKE and CubeHash.

Similar to the cube attack framework, we use a generic linear differential crypt-

analysis framework to analyze BLAKE and CubeHash. Though linear differential

cryptanalysis is a more mature technique, widely applied to the analysis of many

cryptosystems, including block ciphers, and stream ciphers, we use the more re-

cent results targeting hash functions [34, 66].

1.3 High-Performance Cryptologic Computing

Racing with Moore’s law [80, 81], processor design techniques have shifted to-

wards incorporating multiple processors on a single die from the more tradi-

1See http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

1.3 High-Performance Cryptologic Computing 5

tional designs that simply increased the complexity of instructions and processor

frequency. This paradigm shift is increasingly being regarded as the many-core

revolution.

At the forefront of the many-core revolution are graphics processing units

(GPUs). The once game-specific processors have become very powerful and gen-

eral purpose processors. Modern GPUs are equipped with hundreds to thousands

of streaming processor cores, clocked at rates comparable with those of a CPU.

Thus, leveraging the vast computational power of these devices, we can build

secure systems that do not suffer in performance simply because of the added se-

curity features. Moreover, it is expected that new algorithms be designed for and

implemented on such platforms; for example, one of the motivations behind this

work is NIST’s predisposition for algorithms with greater flexibility [88] — they

state that is it preferable if “the algorithm can be implemented securely and efficiently

on a wide variety of platforms.”

In this thesis we evaluate the performance of the eSTREAM portfolio algo-

rithms and SHA-3 second round candidates. Given the general trend in architec-

ture design, the low prices, and wide availability, it is of valuable interest to evalu-

ate the performance of GPUs as cryptologic accelerators. For example, computing

the message digest or encryption of a batch of fixed-length input messages, e.g.,

in high-end servers, can be efficiently accomplished with the implementations

proposed in this work.

We further stress that these high performance devices can also be used to carry

out cryptanalytic attacks and evaluations. To this end, we implement the cube

attack to target a multi-GPU system and evaluate its performance when compared

to a CPU; we find the multi-GPU framework to provide speedup factors of up to

100�. A direct consequence of this is the ability to carry out more sophisticated

1.4 Related Work 6

attacks in less time, which further allows for the confirmation of existing and new

results by third party researches. Supporting this scientific endeavor we make

most of our code publicly available.

1.4 Related Work

The PlayStation 3 (PS3) video game console, which contains the Cell architecture,

has been previously used to find chosen-prefix collisions for the cryptographic

hash function MD5 [108]. Graphics cards have similarly been used for MD5 colli-

sion searches [22], password cracking [76], and accelerating cryptographic appli-

cations [75,109]. In [32] we presented our SHA-3 results; to the best of our knowl-

edge, there is no previous work implementing the eSTREAM stream ciphers or

second-round SHA-3 candidates on the NVIDIA GT200 GPUs.

In a closely related work, Kaminsky presented a parallel implementation of

cube testers with application to the CubeHash hash function in [65], and Lathrop

presented several cube attack results on SHA-3 cadidates in [71]. The best cube

attack results on Trivium are due to Mroczkowski and Szmidt [82], building on

the works of Dinur and Shamir [46], and Vielhaber [111]. In this work we present

a complimentary multi-GPU cube attack framework and as an example analyze

MICKEY v2 and Trivium. Our results confirm previously found attacks.

Chabaud and Joux [38] presented the first differential collision attack on SHA-0.

Using a linearized model of the hash function, they found message differences

that lead to a collision of the original hash function with a higher probability

than the birthday bound. Similar strategies were later used by Rijmen and Os-

wald [101] on SHA-1 and by Indesteege and Preneel [64] on EnRUPT.

Pramstaller et al. [99] related the problem of finding highly probable linear

1.4 Related Work 7

differences to the problem of finding low weight codewords of a linear code. A

recent work of Brier et al. [34, 66] more precisely analyzed this relation for hash

functions whose non-linear operations only consist in modular additions. They

reformulate the problem of finding message pairs that conform to a linear dif-

ferential trail to that of finding preimages of zero of a condition function. The

search for such preimages is accelerated by the implicit use of message modifi-

cation techniques. Given a linear differential trail, the concept further allows to

estimate the corresponding complexity of the collision attack.

Section 2. B. 5 of [19] presents a complete survey of cryptanalytic results on

CubeHash. The currently best collision attacks on CubeHash-r/b for message

block sizes b = 32, 64 were presented in [34]. For b = 32 they present attacks of

complexity 254.1 and 2182.1 for r = 4 and r = 6 rounds, respectively. For b = 64

an attack of complexity 2203 for 7 rounds is given. No collision attack for more

than 7 rounds was presented so far. Generic attacks are discussed by Bernstein in

the appendix of [18]. In [67] we presented the two different methods discussed in

this thesis for finding appropriate trails for variants of CubeHash, also discussed

in [66].

Similarly, for BLAKE, Aumasson et al. present several cryptanalysis results

in [8]. Various differential and invertibility properties of BLAKE’s compression

function are presented in [5]. Compared to their work, we present an analysis

of BLAKE’s susceptibility to general linear differential attacks, by extending the

framework of [34], but do not, however, find any attacks better than those men-

tioned in [5, 8].

1.5 Contributions 8

1.5 Contributions

The contributions of this thesis can be divided into two categories: implementa-

tions and analysis. Below we state these contribution, relating them to existing

work in literature.

1.5.1 Implementation Contributions

We present a new software performance analysis of all eSTREAM stream ciphers

and second-round SHA-3 candidate hash functions on the GPU. Our results are

four-fold:

1. We presents an in-depth performance analysis of all algorithms by investi-

gating their internal operations. It is worth noting that the aim of this work

is not to claim that our techniques are optimal (hence, the provided esti-

mates are indeed subject to change). Rather, our intended goal is to make a

fair, reliable, and accurate comparison between all eSTREAM stream ciphers

and, respectively, all second-round SHA-3 candidates. To facilitate the anal-

ysis of the SHA-3 candidates, we separate the AES-inspired candidates from

the others. For the former case, we make extensive use of the work by Osvik

et al. [95], which introduced the fastest results of AES on our target archi-

tecture. For the latter case, however, a more careful analysis, starting from

scratch, was required.

2. We propose specific optimization techniques for our target platform; in com-

bination with our estimation framework, more precise GPU estimates are

given for all algorithms.

3. We complement this framework by providing real implementations of all

1.5 Contributions 9

but one eSTREAM stream cipher, and, respectively, all non-AES based can-

didates on the target platform. We show that our techniques are indeed

applicable, and that the base estimates are usually realistic.

4. In implementing the eSTREAM stream ciphers we developed an open source

GPU stream cipher framework, called gSTREAM. The framework provides

boiler-plate code for developers to easily port stream cipher implementa-

tions to the GPU; though we only show the implementation of the eSTREAM

ciphers, other ciphers can easily be used with gSTREAM. A stream cipher

implementation using gSTREAM transparently takes advantage of GPUs to

accelerate system components.

We also present and benchmark two cryptanalysis frameworks:

1. To our knowledge we present the first multi-GPU cube attack framework.

Our framework implements the preprocessing stage of the cube attack, i.e., it

consists of a maxterm search algorithm, superpoly reconstruction algorithm

and maxterm linearity test algorithm. As an example we apply the frame-

work to the MICKEY v2 and Trivium stream ciphers, measuring speedup

factors of up to 100�.

2. We extend the implementation of the linear differential framework pre-

sented in [34, 66] by parallelizing the code using OpenMP, providing sub-

byte message modification techniques, a reverse differential trail search al-

gorithm, an adaptive backtracking algorithm, and a generic interface. Our

framework provides for a linear speedup in the number of CPUs, the abil-

ity to find trails that are practical and leading to real collision, and finally

the ability to analyze algorithms other than CubeHash, previously limited

in [34].

1.5 Contributions 10

1.5.2 Analysis Contributions

Using the cube attack and linear differential cryptanalysis methods we analyze

four cryptographic primitives:

1. We use the multi-GPU cube attack framework to analyze simplified variants

of the MICKE v2 and Trivium stream ciphers. For the former, we do not

find any attacks using cubes of dimensions up to 20. However, for Trivium

we confirm previously found results and present several new equations that

can be used in an online attack to carry out a partial key recovery.

2. We use the linear differential framework to analyze variants of BLAKE and

CubeHash. We apply two different methods for finding appropriate trails,

including a reverse trail search and randomized trail search algorithm. For

toy versions of BLAKE we find two collision attacks on both the 32-bit and

64-bit variants. We also find a 2508 second preimage attack on the FLAKE32

variant with 5 rounds, only slightly better than the theoretical 2512.

For several round parameters r and message block sizes b we present bet-

ter collision attacks on CubeHash-r/b than those presented so far. Specif-

ically, we analyze new variants of CubeHash-r/b for r P t1, . . . , 10u and

b P t10, 20, 24, 36, 96u, find collisions of CubeHash-5/96 and give a theoreti-

cal attack of CubeHash-8/96 with estimated complexity of 280 compression

function calls. This improves over the generic attack with complexity of

about 2128 and is the first collision attack on more than 7 rounds.

1.6 Thesis Outline 11

1.6 Thesis Outline

This thesis is organized as follows. In Chapter 2 we introduce the eSTREAM

and SHA-3 algorithms, detailing the designs of the four algorithms we analyze.

Chapter 3 introduces the OpenMP and CUDA programming models we use to

implement our high-performance frameworks. In Chapter 4 and Chapter 5 we,

respectively, describe the cube attack and linear differential cryptanalysis frame-

works. Then, in Chapter 6 and Chapter 7 we present our implementation evalua-

tion and cryptanalysis results, respectively. We conclude in Chapter 8.

Chapter 2

Target primitives

As previously mentioned, stream ciphers and cryptographic hash functions are

widely-used primitives, core to many security systems. The security and effi-

ciency of these primitives is crucial to many applications, and therefore, much

research effort has been put into addressing these issues. In this thesis, we focus

on analyzing and implementing various stream ciphers and cryptographic hash

functions. Specifically, we evaluate the performance of the eSTREAM portfolio

stream ciphers and Secure Hash Algorithm-3 (SHA-3) second-round candidates.

Additionally, we cryptanalyze the stream ciphers Trivium and Mutual Irregular

Clocking KEYstream generator (MICKEY), and hash functions BLAKE and Cube-

Hash. Below, we briefly introduce the eSTREAM project and SHA-3 competition,

along with a more detailed description of the four algorithms we analyze. We

leave the analysis and implementation details to later chapters.

12

2.1 eSTREAM Stream Ciphers 13

Profile 1 (Software) Profile 2 (Hardware)

HC-128 [117] Grain v1 [59]

Rabbit [31] MICKEY v2 [11]

Salsa20/12 [16] Trivium [42]

SOSEMANUK [15] —

Table 2.1 eSTREAM portfolio algorithms.

2.1 eSTREAM Stream Ciphers

The European Union sponsored the four-year eSTREAM project in the hopes of

identifying new stream ciphers as alternatives to the widely-used, though cryp-

tographically insecure, ciphers [27, 74]. Moreoever, the project was initiated as

a response to the failed attempt of the earlier New European Schemes for Sig-

natures, Integrity, and Encryption (NESSIE) project to identify new promising

stream ciphers [100]. The goal of the eSTREAM project was to create a portfolio

of novel stream cipher designs that address security, performance, and resource-

utilization. Submissions were considered for either high-performance software-

oriented ciphers (Profile 1), or low-power and low-resource hardware-oriented

ciphers (Profile 2). However, some submissions were initially considered for

both profiles. Since the September 2008 revision [9, 10], the eSTREAM portfo-

lio contains seven algorithms, listed in Table 2.1. In this thesis, we implement all

but the SOSEMANUK stream cipher and analyze Trivium and MICKEY v2, two

hardware-oriented stream ciphers. Below, we focus on the details of Trivium and

MICKEY v2; we refer to the references given in Table 2.1 for details on the other

ciphers.

2.1 eSTREAM Stream Ciphers 14

2.1.1 Trivium

Trivium is a synchronous stream cipher designed by De Canni‘ere and Preneel [41–

43]. The cipher was selected to be part of the eSTREAM portfolio as one of the

promising hardware-oriented stream ciphers to be widely adopted. Trivium sup-

ports 80-bit keys and up to 80-bit initial values, with which it can generate up to

264 keystream bits. The very simple design structure makes Trivium a desirable

target for cryptanalysts. Much effort has been put into breaking round-reduced

versions of the cipher [3, 46, 79, 103, 111], yet, the full Trivium has withstood these

efforts and remains secure.

Algorithm Specification

Trivium operates on a 288-bit internal state s = s1, . . . , s288, which is organized as

three shift registers of length 66, 69, and 66 respectively [79]. When clocking a

register, the non-linear combination of several bits from one of the other registers

is mixed with bits from its own state. During the state update (register clocking)

the output of the three registers is combined to generate the keystream output.

Although the three-register description is constructive in making several crypt-

analytic observations on Trivium [79], we focus on a ‘vectorized’ approach. We

assume that 288-bit operations such as shifts are available, when describing the

algorithm.

Given a 80-bit key k = k1, . . . , k80 and 80-bit initial value IV = IV1, . . . , IV80,

the Trivium algorithm can be broken down into two steps:

1. Key and IV setup:

• Set s1, . . . , s80 to k.

• Set s94, . . . , s174 to IV.

2.1 eSTREAM Stream Ciphers 15

Algorithm 2.1: Trivium state update function
Data: Internal state s = s1, . . . , s288.
Result: Clocked state s = s1, . . . , s288.
Output: Keystrem output z.

1 begin
2 t1 Ð s66 ` s93;
3 t2 Ð s162 ` s177;
4 t3 Ð s243 ` s288;
5 z Ð t1 ` t2 ` t3; // Keystream output bit

6 t1 Ð t1 ` (s91 ^ s92)` s171;
7 t2 Ð t2 ` (s175 ^ s176)` s264;
8 t3 Ð t3 ` (s286 ^ s287)` s69;
9 s Ð s " 1;

10 s93 Ð t3;
11 s94 Ð t1;
12 s178 Ð t2;

• Set s286, s287, s288 to 1’s, and remaining bits to 0’s.

• Clock the state Npre = 4 � 288 times, disregarding the output.

2. Keystream generation: clock the state and return the output.

Denoting a i-bit right shit of α by α " i, XOR by `, and bitwise-AND by ^,

the state update (clocking function) is given in Algorithm 2.1. Note that with the

exception of line 9, all operations are on single bits.

Brief Design Rationale

As can be inferred from the above description, Trivium’s design is “an exercise

in exploring how far a stream cipher can be simplified without sacrificing its se-

curity, speed or flexibility” [42]. Despite its simplity, the design does not trade

security for speed or area. Consider, for example, the non-linear state update.

This protects against correalation attacks that attempt to recover the state from ei-

ther the keystream bits alone, or a combination of keystream and state bits [41,42].

2.1 eSTREAM Stream Ciphers 16

The non-linear state update used in Trivium does, however, makes the analysis

of its period more difficult to determine. However, the designers estimated the

probability that a cycle (after a large number of iterations) is smaller than 280 to

be negligible (2�208) [42].

2.1.2 MICKEY v2

MICKEY1 is a synchronous stream cipher selected for Profile 2 of the eSTREAM

portfolio, along with Trivium and Grain. MICKEY was designed by Babbage

and Dodd [11], targeting applications requiring high security ciphers in resource-

constrained environments. The design is based on the mutual (and irregular)

clocking of two shift registers. MICKEY provides for the secure generation of 240

keystream bits using a 80-bit key and (at most) 80-bit IV.

Algorithm Specification

The MICKEY algorithm has an internal state of 200 bits, evenly divided between

registers r = r0, . . . , r99 and s = s0, . . . , s99. Similar to Trivium, MICKEY uses

a state update function througout the algorithm. However, its update function,

called ClockKG, is slightly more complex than that of Trivium. ClockKG takes a

mixing bit m and input bit i as parameters, thus we denote it by ClockKG(m, i).

Before delving into the details of the update funciton, we note that, like most

stream ciphers, the MICKEY algorithm may be split into two steps:

1. Key and IV setup:

• For each IV bit IVi : 0 ¤ i ¤ 79, update the state with ClockKG(1, IVi).

• For each key bit ki : 0 ¤ i ¤ 79, update the state with ClockKG(1, ki).

1Unless explicitly noted, from this point, when referring to MICKEY we imply MICKEY v2.

2.1 eSTREAM Stream Ciphers 17

• Update the state Npre = 100 times with ClockKG(1, 0).

2. Keystream generation: update the state with ClockKG(0, 0) and return r0` s0

as the keystream output.

Following [11], ClockKG is described in Algorithm 2.2. The core functions

Clockr and Clocks, used on lines 6 and 7 to carry out the actual state update,

are presented in Algorithm 2.3 and Algorithm 2.4, respectively. The constant tap

vector T, and bit vectors C0, C1, F0, and F1 are given in Appendix B.

Algorithm 2.2: MICKEY state update function
Input : Mixing bit m.

Input bit i.
Data: Internal state r = r0, . . . , r99 and s = s0, . . . , s99.
Result: Clocked state r = r0, . . . , r99 and s = s0, . . . , s99.

1 begin
2 cr Ð s34 ` r67;
3 cs Ð s67 ` r33;
4 ir Ð i` (s50 ^m);
5 ir Ð i;
6 r Ð Clockr(r, ir, cr);
7 s Ð Clocks(s, is, cs);

We note that the two (vectorized) algorithms Clockr and Clocks, individually

clocking the r and s registers, respectively, are equivalently expressing the original

individual-bit descrition of [11], though in a more compact form. For example,

line 3 is equivalent to the following line from [11]: r1i = ri�1 for 1 ¤ 1 ¤ 99; r10 = 0.

Brief Design Rationale

As explained in [11], MICKEY uses the r register to guarantee the period and local

statistical properties of the keystream generator. We observe that when updating

r (using Clockr) with the control bit cr = 0, the update of r is linear, i.e., r simply

2.1 eSTREAM Stream Ciphers 18

Algorithm 2.3: Clockr - clocking MICKEY’s r register
Input : Internal state regiester r = r0, . . . , r99.

Input bit ir.
Control bit cr.

Output: Clocked state register r1 = r10, . . . , r199.

1 begin
2 f Ð r99 ` ir;
3 r1 Ð r " 1;
4 if f = 1 then
5 r1 Ð r1 ` T; // if i is a tap position, add f

6 if cr = 1 then
7 r1 Ð r1 ` r;

8 return r1;

Algorithm 2.4: Clocks - clocking MICKEY’s s register
Input : Internal register state s = s0, . . . , s99.

Input bit is.
Control bit cs.

Output: Clocked register state s1 = s10, . . . , s199.

1 begin
2 f Ð s99 ` is;
3 s1 Ð (s " 1)` ((s` C0)^ ((s ! 1)` C1));
4 s10 Ð 0;
5 s199 Ð s98;
6 if f = 1 then
7 if cr = 0 then s1 Ð s1 ` F0;
8 else s1 Ð s1 ` F1

9 return s1;

2.2 SHA-3 Candidates 19

behaves like a linear feedback shift register—a common approach to guaranteeing

the period of a cipher. Conversely, when the control bit cr = 1, the update function

is effectively clocking r a total of 250 � 157 times [11]. The careful and irregular

variable clocking protects against several statistical attacks attempting to guess

the number of times the state has been clocked.

Complementary to the r register, MICKEY’s s register provides for high non-

linearlities in the keystream and state bits. More specifically, the goal of the s

register (and its update function) is to address correlation and distinguishing

attacks, as explained in [11]. Finally, because bits from both registers are used to

(mutually) control the state update functions, as shown in ClockKG, divide-and-

conquer attacks become infeasible, i.e., it is not possible to predict future r (or s)

values with full knowledge of only one register’s state.

2.2 SHA-3 Candidates

Similar to the growing interest in stream cipher design and analysis research

as a result of eSTREAM, the design and analysis of cryptographic hash func-

tions have come under renewed interest with the public hash function competi-

tion [89] commenced by NIST. The goal of the competition is to develop a new

cryptographic hash algorithm to replace the current standard, SHA-2 [87]. The

new hash algorithm will be called ‘SHA-3’ and will be subject to a Federal In-

formation Processing Standard (FIPS), similar to the Advanced Encryption Stan-

dard (AES) [90]. The competition is NIST’s response to recent advances in the

cryptanalysis of hash functions [44, 69, 72, 106, 115], especially to serious attacks

against the widely-deployed algorithms MD5 [102] and SHA-1 [86]. Although

these cryptanalytic breakthroughs have no direct effect on SHA-2, a successful

2.2 SHA-3 Candidates 20

BLAKE [8] BMW [55] CubeHash [20] ECHO [13] Fugue [56]

Grøstl [54] Hamsi [70] JH [118] Keccak [21] Luffa [37]

Shabal [33] SIMD [73] SHAvite-3 [25] Skein [49] –

Table 2.2 SHA-3 second-round candidates.

attack on SHA-2 would have catastrophic effects on the security of applications

that rely on it. The structural similarities between SHA-2 and its broken ances-

tors have lead many cryptographers and cryptanalysts to believe that successful

attacks are reachable in the near future.

Since the commencement of the SHA-3 competition in October 2008, the num-

ber of candidate algorithms have been narrowed down (in July 2009) from 51 to

14 (second-round) candidates, shown Table 2.2, to the 5 finalists (highlighted in

Table 2.2). The new hash function standard(s) will be announced in 2012. Similar

to the eSTREAM criteria, these candidates are reviewed based on security, cost,

and algorithmic and implementation characteristics [88]. In this thesis, we present

performance estimates for all 14 algorithms in addition to analyzing the BLAKE

and CubeHash hash functions. Below we focus on the latter, the details for the

remaining algorithms can be found in their corresponding NIST submission doc-

uments2.

2.2.1 BLAKE

BLAKE is a family of hash functions designed by Aumasson et al. for the SHA-3

competition [8]. BLAKE is one of the 14 second-round candidates, having both

strong security and efficient implementation properties. The family consists of

2See http://csrc.nist.gov/groups/ST/hash/sha-3/

http://csrc.nist.gov/groups/ST/hash/sha-3/

2.2 SHA-3 Candidates 21

BLAKE-t28, 32, 48, 64u, each respecively corresponding to NIST’s requirement of

hash functions with output lengths of h = 224, 256, 384 and 512 bits.

The first two hash functions operate on 32-bit words, while the latter two

operate on 64-bit words. Additionally, we note that BLAKE-28 and BLAKE-48

are simply truncated versions of BLAKE-32 and BLAKE-64, respectively, with

different initial vectors. As BLAKE-64 is only a slightly modified 64-bit version of

BLAKE-32, we focus on the description of the latter.

Algorithm Specification

BLAKE-32 operates on a 512-bit internal state, composed of 16 words v = v0, . . . , v15.

Each vi is a 32-bit word, and all of the operations are truncated to the word length,

i.e., addition of two 32-bit words is truncated modulo 232. BLAKE is an iterated

hash function following the HAsh Iterative FrAmework (HAIFA) [24], and like

most iterated hash function it can be broken down into three steps:

1. Pad the input message M to a sequence of 512-bit blocks M1 = M1
0} � � � }M

1
N:

• Append a 1 bit to M.

• Append the least number of 0 bits to reach a length congruent to 447

mod 512.

• Append a 1 bit.

• Append the 64-bit representation of the message length `: [`]64.

Thus, M1 = M}10 � � � 01}[`]64.

2. Using the compression function, process every 512-bit block M1
i.

3. Output the h bits of the last compressions’s output.

2.2 SHA-3 Candidates 22

Algorithm 2.5: BLAKE’s compression function

Input : Chain value hi = hi
0, . . . , hi

7.
Message block m = m0, . . . , m15.
Salt s = s0, . . . , s3.
Counter ti = ti

0, ti
1.

Output: New chain value hi+1 = hi+1
0 , . . . , hi+1

7 .

1 begin
// Initialization:

2

v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

Ð

hi

0 hi
1 hi

2 hi
3

hi
4 hi

5 hi
6 hi

7
s0 ` c0 s1 ` c1 s2 ` c2 s3 ` c3
ti
0 ` c4 ti

0 ` c5 ti
1 ` c6 ti

1 ` c7

;

3 for r Ð 0 to Nr � 1 do
// Column step:

4 G0(v0, v4, v8, v12);
5 G1(v1, v5, v9, v13);
6 G2(v2, v6, v10, v14);
7 G3(v3, v7, v11, v15);

// Diagonal step:

8 G4(v0, v5, v10, v15);
9 G5(v1, v6, v11, v12);

10 G6(v2, v7, v8, v13);
11 G7(v3, v4, v9, v14);

// Finalization:

12 for j Ð 0 to 7 do
13 hi+1

j Ð hi
j ` s(j mod 4) ` vi ` vi+8;

We note that the BLAKE-64 hash function is identical except for the working sizes:

the vi’s are 64-bit words, the message blocks are 1024-bit, and the length is 128-bit.

The compression function, which we call Compress, takes as input a 8-word

chain value hi = hi
0, . . . , hi

7, a 16-word message block m = m0, . . . , m15, a 4-word

salt s = s0, . . . , s3, and a 2-word counter ti = ti
0, ti

1, producing a new chain value

hi+1 = hi+1
0 , . . . , hi+1

7 . The three-step Compress(hi, m, s, ti) function is given in Al-

gorithm 2.5. The number of rounds Nr for BLAKE-32 is 10, while for BLAKE-64

it’s 14.

2.2 SHA-3 Candidates 23

Algorithm 2.6: BLAKE-32 Gi function
Data: Message block m = m0, . . . , m15.

Four state words a, b, c, d.
Result: Transformed state words a, b, c, d.

1 begin
2 a Ð a + b + (mσr(2i) ` cσr(2i+1));
3 d Ð (d` a) ≫ ω0;
4 c Ð c + d;
5 b Ð (b` c) ≫ ω1;

6 a Ð a + b + (mσr(2i+1) ` cσr(2i));
7 d Ð (d` a) ≫ ω2;
8 c Ð c + d;
9 b Ð (b` c) ≫ ω3;

The core of the compression function is the Gi function, a modification of Bern-

stein’s ChaCha cipher [17]. Denoting a right-rotate of α by i bits as α ≫ i, we

present the Gi function in Algorithm 2.6. The rotation constants ω0, . . . , ω3 are

t16, 12, 8, 7u for BLAKE-32, and t32, 25, 16, 11u for BLAKE-64. The ci constants

and permutation functions σr(i) are given in Appendinx A.

Using the initial values given in Table A.1 of Appendix A, Step 2 of the BLAKE

algorithm can be expressed according to the relation: hi+1 Ð Compress(hi, M1
i, s, ti).

The counter ti is the number of message bits in M1
0} � � � }M

1
i, excluding the bits

added by padding; if the last block contains only padding bits, then tN = 0.

Finally, Step 3 simply consists of returning the (truncated) hN.

Brief Design Rationale

BLAKE’s design is based on pre-existing, and well-studied components [8]. As

mentioned, BLAKE’s iteration mode is based on HAIFA, which allows for hash-

ing with salt and randomized hashing. Hashing with a salt is used in vari-

ous applications, the most common of which are password-based authentica-

2.2 SHA-3 Candidates 24

tion applications3; a salt, usually a random nonce or counter, is used to effec-

tively provide a different hash function using a common algorithm [8]. More

importantly, the HAIFA iteration mode addresses some of the issues found in

the widely-used Merkle-Damgård construction (including resistance to preimage

and second-preimage attacks). The local wide-pipe structure, i.e., having an in-

ternal state larger than the chain-value, and message-dependent rounds provide

for security against collision-attacks [6,8]. Finally, the compression function being

based on the stream cipher ChaCha [17], which has better diffusion properties

over the well-regarded Salsa20 cipher [16], greatly increases the confidence in its

resilince to generic attacks.

Toy Versions

Encouraging external cryptanalysis, the designers provide four simplified, toy,

versions of BLAKE. Since part of our analysis is on the toy versions, the details of

the four variations, as described in [7], are given below:

BLOKE: The σr’s are simply the identity.

FLAKE: The compression finction has no feedforward, i.e., line 13 of Algo-

rithm 2.5 is changed to: hi+1
j Ð vi ` vi+8

BLAZE: The cj constants of the Gi functions are all 0.

BRAKE: Combination of BLOKE, FLAKE, and BLAZE.
3 For example, password authentication applications commonly store a salt along the hash of

the salt}password to prevent attackers from pre-computing tables that can be used in speeding up

a brute force password search.

2.2 SHA-3 Candidates 25

2.2.2 CubeHash

CubeHash, designed by Bernstein [18], is also a second-round candidate in the

SHA-3 competition along with BLAKE. The cryptographic hash function was

designed with tweakable parameters r, b, and h, which specify the number of

rounds, the number of bytes per message block, and the hash output bit length,

respectively. We denote the parametrized function as CubeHash-r/b. Currently,

the official proposal for all NIST-required digest lengths h = t224, 256, 384, 512u is

CubeHash-16/32, truncated to the desired output bitlength. The initial proposal

of CubeHash-8/1 was tweaked to CubeHash-16/32 for the second round [19]; the

new parameter choices effectively speed up the function by a factor of 16, while

still keeping the security margin very high. Furthermore, the author explicitly

encourages external cryptanalysis with larger values of b and fewer number of

rounds r.

Algorithm Specification

CubeHash operates on a 1024-bit internal state X, composed of 32 words X =

X0, . . . , X31, where each Xi of the internal state is a 32-bit word. All of CubeHash’s

operations (add, XOR, and rotate) are 32-bit operations, i.e., all additions are

modulo 232. The algorithm consists of five steps:

1. Pad the input message M to a sequence of b-byte blocks M1 = M1
0} � � � }M

1
n:

• Append a 1 bit to the input message M.

• Append the least number of 0 bits required to reach a multiple of b-

bytes.

Thus, M1 = M}10 � � � 0.

2.2 SHA-3 Candidates 26

2. Initialize the internal state X:

• Set X0 to h/8, X1 to b, X2 to r, and the remaining Xi’s to 0.

• Using a round function, transform the state through 10r identical rounds.

3. For every b-byte block M1
i:

• XOR M1
i into the first b-bytes of X.

• Transform the state through r identical rounds.

4. Finalize the state:

• XOR 1 into X31.

• Transform the state through 10r identical rounds.

5. Output the first h bits of X.

Denoting an i-bit left rotate of α by α ≪ i, the aforementioned round function

is given in Algorithm 2.7.

Brief Design Rationale

Compared to most other SHA-3 second-round candidates, CubeHash has a very

simple design. The designer specifically avoids block counters, message padding

methods that append the message length to the input, or other techniques com-

monly used to prevent collision attacks. Shown in [19], the very large state

of CubeHash is itself a countermeasure against such attacks. Furthermore, the

high degree of symmetry in the cipher allows for very efficient hardware and

software implementations, while the constant-time operations and lack of com-

plex message-dependent lookups (common in many designs) prevents possible

timing-related attacks, such as cache attacks [94].

2.2 SHA-3 Candidates 27

Algorithm 2.7: Round funtion for CubeHash
Data: Internal state X0, . . . , X31.
Result: Round transformed internal state X0, . . . , X31.

1 begin
2 for i Ð 0 to 15 do
3 Xi+16 Ð Xi + Xi+16;
4 Xi Ð Xi ≪ 7;

5 for i Ð 0 to 7 do Swap(Xi, Xi+8);
6 for i Ð 0 to 15 do Xi Ð Xi ` Xi+16;
7 foreach i P t16, 17, 20, 21, 24, 25, 28, 29u do Swap(Xi, Xi+2);
8 for i Ð 0 to 15 do
9 Xi+16 Ð Xi + Xi+16;

10 Xi Ð Xi ≪ 11;

11 foreach i P t0, 1, 2, 3, 8, 9, 10, 11u do Swap(Xi, Xi+4);
12 for i Ð 0 to 15 do Xi Ð Xi ` Xi+16;
13 foreach i P t16, 18, 20, 22, 24, 26, 28, 30u do Swap(Xi, Xi+1);

Chapter 3

SMP and GPU Parallel Programming

Although the transistor count per chip is still doubling every two years according

to Moore’s law [80, 81],‘traditional’ processor (CPU) design techniques that in-

crease clock rates and add complex features are no longer advancing at a match-

ing pace. Among other limitations, power dissipation has become an increasingly

difficult problem for high clock rate processor designs. Alternative approaches,

the most successful of which is the multi-core, have become the norm [97]. Rather

than adding more complex functional units that run at very high speeds, multi-

core CPUs take advantage of the increasing data- and task-parallelism to keep up

with Moore’s law. Incorporating multiple processors on a single die, the multi-

core CPU is a direct improvement on multiprocessor designs, which have been

extensively used in server environments for many years [61]. Additionally, many

CPU manufactures are persistently researching methods to increase the number

of cores on a die—Intel’s recent release (for research) 48-core Single-chip Cloud

Computer [63] is an example of this progress.

Similar to the CPU design trend to achieve tera-scale computing, addressing

the increasing computational requirements of graphics-related applications (e.g.,

28

3.1 OpenMP and SMPs 29

games and high-definition video) graphics processing units (GPUs) have become

very powerful and highly-parallel processors. Many GPUs are equipped with

hundreds to thousands of streaming processor cores1. For example, the NVIDIA

GTX 285, GTX 480, and ATI Radeon 5870 have 240, 480, and 1600 streaming

processors, respectively. Additionally, these streaming processors are clocked at

reasonably high clock rates, when compared to CPU clock rates, usually between

850 MHz and 1.5 GHz. The vast raw computational power of modern GPUs has

incited research interest in computing outside the graphics-community. Recently,

GPUs have become a common target for numerically-intensive applications given

their ease of programming (relative to previous generation GPUs), and ability to

outperform CPUs in data-parallel applications by orders of magnitude.

In this chapter we review the shared-memory parallel computer (SMP) program-

ming paradigm with Open Multi-Processing (OpenMP) and GPU parallel pro-

gramming with the compute unified device architecture (CUDA). We limit our

discussion as it pertains to programming SMPs and GPUs for cryptologic appli-

cations; for more complete introductions to these topics see [39] and [68].

3.1 OpenMP and SMPs

There are a number of application programming interfaces (APIs) that facilitate

parallel programming for multiprocessor and multi-core architectures. Of these,

the most commonly used APIs are Message-Passing Interface (MPI) [53], POSIX

threads (Pthreads) [107], and OpenMP [30]. In parallelizing various parts of out

cryptanalytic attacks, discussed in Chapters 5 and 4, we use OpenMP for its sim-

1These streaming processors or ‘cores’, as named by ATI and NVIDIA, are essentially complex

arithmetic logic units (ALUs).

3.1 OpenMP and SMPs 30

plicity and support for incremental parallelization.

Parallelizing already-implemented algorithms using MPI and Pthreads usu-

ally requires major code rewriting and explicit handling of thread launch, join,

and communication. Conversely, with OpenMP little effort is required to paral-

lelize data- or thread-parallel programs. One may incrementally parallelize dif-

ferent sections of the code without having to focus on low-level thread execution

and communication details. Moreover, the programmer focuses on algorithm par-

allelization, rather than the threading details.

3.1.1 SMP Architectures

As previously mentioned, we limit our OpenMP programming details to architec-

tures where the address space is shared, i.e., SMPs, and the caches are coherent.

Extending OpenMP to large-scale clusters is beyond the scope of this chapter and

we refer to [62] for details (or taking a MPI+OpenMP hybrid approach). Follow-

ing [39], our definition of SMP encompasses all shared-memory architectures, in-

cluding uniform memory access (UMA2) architectures and cache-coherent non-uniform

memory access (cc-NUMA) architectures. UMA architecture, shown in Figure 3.1,

consists of multiple processors, each with its own private cache, sharing a single

main memory. In this architecture, memory access latency is the same for all the

processors (hence the name uniform memory access) and a cache coherence pro-

tocol is usually implemented to address inconstancies that might arise if multiple

CPUs operate on the same data.

2Note that, in literature, processors implementing the UMA architectures are often called sym-

metric (shared-memory) multiprocessors, which is also abbreviated by SMP. In this thesis, when

using the term SMP we do not explicitly imply symmetric shared-memory multiprocessors, rather

we refer to the more-general shared-memory parallel computer architecture.

3.1 OpenMP and SMPs 31

CPU0

$

CPU0

$

CPU0

$

CPUn

$

Main Memory I/O

Bus

Figure 3.1 Uniform memory access architecture with n processors,
caches ($), main memory and input/output (I/O) system.

Although most of the current multi-core processor designs are UMA multi-

processors, NUMA scales beyond the 10–16 core UMA systems and is a popular

architecture for multiprocessor designs. Unlike UMA, in NUMA, the memory (in

addition the cache) is distributed among the CPU nodes. As shown in Figure 3.2,

the latency of CPU0 accessing data from CPUn’s memory is considerably greater

than that of a nearby processor, hence the name non-uniform memory access. We

point out that Figure 3.2 has been simplified for clarity; it is very common for the

processor nodes to be multi-core processors. Additionally, although it is possi-

ble to handle the cache coherency problem in software, popular multiprocessor

NUMA architectures commonly implement this in hardware and are referred to

as cache-coherent NUMA architectures.

3.1.2 OpenMP Programming

The OpenMP C/C++ and Fortran APIs are composed of compiler directives

(to create threads and distribute work), a runtime library (to provide for thread

and environment information at runtime), and environment variables (to control

3.1 OpenMP and SMPs 32

CPU0

$

I/
O

Main Memory

CPU2

$

I/
O

Main Memory

CPUn-1

$

I/
O

Main Memory

Bus

CPU1

$

I/
O

Main Memory

CPU3

$

I/
O

Main Memory

CPUn

$

I/
O

Main Memory

Figure 3.2 Non-uniform memory access architecture with n intercon-
nected nodes. Each node consists of a CPU, local caches, memory and
an I/O system.

the parallelism). The programming paradigm use by OpenMP is the fork-join

model [39], shown in Figure 3.3. In this programming model, a single thread

(called the master thread) forks into multiple threads, working in parallel and usu-

ally on different cores. Once the parallel work is completed, the threads join

(to possibly combine results) and the master thread continues execution. In Fig-

ure 3.3, we denote a thread by , a point where the master thread forks by ,

and a point where the team of threads join by . As shown in the figure, there

can be multiple parallel and multiple intermediate serial sections of an OpenMP-

parallelized program. Moreover, the number of threads per parallel section (or

block) need not always equal the number of cores—the number of threads may

be specified at compile-time or dynamically set at runtime.

3.1 OpenMP and SMPs 33

Figure 3.3 Fork-join programming model. The master thread forks (at
the green (circle) synchronization point) into a number of threads which
work in parallel (highlighted in pink) and join at a later point (indicated
by the red (circle) synchronization point).

Creating Threads

To create a group of threads, i.e., fork, in an OpenMP C program, the programmer
pre-pends a parallel directive (also known as parallel construct) to a (compound)
statement3. Consider the following trivial example:

1 #pragma omp parallel
2 {
3 printf(”Thread %d in parallel block!\n”,omp get thread num());
4 }

The first line is the OpenMP parallel directive that instruct the C compiler to

parallelize the code in the compound statement. The compound statement, in

this case, is a simple statement that uses the OpenMP runtime library function

omp get thread num() to get the thread id of the current thread and prints it using

printf(...). On a quad-core machine the example produced the following output:

Thread 3 in parallel block!

Thread 2 in parallel block!

Thread 1 in parallel block!

Thread 0 in parallel block!

As the example shows, the threads in a parallel region are not necessarily sched-

uled to execute in sequential order, i.e., thread n can finish executing ahead of

thread m : n ¡ m, and thus care must be take avoid programming dependencies

3We assume the reader is familiar with the C programming language. For a reference, see [57].

3.1 OpenMP and SMPs 34

Clause Description

if(expression) If the compile-time expression evaluates to false, the block

is not executed in parallel, i.e., it is inactive.

num threads(expression) The expression (must evaluate to positive integer) specifies

the number of threads per team.

private(iden0, . . .,idenn) Make the variables iden0, . . .,idenn private to the thread.

firstprivate(iden0, . . .,idenn) Extend private() to initialize variables to the respective

values set before reaching parallel region.

shared(iden0, . . .,idenn) Share the variables iden0, . . .,idenn amongst all threads.

default({none, shared}) Specify the data-sharing attribute of all variable used in

the parallel region and declared before the directive.

reduction(op:iden0, . . .,idenn) Perform a parallel reduction on shared variables

iden0, . . .,idenn using operator op.

Table 3.1 Commonly used parallel construct clauses.

on the scheduler’s algorithm.

More formally, the parallel construct has the form:

#pragma omp parallel [clause0],[clause1], . . . , [clausen]

where the optional clauses are used to specify various attributes of the parallel

region following the pragma directive. We present some of the most commonly

used clauses in Table 3.1; the interested reader is referred to [39] for additional

details and a more complete list of clauses. We note that since the if clause speci-

fies whether the parallel region is active or inactive, and the num threads specifies

the number of threads executing the parallel region, each may only appear once

in the directive.

To clarify the use of the if, num threads, private, and firstprivate clauses consider

3.1 OpenMP and SMPs 35

the following C OpenMP function.

1 void simple example(void) {
2 int i=0x2A, j=0x539, s=0xA5;
3 int iter=0;
4

5 for(iter=0;iter<2;iter++) {
6 printf(”Iteration %d...\n”,iter);
7 #pragma omp parallel num threads(5) \
8 private(i) firstprivate(j) if(s!=0xBADCAFE)
9 {

10 printf(”Thread %d: i=0x%08X, j=0x%08X, s=0x%08X\n”,
11 omp get thread num(),i,j,s);
12

13 i=0xDEADBEEF; j=0xBADF00D;
14 if(omp get thread num()==4) { s=0xBADCAFE; }
15

16 printf(” %d: i=0x%08X, j=0x%08X, s=0x%08X\n”,
17 omp get thread num(),i,j,s);
18 } /* implicit barrier */
19 printf(”Serial : i=0x%08X, j=0x%08X, s=0x%08X\n\n”,i,j,s);
20 }
21 }

We first point out that in the variable s, which does not appear in any clause,

is a shared variable. Unless the default(none) clause is explicitly used, and thus

every variable must explicitly appear in a shared, private, or firstprivate clause,

the compiler implicitly uses the default(shared) clause. Furthermore, a barrier is

implicitly inserted at the end of the parallel compound statement where threads

join (each waiting until the last thread completes execution of the block). On a

quad-core machine the example produced the following output:

Iteration 0...

Thread 0: i=0x54E9B300, j=0x00000539, s=0x000000A5

Thread 1: i=0xF33875D5, j=0x00000539, s=0x000000A5

1: i=0xDEADBEEF, j=0x0BADF00D, s=0x000000A5

Thread 3: i=0x00000000, j=0x00000539, s=0x000000A5

3: i=0xDEADBEEF, j=0x0BADF00D, s=0x000000A5

0: i=0xDEADBEEF, j=0x0BADF00D, s=0x000000A5

Thread 4: i=0x00000000, j=0x00000539, s=0x000000A5

4: i=0xDEADBEEF, j=0x0BADF00D, s=0x0BADCAFE

3.1 OpenMP and SMPs 36

Thread 2: i=0x00000000, j=0x00000539, s=0x000000A5

2: i=0xDEADBEEF, j=0x0BADF00D, s=0x0BADCAFE

Serial : i=0x0000002A, j=0x00000539, s=0x0BADCAFE

Iteration 1...

Thread 0: i=0x54E9B300, j=0x00000539, s=0x0BADCAFE

0: i=0xDEADBEEF, j=0x0BADF00D, s=0x0BADCAFE

Serial : i=0x0000002A, j=0x00000539, s=0x0BADCAFE

Notice that the number of threads in the first iteration is equal to the expres-

sion in the num threads clause, 5. Additionally s is set to 0xBADCAFE in the first

iteration, and thus, the if clause evaluates to false in second iteration—the parallel

block is inactive and only executed by the master thread. For both iterations, we

highlight (in red) the output of the private variable i before setting it to a new

value on line 12; unlike j, which appears in the firstprivate clause, the value of

i upon enterance to the parallel block is unknown. Additionally, as one would

expect, modifying a private variable in the parallel block has no effect on the out-

side scope; as shown by the “Serial. . .” output lines, the changes on line 12 to i

and j do not appear outside the parallel block. Finally, note that the modification

of the shared variable s by thread 4 is read by thread 2 (highlighted in blue)4.

Assigning and Sharing Work

In the previous section we introduced the parallel construct which is used to cre-

ate a team of threads to execute a block of code. However, in practical applica-

tions, we usually want to distribute the work amongst the different threads. As

explained in [39], to do this, OpenMP provides three different constructs: for,

sections, and single. The for (or loop) construct breaks the iterations of a for-loop

4This latest-modification read is, however, not deterministic; to guarantee coherence one must

use barriers or atomically update the value. In this example, thread 2 could likely have read the

old value.

3.1 OpenMP and SMPs 37

Clause Description

lastprivate(iden0, . . .,idenn) Extend private() to set the variables outside the construct

to last respective values in the parallel block.

copyprivate(iden0, . . .,idenn) Broadcast the value of the private variables iden0, . . .,idenn

to other threads upon exiting single construct block.

nowait Ignore any implicit barriers.

ordered Execute parallel block of code in-order.

schedule(kind[, size]) Specify the loop iteration distribution amongst threads.

Table 3.2 Clauses supported by the work-share constructs.

amongst the various threads; the sections construct explicitly divides the work

into sections to be executed in parallel by different threads; and the single con-

struct specifies a block that is to only be carried out by one thread.

In addition to the private, firstprivate, shared, and reduction clauses, the loop

construct also supports the lastprivate, ordered, schedule, and nowait clauses. Sim-

ilarly, the sections construct has addtional suport for the lastprivate and nowait

clauses, while the single construct only supports the private, firstprivate, copyprivate,

and nowait clauses. Table 3.2 gives a brief explanation of these clauses.

We refer the interested reader to [39] for a more formal description of the

work-sharing constructs and their clauses and, instead, present four examples

that concretely use these concepts. The first example demonstrates the use of the

single construct. In this example we use one of the synchronization constructs,

specifically the barrier construct, that forces all the threads to wait at the synchro-

nization point before continuing execution. Below is the aforementioned example:

1 #pragma omp parallel
2 {
3 int p i=omp get thread num();

3.1 OpenMP and SMPs 38

4 printf(”�Thread %d: p i=%d\n”,omp get thread num(),p i);
5 #pragma omp barrier
6

7 #pragma omp single copyprivate(p i)
8 {
9 printf(”\tThread %d is special!\n”,omp get thread num());

10 p i=omp get thread num();
11 } /* implicit barrier*/
12 printf(”+Thread %d: p i=%d\n”,omp get thread num(),p i);
13 }

Only one thread executes the compound statement following the single con-

struct, setting the private variable p i to its thread id and broadcasting the new

value to the remaining threads in the team. The example produced the following

output:

-Thread 2: p_i=2

-Thread 0: p_i=0

-Thread 3: p_i=3

-Thread 1: p_i=1

Thread 3 is special!

+Thread 2: p_i=3

+Thread 3: p_i=3

+Thread 0: p_i=3

+Thread 1: p_i=3

Similarly, consider:

1 #pragma omp parallel num threads(3)
2 {
3 #pragma omp sections
4 {
5 #pragma omp section
6 printf(”Thread %d can add!\n”,omp get thread num());
7 #pragma omp section
8 printf(”Thread %d can subtract!\n”,omp get thread num());
9 #pragma omp section

10 printf(”Thread %d can multiply!\n”,omp get thread num());
11 }
12 }

This example uses the sections construct to break the work in the parallel block

into three sections, to be executed by different threads. In this case the work is

3.1 OpenMP and SMPs 39

trivial and only consists of printing out the thread id, as the output shows:

Thread 2 can subtract!

Thread 1 can add!

Thread 0 can multiply!

Most programs spend a major part of their execution in loops. Therefore, op-

timizing and parallelizing loops is very important. Many compilers already per-

form various loop optimizations, including loop- unrolling, -fusion, -distribution

and -tiling [1, 83]. As mentioned, OpenMP provides a special loop construct to

support loop iteration distribution. We refer the reader to [39] for a description of

the static, runtime, and guided scheduling methods; below, we consider a simple

example that uses the schedule clause with kind set to dynamic:

1 void example for(void) {
2 int N=1000,i,sum=0;
3 int array[N];
4

5 for(i=0;i<N;i++) { array[i]=i; }
6

7 #pragma omp parallel shared(sum,array)
8 {
9 int tid=omp get thread num();

10 int i sum=0; /* intermediate sum */
11 #pragma omp for schedule(dynamic,20)
12 for(i=0;i<N;i++) {
13 i sum+=array[i];
14 }
15 printf(”Thread %d i sum=%d\n”,tid,i sum);
16

17 #pragma omp atomic
18 sum+=i sum;
19 }
20

21 printf(”\nFinal sum=%d\n”,sum);
22 }

In this example, the array entry array[i]=i, and we wish to compute
°N�1

i=0 i in

parallel. The loop construct dynamically dives the loop iterations into chunks of

at most 20, to next available thread. Each thread computes an intermediate sum

3.1 OpenMP and SMPs 40

i sum which is added atomically to the shared sum variable sum. The execution

of the above code on a quad-core machine produced the following output:

Thread 0 i_sum=169400

Thread 3 i_sum=76950

Thread 2 i_sum=81350

Thread 1 i_sum=171800

Final sum=499500

We can easily confirm that the output is correct using
°N�1

i=0 i = (N�1)N
2 . For

N = 1000 this evaluates to 499500, confirming the OpenMP result.

As previously mentioned, OpenMP provides the reduction clause (see Ta-

ble 3.1) to facilitate recurrence calculations. The above example computes such

a recurrence, and can be implemented more efficiently (and naturally) using the

reduction clause, as shown below:
1 void example reduction(void) {
2 int N=1000, sum=0, i;
3 int array[N];
4

5 for(i=0;i<N;i++) { array[i]=i; }
6

7 #pragma omp parallel for schedule(dynamic,20) shared(array) reduction(+:sum)
8 for(i=0;i<N;i++) {
9 sum+=array[i];

10 }
11 printf(”Reduced sum=%d\n”,sum);
12 }

The produced output, as expected, is:

Reduced sum=499500

In this example we used a more compact OpenMP form: we combined the

parallel and the for constructs into a single directive. We previously omitted the

compact form as to distinguish between the thread-creation construct and the

work-sharing constructs, but as this example shows the thread creation and work

sharing can be combined into a single compact directive.

3.1 OpenMP and SMPs 41

Construct Description

barrier Synchronize execution of the team of threads. Threads wait until all the

threads of the team reach the barrier.

atomic Assert that the expression following the construct updates a shared vari-

able atomically. A thread may update a shared variable with no interfer-

ence.

critical Assert that only one thread at a time may execute the block. Similar to

atomic, although protects a whole section, i.e., not just a memory update.

ordered Assert that the code in a (parallel) block is executed sequentially.

Table 3.3 Commonly used synchronization constructs.

Synchronization

To synchronize shared memory access or organize thread execution, OpenMP

provides a number of constructs that can be used alongside the implied work-

sharing construct barriers. We have already encountered two such constructs

in our examples; specifically the barrier construct and the atomic construct. In

Table 3.3 we describes the effects of these barriers, in addition to the critical and

ordered constructs.

Runtime Library

In addition to the compiler directives used to create threads and distribute the

work among them, the OpenMP API also provides several runtime library func-

tions to modify and query the environment. We have already encountered one

such function in our previous examples, specifically, the function omp get thread num()

function. Table 3.4 presents the prototypes for this and several other functions; we

refer the reader to [53] for a complete description of the OpenMP runtime library.

3.2 CUDA and GPUs 42

Function Description

int omp get thread num(void); Get the thread number.

int omp get num threads(void); Get the number of threads/team.

void omp set num threads(int nr threads); Set the number of threads/team.

int omp get num procs(void); Get the number of processors available.

int omp in parallel(void); Check if function is in a parallel region.

Table 3.4 Commonly-used OpenMP runtime functions.

3.2 CUDA and GPUs

Until recently, programming GPUs has been limited to graphics libraries such as

OpenGL [104] and Direct3D [29]. For many general, non-graphics, applications,

especially ones dependent on integer-arithmetic, implementations using such li-

braries only marginally outperformed CPU results. In certain cases, using GPUs

even led to performance degradation. Moreover, the difficulty in writing non-

graphics code using OpenGL-like libraries deterred the GPU’s advancement into

the general computing market. However, the introduction of the NVIDIA G80 se-

ries and ATI HD2000 series GPUs, both of which implemented the unified shader

architecture, has drastically increased the use of graphics cards as accelerators

for non-graphics numerically-intensive applications. This trend in computing is,

however, also due in part to the release of high-level general purpose program-

ming language support; NVIDA’s CUDA [92], ATI’s Close to Metal (CTM) [2, 96]

and the more-recent Open Computing Language (OpenCL) [84] facilitate the de-

velopment of massively-parallel GPU applications. In this thesis, we focus on

3.2 CUDA and GPUs 43

Register File

SPU0

SFU

16 KB Shared Mem

SPU1

SPU2 SPU3

SPU4 SPU5

SPU6 SPU7

SFU

Register File

SPU0

SFU

16 KB Shared Mem

SPU1

SPU2 SPU3

SPU4 SPU5

SPU6 SPU7

SFU

Register File

SPU0

SFU

16 KB Shared Mem

SPU1

SPU2 SPU3

SPU4 SPU5

SPU6 SPU7

SFU

Texture Processor Cluster

Texture Cache

Figure 3.4 GT200 Texture Processor Cluster, containing 3 Streaming Mul-
tiprocessors. We note that the constant memory caches are not shown for
simplicity.

programming NVIDIA GT200 GPUs with CUDA. Although the older G80 GPUs

have also been used for cryptologic applications [58,75,76,93,95,109,119], and our

code is generally well-suited for these GPUs as well, with the release of the Fermi

architecture (400 series GPUs) interest in and availability of these older devices

has been rapidly decreasing.

3.2.1 GPU Architectures

The GT200 GPUs consist of multiple Texture Processor Clusters (TPCs), device

memory (logically divided into constant, global, local, and texture memories) and

input/output blocks (PCI Express communication with CPU). Each TPC consists

of 3 Streaming Multiprocessors (SMs) [91,92], shown in Figure 3.4, each of which

is composed of:

3.2 CUDA and GPUs 44

• 8 Scalar Processors (SPs),

• 2 Special Function Units (SFUs),

• 1 double-precision floating-point unit (DFPU),

• 16384 32-bit registers,

• 16-way banked 16KB on-chip fast shared memory,

• 8 KB constant cache,

• 1 texture cache interface,

• 1 multithreaded instruction scheduling unit.

The SPs are 32-bit in-order processors capable of computing various (single-

precision) floating-point, integer, and bitwise operations. Among these, the SPs

can compute 32-bit additions, subtractions, and multiplications (see [91] for the

Parallel Thread Execution ISA). Similarly, the SFUs can compute single-precision

floating-point multiplications and transcendental functions (sin, cos, log), while

the DPFU supports double-precision floating-point operations.

The multithreaded scheduler issues a single instruction for a group of 32

threads, known as a warp, to be simultaneously executed on the SM. Hence, with

each SP and functional unit executing an instruction per cycle, it takes 4 cycles

for single-precision floating-point or integer warp instructions to be executed (on

the SPs); 16 cycles for single-precision floating-point transcendental instructions

(on the SFUs); 32 cycles for double-precision floating-point instructions (on the

DPFU).

As with the arithmetic instructions, 32 load/store shared memory instructions

can be issued and executed in 4 cycles. However, because the shared memory has

3.2 CUDA and GPUs 45

16 banks, a restriction on addressing must be satisfied. Specifically, threads of a

half-warp, the actual scheduling unit dispatched every 2 cycles, must not (write)

access the same bank. Hence, if there are no bank-conflicts in either the first

or second half-warp, 32 different loads/stores are completed in 4 cycles. The

constant and texture memory throughput is, however, lower than that of shared

memory; for the texture memory, the read port is shared with the other SMs in

the TPC, while for the constant memory the read is expected to be ‘broadcasted’

to all the threads of the warp. Further, accessing global memory comes with a

large cost in latency (several hundred cycles), which is also present for texture

and constant memories upon cache misses.

3.2.2 CUDA Programming

CUDA is an extension of the C language that employs the new massively parallel

programming model, the single instruction multiple threads (SIMT) paradigm.

Although explicit SIMD access of the SM compute units (the SPs) is desirable

when one wishes to highly optimize an application, with CUDA, the program-

mer is restricted to writing parallel code at the thread level [92]. Specifically, the

programmer writes code for a kernel which is executed by multiple threads. All

the threads execute (on the SPs) the same instructions of the kernel, operating

on different data–hence the name of the paradigm: single instruction multiple

threads [92]. In the SIMT programming model, threads are grouped into a thread

block, which is executed on a single SM, and consequently, these threads may

synchronize execution and use the on-chip shared memory to facilitate commu-

nication. Because the multithreaded scheduler issues an instruction for a warp

at a time, it is important that the block size be a multiple of 32. When launch-

ing a kernel, it is common (and highly recommended) to execute multiple thread

3.2 CUDA and GPUs 46

blocks, grouped in a grid, which the hardware then assigns to the available SMs; a

maximum of 8 blocks may simultaneously execute on a single SM, and in order to

hide various latencies, it is recommended that at least 2 be available per SM [92].

Before delving into kernel code, it is important to understand the execution se-

quence of a typical GPU-accelerated application. This simplified scenario consists

of the following steps:

1. A host thread copies input data to the device memory.

2. A grid of threads is launched by the host to be executed on the device.

3. Device executes the kernel.

4. Host thread copies output data back from device.

Though the memory copies and execution may be asynchronous, and the host

thread may execute in parallel to the GPU code, the programming model is very

similar to the OpenMP fork-join model. Additionally, it is common to execute

multiple kernels in sequence (repeat steps 2 and 3), the output of one kernel

being used as input to the subsequent kernel (without the need for costly host-

device copies). In the multi-kernel scenario it is especially important to use the

asynchronous API as to interleave memory copies and kernel execution, riding of

unnecessary latencies.

CUDA Kernels

With the exception of certain restrictions, such as no recursion or variable argu-

ments, CUDA kernels are C void functions declared with the global specifier

and callable from host code. Below, we focus on introducing CUDA programming

through several examples. Additional details are discussed in [92].

3.2 CUDA and GPUs 47

Consider the definition of a kernel performing a bitwise XOR of two vectors

a and b of N 32-bit words. Additionally, suppose the specified grid executing

the kernel consists of N threads, each thread performing a single XOR. As men-

tioned, each thread executes the same instructions, and therefore a method for

diving the work amongst the threads, allowing each thread to read different ele-

ments from a and b, is required. Addressing this, CUDA defines the special vari-

ables threadIdx, blockIdx, blockDim, and gridDim storing the thread index (within

a block), thread block index (within a grid), thread block dimension, and grid

dimension, respectively. The thread index (and thus the thread block dimension)

is a 3-component vector (x, y, z), while the block index (and thus the grid dimen-

sion) is a 2-component vector (x, y). It is clear that using the special variables each

thread can execute the same instructions, operating on different data. Below is

the definition of the kernel performing the vector XOR.

1 global void vector XOR(int *result,int *a, int *b) {
2 int tID = blockIdx.x*blockDim.x+threadIdx.x;
3 result[tID] = a[tID] ˆ b[tID];
4 }

We reiterate that each thread executes the same same instructions. In the

kernel above, the tID is the thread index with respect to all the threads in the

grid5 that the thread uses to read an array element from vectors a and b and write

their XOR into the result array.

Let us now consider the position of the kernel within a C application, i.e., the

interaction of the host and device code. The code below provides a host wrapper

function that initializes a CUDA context on the first device, copies the host array

inputs, and launches a grid on the device. Finally, the wrapper copies the results

5In this example we assume the grid and blocks are 1-dimensional. For 2- and 3-dimensional

the global thread index is computed in a similar fashion.

3.2 CUDA and GPUs 48

from the device back to the host.

1 void vector XOR wrapper(int *result, int *a, int *b, int N) {
2 int device no = 0; // device number
3

4 int *a dev, *b dev, *result dev; // buffers on device
5 size t vector size = N*sizeof(int);
6

7 int n T=128; // number of threads / block
8 int n B=N/n T; // number of blocks / grid
9

10 assert(N>=n T);
11

12 // Set the device to use
13 cudaSetDevice(device no);
14

15 // 1a. Allocate buffers on device
16 cudaMalloc((void**)&a dev,vector size);
17 cudaMalloc((void**)&b dev,vector size);
18 cudaMalloc((void**)&result dev,vector size);
19

20 // 1b. Copy input buffers from host to device
21 cudaMemcpy(a dev,a,vector size,cudaMemcpyHostToDevice);
22 cudaMemcpy(b dev,b,vector size,cudaMemcpyHostToDevice);
23

24 // 2. Launch grid and 3. execute on GPU
25 vector XOR<<<n B,n T>>>(result dev,a dev,b dev);
26

27 // 4. Copy output from device to host
28 cudaMemcpy(result,result dev,vector size,cudaMemcpyDeviceToHost);
29

30 // Free buffers on device
31 cudaFree(a dev);
32 cudaFree(b dev);
33 cudaFree(result dev);
34 }

In the above, the context is created on line 13; global-memory input and output

buffers are allocated on the device on lines 16–18 using a malloc-like function; the

host input is copied to the device, using a memcpy-like function, on lines 21–22;

kernel is launched on the device on line 25; device result is copied from the device

to host on line 28; the initially allocated temporary buffers are deallocated using

3.2 CUDA and GPUs 49

a fee-like function, on lines 31–33. We note that with the exception of page-locked

memory (discussed in [92]), memory space must be allocated on the device and

input/output must be explicitly copied from/to the host. Except for remembering

the different memory restrictions, the CUDA API is terse and easily recognizable

to the C programmer. A new and unfamiliar syntax to C is, however, introduced

by CUDA: the kernel launch, line 25. Executing a kernel is essentially a function

call from host code, the instructions of which are executed on the device. Hence,

the syntax is similar to calling a C function, as shown below:

1 my kernel<<<gridDim, blockDim, dyn shmem size>>>(parameter-list);

Following the kernel function name, in the <<<>>>, the programmer spec-

ifies the grid dimensions, block dimensions, and the amount of dynamic shared

memory per block. The dimensions can be of type dim3, a structure with x,y,z

integral components, or simply an integer type for 1-dimensional grid/block.

The optional dyn shmme size is an integral type (specifically, size t) specifying the

shared memory size per block, in bytes, to be allocated upon launch.

Shared Memory, Functions, and Atomic Instructions

In the previous trivial example we introduced the most basic of CUDA, de-

vice/host interaction and most basic execution of GPU code. We made no use of

device functions, atomic instructions, page-locked memory, or the GPU texture,

constant and shared memory. For completeness, we consider another simple ex-

ample showing the use of dynamic shared memory, device functions, and atomic

instructions. We refer the interested reader to [92] for additional details on the

aforementioned and other more-advanced topics.

Consider computing the sum
°N�1

0 ai � xi mod 2, for N = 27k, and any (bounded)

integers k, ai and xi. First, we define a device function to compute the multiplica-

3.2 CUDA and GPUs 50

tion modulo 2:

1 device int mul mod2(int a, int b) {
2 return a & b;
3 }

Unlike kernels, device functions are declared with the device specifier and

are only callable from within device code, i.e., unless the function also has the

host specifier it is only compiled for the GPU architecture. Restrictions, such

as no recursion or variable arguments, hold for device functions as they do for

kernels. This is especially imposed because device functions are, by default, in-

lined.

Secondly, consider the kernel computing the actual sum and use of (dynamic)

shared memory to cache partial sums.

1 extern shared align (alignof(void*)) int smem cache[];
2

3 global void weighted reduce(int *result, int *a, int *x) {
4 int tID = blockIdx.x*blockDim.x+threadIdx.x;
5 int *reduce csh = (int*) smem cache;
6

7 /* write partial result to shared memory */
8 reduce csh[threadIdx.x]=mul mod2(a[tID],x[tID]);
9 syncthreads();

10

11 /* reduce results of threads in same block */
12 for(int i=blockDim.x/2;i>0;i/=2) {
13 if(threadIdx.x<i) {
14 /* addition mod 2 is XOR */
15 reduce csh[threadIdx.x]ˆ=reduce csh[threadIdx.x+i];
16 }
17 syncthreads();
18 }
19

20 /* write result from first thread */
21 if(threadIdx.x==0) {
22 atomicXor(result,reduce csh[0]);
23 }
24 }

Because the number of threads per block may vary, depending on the kernel

3.2 CUDA and GPUs 51

launch parameters, we declare smem cache on line 1 as extern, residing in shared

memory and 4-byte aligned It is important to note that, as variables are private to

threads, shared memory arrays are private to thread blocks. In other words, one

thread block’s modification of smem cache[k] is not visible to another; only threads

within the same thread block have shared access to the buffer. On line 8 ai � xi

mod 2 is computed and cached in shared memory, where the (global) thread

index corresponds to i. Note that each thread computes one multiplication and

caches the result to the localized shared memory, to be summed. However, before

loading the cached multiplications and computing the partial sum on each thread

block, it is imperative that all threads within the block have finished computing

the multiplication and written the result to shared memory. Hence a barrier or

synchronization point is necessary, and this is introduced on the subsequent line.

When a thread reaches the syncthreads() barrier it waits until all the other threads

within the thread block reach the same point before executing the next instruction.

Therefore, a thread waits on line 9 until all the remaining threads have written

their respective multiplication result to shared memory, after which the results

may be summed, with no error.

The summing can be computed using an arbitrary number of threads. How-

ever, a large number of active threads directly corresponds to a more optimal

device utilization ratio. Hence for each partial sum on lines 12-18 the number of

threads decreases only by a factor of 2, while the number of iterations is logarith-

mic. Figure 3.5 illustrates this reduction step for thread blocks with 8 threads.

Note that each thread writes the partial sum to the cache indexed by its thread

index, and thus at the completion of the loop the cache indexed by thread 0 con-

tains the full thread block sum. To combine the results from each thread block

global memory must be used – the result output buffer. However, simply reading

3.2 CUDA and GPUs 52

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

� � �

0 1 2 3 4 5 6 7

reduced result

0 1 2 3 gridDim.x-1

Figure 3.5 Multi-block parallel reduction using shared memory. Each
thread block is composed of 8 threads. The rectangles represent shared
memory array elements; the circles correspond to the reduction operator
(e.g., addition in a field); the red arrow and circle imply that the operation
is atomic.

the current result, adding the thread block sum to it and writing it back is not

sufficient; the actions must be atomic, as shown on line 22, since different threads

(of different blocks) might attempt to modify the value simultaneously and thus

violate coherency.

Finally, for completeness, we present the host wrapper function. The function

below assumes N ¥ 27; for small N’s it very likely for CPU code to be an order of

magnitudes faster since the memory copies and kernel launch are quite costly.

1 int weighted reduce wrapper(int *a, int *x, int N) {
2 int device no = 0; // device number
3

4 int *a dev, *x dev; // buffers on device
5 int result, *result dev;

3.2 CUDA and GPUs 53

6 size t vector size = N*sizeof(int);
7

8 int n T=128; // number of threads / block
9 int n B=N/n T; // number of blocks / grid

10

11 assert((N>=n T) && (N%n T==0));
12

13 // Set the device to use
14 cudaSetDevice(device no);
15

16 // 1a. Allocate buffers on device
17 cudaMalloc((void**)&result dev,sizeof(result));
18 cudaMalloc((void**)&a dev,vector size);
19 cudaMalloc((void**)&x dev,vector size);
20

21 // 1b. Copy input buffers from host to device
22 cudaMemcpy(a dev,a,vector size,cudaMemcpyHostToDevice);
23 cudaMemcpy(x dev,x,vector size,cudaMemcpyHostToDevice);
24 cudaMemset(result dev,0,sizeof(result));
25

26 // 2. Launch grid and 3. execute on GPU
27 weighted reduce<<<n B,n T,n T*sizeof(int)>>>(result dev,a dev,x dev);
28

29 // 4. Copy output from device to host
30 cudaMemcpy(&result,result dev,sizeof(result),cudaMemcpyDeviceToHost);
31

32 cudaFree(a dev);
33 cudaFree(x dev);
34 cudaFree(result dev);
35

36 return result;
37 }

We further note that the number of threads per block is essential to the per-

formance of the GPU application. A very large block size would result in a large

number of inactive threads during the log-number of reductions. Similarly, an

odd number or non-multiple of 32 would cause further slow downs due to diver-

gence that would arise during the reduction. Finally, we note that for this specific

example having a thread perform multiple multiplications while accumulating

their sum would also lead to additional speedups for large N.

Chapter 4

Cube Attack

Most cryptosystems can be described by a polynomial in n private variables and

m public variables, corresponding to the secret key and initial value (or plain-

text), respectively. Therefore, several cryptanalytic techniques focus on attacking

a cryptosystem by targeting weaknesses of the underlying polynomial. Notable

techniques include the chosen initial vector (IV) attacks [3,48,51,52,103], previously

used to cryptanalyze Grain-128, Trivium, Decim, and Lex, among others. Sim-

ilar to these powerful statistical techniques, though algebraic in its approach, is

Dinur and Shamir’s cube attack [45, 46]. The cube attack is a very recent general

cryptanalytic technique, generalizing Vielhaber’s Algebraic IV Differential Attack

(AIDA) [111–113]. Depite AIDA being the first of such algebraic attacks, in this

thesis we follow the work and notation of Dinur and Shamir.

The cube attack is suitable for cryptanalyzing a cryptosystems whose under-

lying polynomials, in n + m variables, have a low degree d. Using the cube at-

tack, an adversary can efficiently carry out a key-recovery attack with complexity

O(n2 + n � 2d�1), requiring only black box access to the cryptosystem, i.e., it is

not necessary for an adversary to have knowledge of the internal structure of

54

4.1 Preliminaries 55

the target cryptosystem. Moreover, the technique is applicable to a wide range

of primitives, including block ciphers, stream ciphers, keyed hash functions, and

MACs; any cryptosystem with m ¥ d + logd n public variables and a low de-

gree d is susceptible to a key-recovery attack using this technique [46]. The latter

requirement is because the cube attack, like chosen IV attacks, sums over all pos-

sible values of subsets of the public variables (i.e., over cubes) when attacking the

cryptosystem.

In the following sections, we describe the preliminaries necessary to under-

stand the cube attack, followed by a detailed presentation of the two-phase tech-

nique. A multi-GPU implementation of the cube attack is presented in Chapter 6,

and applications to Trivium and MICKEY are detailed in Chapter 7.

4.1 Preliminaries

Any Boolean function f : t0, 1un Ñ t0, 1u can be uniquely expressed in the al-

gebraic normal form (ANF) as a polynomial p(x), such that evaluating p(x) is

equivalent to computing f (x). Since most cryptosystems are complex Boolean

functions in public and private variables, we focus on a cryptosystem’s underly-

ing master polynomial p(x). For simplicity, however, we (usually) do not distin-

guish between public and private variables. Instead, let us consider a n-variable

polynomial, p(x1, . . . , xn), over GF(2) in ANF. Formally, the ANF of a polynomial

has the form:

p(x1, . . . , xn) =
2n�1̧

i=0

aix
i1
1 xi2

2 � � � x
in
n , (4.1)

where the monomial coefficients ai P t0, 1u, and i =
°n

j=1 ij2j�1, i.e., (i1, . . . , in) is

the n-bit binary representation of i.

The first observation of the cube attack is that, given a set of indexes I �

4.1 Preliminaries 56

t1, . . . , nu and a monomial tI =
±

iPI xi, any polynomial p can be represented as:

p(x1, . . . , xn) = tI � pS(I) + q. (4.2)

Here, pS(I), called the superpoly of I in p, and monomial tI do not share any

common terms, i.e., Exk : xk � tI and the quotient pS(I)/xk � 0. Similarly, q does

not have any monomial containing tI , i.e., the quotient q/tI = 0. In other words, in

(4.2) we decompose p by collecting all the terms containing tI into the superpoly

pS(I), leaving the remainining terms in q. Furthermore, if we let k = |I| = deg(tI),

we observe that degree of the superpoly deg(pS(I)) ¤ n � k, since p’s degree is

bounded by n.

Definition 4.1. The monomial tI is a maxterm of p iff the superpoly pS(I) is a

non-constant linear (or affine) polynomial such that deg(pS(I)) = 1.

Example 4.1. Consider the following degree-4 polynomial in 6 variables:

p(x1, . . . , x6) = 1 + x1 + x6 + x2x3 + x2x3x4 + x2x3x4x5 + x3x4x5x6.

(a) Let I0 = t2, 3u. We represent p as:

p(x1, . . . , x6) = x2x3 � (1 + x4 + x4x5) + 1 + x1 + x6 + x3x4x5x6,

where tI0 = x2x3, pS(I0) = 1 + x4 + x4x5 and q = 1 + x1 + x6 + x3x4x5x6.

(b) Similarly, let I1 = t3, 4, 5u. We represent p as:

p(x1, . . . , x6) = x3x4x5 � (x2 + x6) + 1 + x1 + x6 + x2x3 + x2x3x4,

where tI1 = x3x4x5, pS(I1) = x2 + x6 and q = x6 + x2x3 + x2x3x4.

(c) Finally, let I2 = t1, 2, 3, 4, 5u. We represent p as:

p(x1, . . . , x6) = x1x2x3x4x5 � (0) + 1 + x1 + x6 + x2x3

+ x2x3x4 + x2x3x4x5 + x3x4x5x6,

4.1 Preliminaries 57

where tI2 = x1x2x3x4x5, pS(I1) = 0 and q = p.

It is important to note that tI1 is the only maxterm in this example since deg(pS(I1)) = 1.

The terms tI0 and tI2 have quadratic and null superpolys, respectively.

Definition 4.2. For k = |I| n, the index-set I defines a k-dimensional Boolean

cube CI , over n, by setting the k variables indexed by I to all 0/1 permutations,

leaving the others undetermined. For I = ti1, i2, . . . , iku : 0 ¤ it ¤ n,

CI = t(x1, x2, . . . , xn) : (xi1 , xi2 , . . . , xik) = (j1, j2, . . . , jk), 0 ¤ j ¤ 2k � 1u,

where (j1, j2, . . . , jk) is the k-bit binary representation of j.

Directly from the defintion, the size of the cube CI is |CI | = 2k. Additionally,

is clear that for any v = (v1, . . . , vn) P CI , k of the vi variables (i P I) are set to

0/1’s, and the remaining n � k are undetermined. Hence, for each k-bit value,

the corresponding (defined part of) vector v can be thought of as a corner of the

k-dimensional unit hypercube.

Example 4.2. Continuing with Example 4.1, the cube defined by I0 = t2, 3u is

CI0 = t(x1, 0, 0, x4, x5, x6), (x1, 0, 1, x4, x5, x6), (x1, 1, 0, x4, x5, x6), (x1, 1, 1, x4, x5, x6)u.

For any vector v = (v1, . . . , vn) P CI , we define a new polynomial p|v = p(v)

in n� k variables such that deg(p|v) ¤ deg(p). Summing over all the vectors in

the cube CI , we obtain a new polynomial

pI =
¸

vPCI

p|v, (4.3)

whose degree deg(pI) ¤ deg(p)� k.

Theorem 4.1 (Theorem 1 [46]). For any GF(2) polynomial p in n-variables, and subset

of indices I � t1, . . . , nu we have pI = pS(I).

4.1 Preliminaries 58

Proof. Using the representation defined by (4.2),

p|v = p(v) = tI � pS(I) + q =
¹
iPI

vi � pS(I) + q,

where tI =
±

iPI vi P t0, 1u, as the variables indexed by elements of I are, by

Definition 4.2, assigned to 0/1. Taking (4.3) and splitting pI into two summations,

pI =
¸

vPCI

p|v =
¸

vPCI

tI � pS(I) +
¸

vPCI

q,

we have
¸

vPCI

q = 0,

since every term in q is added an even number of times (resulting in a cancellation,

since p is over GF(2)). Finally,

¸
vPCI

tI � pS(I) = pS(I)

since tI =
±

iPI vi = 1 iff all the variables indexed by I are 1 and

|t(x1, x2, . . . , xn) P CI : (xi1 , xi2 , . . . , xik) = (1, 1, . . . , 1)u| = 1.

Example 4.3. Taking the polynomial of Example 4.1, and the cube defined in

Example 4.2, we have @v P CI0 the new polynomials p|v:

p(x1, 0, 0, x4, x5, x6) = 1 + x1 + x6

p(x1, 0, 1, x4, x5, x6) = 1 + x1 + x6 + x4x5x6

p(x1, 1, 0, x4, x5, x6) = 1 + x1 + x6

p(x1, 1, 1, x4, x5, x6) = 1 + x1 + x6 + 1 + x4 + x4x5 + x4x5x6

4.1 Preliminaries 59

which are then used to obtain pI0 :

pI0 =
¸

vPCI0

p|v

= p(x1, 0, 0, x4, x5, x6) + p(x1, 0, 1, x4, x5, x6)

+ p(x1, 1, 0, x4, x5, x6) + p(x1, 1, 1, x4, x5, x6)

= 1 + x4 + x4x5.

In Example 4.1 we showed that pS(I0) = 1 + x4 + x4x5, which, as expected by

Theorem 4.1, is the same as pI0 , i.e., pI0 = pS(I0) holds.

Having established these preliminaries, consider a cryptosystem with a n-bit

key and m-bit initial value (or plaintext) that is described by a n + m variable

polynomial p(x1, . . . xn, v1, . . . , vm). We denote the private and public variables by

x1, . . . , xn and v1, . . . , vm, respectively. The corresponding ciphertext bit is given

by the value of p. The basis for the cube attack is that an attacker with knowledge

of ` maxterms in a subset of the public variables (setting the remaining public

variables to a constant) and ` corresponding (linear and independent) superpolys

in the private variables can compute pI for each maxterm and solve the linear

equations to recover `-bits of the secret key.

The cube attack is divided into two phases: a preprocessing phase and an online

phase. During the preprocessing phase, the attacker searches for maxterms and

their respective superpolys. Once a sufficient number (` for `-bit key recovery)

of independent superpolys are found, the attacker can carry out the online phase

on any implementation of the algorithm, to (partially) recover the secret key. We

describe the two phases below.

4.2 Preprocessing 60

4.2 Preprocessing

During the preprocessing phase, the attacker (adversary A) may adaptively mod-

ify both public and private variables and subsequently perform multiple queries

to the black box cryptosystem using these input vectors. We can assume that

the black box is simply an evaluation of the (unknown) master polynomial, given

the input vectors. Figure 4.1 illustrates the preprocessing phase, where the ad-

versary (during each query i) provides input vectors vi = (vi,1, . . . , vi,m) and

xi = (xi,1, . . . , xi,n), and the black box returns the corresponding ciphertext bit

p(xi, vi). After a sufficient number of queries, the adversary returns a set of max-

term and superpoly pairs: t(tIj , pS(Ij)) : j ¤ nu. If the adversary wishes to recover

l-bits (l ¤ n) in the online phase, the preprocessing phase is halted and the set is

returned once l independent superpolys are found.

Continuing this attack scenario (see Figure 4.1), let us consider the internal de-

tails of A’s preprocessing phase method. As in [46], we divide the preprocessing

phase into two parts: finding maxterms and superpoly reconstruction.

Black box

b Ð p(xi, vi)

Adversary A
vi = (vi,1, . . . , vi,m)

xi = (xi,1, . . . , xi,n)

b P t0, 1u

i

t(tIj , pS(Ij)) : j ¤ nu

Figure 4.1 Preprocessing phase of the cube attack

4.2 Preprocessing 61

4.2.1 Finding Maxterms

Using the notation of (4.1), the ANF of the polynomial p in n private variables

and m public variables is

p(x1, . . . , xn, v1, . . . , vm) =
2n+m�1¸

i=0

aix
i1
1 xi2

2 � � � x
in
n vin+1

1 vin+2
2 � � � vin+m

m . (4.4)

We denote the b� a + 1 tuple (ia, . . . , ib), consisting of bits a through b of i, by i[a:b].

Let wt(α) dennote the Hamming weight of the w-bit variable α: wt(α) =
°w

j=1 αj.

We recall the definition of random, d-random, and d|p-random polynomials. Note

that our defintions are slightly different from those of [46]; our d-random and

dp-random correspond to their definition of random and d-random, respectively.

Definition 4.3. A polynomial p is random if each monomial appears in the ANF

of p with probability 1
2 , i.e., for 0 ¤ i ¤ n, Pr[ai = 1] = Pr[ai = 0] = 1

2 .

Definition 4.4. A polynomial p is d-random if each monomial of degree d appears

in the ANF of p with probability 1
2 , i.e., for 1 ¤ i ¤ n : wt(i) = d, Pr[ai = 1] =

Pr[ai = 0] = 1
2 .

Definition 4.5. A polynomial p is d|p-random if each monomial of degree d, con-

sisting of 1 private variable and d� 1 public variables, appears in the ANF of p

with probability 1
2 . As in the previous definitions, for 1 ¤ i ¤ n : wt(i) = d and

wt(i[1:n]) = 1, Pr[ai = 1] = Pr[ai = 0] = 1
2 .

From the definitions, it is clear that a random polynomial is d-random, and

a d|p-random polynomial is a ‘special’ d-random polynomial. Moreover, follow-

ing [48], we let M be the total number monomials in polynomial p, Mk the number

of monomials of degree k, and Bin(N, q) denote the binomial distribution in N tri-

als (each with success probability or q). The random case imposes the restriction

4.2 Preprocessing 62

that M � Bin
(

2n+m, 1
2

)
, the d-random requires that Md � Bin

(
(n+m

d), 1
2

)
, and the

d|p-random only requires a subset of the Md variables to be randomly distributed.

For the cube attack, we only require the target cryptosystem to behave under the

d|p-random, or weakest, assumption. Distinguishers, such as cube testers, how-

ever, can be used to attack cryptosystems that are d|p-random but not d-random

or random, as shown in [3, 48, 51, 103].

Assuming the target master polynomial is d|p-random and has maximum de-

gree d, finding a maxterm of degree d � 1 can be accomplished by testing ran-

dom terms of degree d� 1 in the public variables. The number of such terms is

Md�1|p � Bin
(
(m

d�1), 1
2

)
, and the probability that the term’s superpoly is linear is

1� 2�n. To clarify, consider terms consisting of d� 1 public variables and another

variable u: vi1 , . . . , vid�1u. As explained in [46], the probability of not selecting a

private variable for u is 2�n, since there are n private variables each of which is se-

lected with probability of 1
2 . Consequently, the probability of a d� 1 dimensional

term also being a maxterm is 1� 2�n.

Under these assumptions, we summarize Dinur and Shamir’s proposed random-

walk approach to finding maxterms [46]:

1. Choose a random size k ¤ m, and random index-set I : |I| = k.

2. For several random private variables compute pI =
°

vPCI
p|v:

• If the cube sums are constant, I is too large: remove a random variable

from I and repeat Step 2.

• If the cube sums are non-linear, I is too small: add another variable to

I and repeat Step 2.

• If the cube sums are linear, tI is a maxterm and d � |I|+ 1.

4.2 Preprocessing 63

If the algorithm fails to find a maxterm after a large number of tries, it is suggested

to simply restarting from Step 1.

In this thesis, we use the Blum Luby Rubinfeld (BLR) test [12, 28, 46] to check

for linearity. Given random variables in the domain of f , ki,1 and ki,2, 1 ¤ i ¤

3N, the BLR test checks f (0) + f (ki,1) + f (ki,2) = f (ki,1 + ki,2). If the equality

fails for any i, then f is non-linear. Otherwise f is linear with a probability of

approximately 1� 2�N.

Example 4.4. Let us consider finding maxterms for the following degree-3 poly-

nomial in 6 variables:

p(x1, x2, x3, v1, v2, v3) = v1x1 + v3x3 + v3x1x2 + v1v2x1 + v1v2x2 + v2v3x3

We denote the cube sum with a given key x = (x1, x2, x3) over CI by pCI (x). In

this example we compute the cube sum over all the possible keys, as this is a

trivial task for n = 3, and thus the BLR tests hold with probabilty 1.

(a) Let k = 3, and I = I0 = t1, 2, 3u. We compute the cube sums:

x (0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

pCI0
(x) 0 0 0 0 0 0 0 0

Since the output is constant regardless of the key, I is too large and, thus,

we must remove a variable from it.

(b) Alternatively, suppose we start with k = 1, and I = I1 = t3u. First, we set

v1 = v2 = 0 and then compute the different-key cube sums over CI1 :

x (0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

pCI1
(x) 0 0 0 1 1 1 1 0

4.2 Preprocessing 64

In this case, the output is not constant, but simply taking the first three keys

(and doing the BLR test) we can verify the non-linearity of the superpoly:

pCI0
(0, 0, 0) + pCI0

(1, 0, 0) + pCI0
(0, 1, 0) � pCI0

(1, 1, 0)

0 + 0 + 0 � 1.

Thus, we need to add more terms to I.

(c) Suppose we add v2, so that I = I2 = t2, 3u. Setting v1 = 0, we compute the

cube sums:

x (0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

pCI2
(x) 0 0 0 0 1 1 1 1

We can easily verify that the BLR test passes and confirm that tI2 is a max-

term. Consequently, we also have an estimate of p’s degree d � k + 1 = 3.

Continuing as above, we find that, in addition to I2, the index-sets I3 = t1, 2u

and I4 = t1u correspond to maxterms that have linear superpolys. Note that it

is not required for different maxterm index-sets to be disjont, e.g., I2 X I3 = t2u

indicates that both maxterm index-sets I2 and I3 contain the common variable v2.

Denoting GF(2) addition by `, a random sampling by RÐÝ, and a sum over

cube CI with private variables set to k by pCI (k), we present a concrete algorithm

for finding maxterms in Algorithm 4.1. Given T maximum number of tries per

term and a bounded dimension md, the algorithm returns a maxterm I or reject

if no maxterm is found. The number of BLR tests per maxterm is 3N and thus the

probability that a returned maxterm is linear is 1� 2�N; once a maxterm is found

additional BLR tests can be performed to further increase the confidence level in

the term. The costliest parts of the algorithm are the four cube sums computed

4.2 Preprocessing 65

for the BLR tests, lines 7, 13, 14, 15. We estimate the worst-case complexity of

this algorithm to be O(T � ((9N + 1) � 2md)), and if the degree of p is known,

the complexity finding (and confirming) l maxterms is roughly O(` � ((9N + 1) �

2d�1)).

4.2.2 Superpoly Reconstruction

Given a maxterm tI in master polynomial p(x1, . . . , xn), we wish to reconstruct the

ANF of the linear superpoly pS(I). Note that in this case we again do not explicitly

distinguish between public and private variables. Instead, let J � t1, . . . , nu be the

set of indexes of the (private variable) terms in pS(I), so that I X J = H, and

pS(I) = a0 +
ņ

i=1

aixi, (4.5)

where a0 P t0, 1u is the superpoly’s constant term, and ai = 1 iff i P J. In other

words, J is the index-set of the private linear variables in the superpoly. Hence,

reconstructing pS(I) can then be reformulated to the problem of finding ta0 Y Ju.

Theorem 4.2 (Theorem 2 [46]). The constant term a0 can be computed by summing

over the cube CI , setting all remaining variables to zero.

Proof. Using (4.3) and setting the undetermined variables of v P CI to zero (i.e.,

@i R I : xi = 0), the theorem states that a0 = pI =
°

vPCI
p|v. Following (4.5),

pI = pS(I) = a0 +
ņ

i=1

aixi = a0 +
¸
iPJ

xi = a0,

as ai = 1 iff i P J, xi = 0 for all i R I, and I X J = H.

Theorem 4.3 (Theorem 2 [46]). The coefficient aj in superpoly pS(I) is computed by the

summing over cube CI , setting all but j-th variable to zero, and adding the result to the

constant term a0.

4.2 Preprocessing 66

Algorithm 4.1: Finding a maxterm
Input : Master polynomial p(x1, . . . , xn, v1, . . . , vm).

Maximum dimensions md.
Maximum tries T per term.

Output: Maxterm index-set I or reject.

1 begin
2 k RÐÝ t1, . . . , min(m, md)u;// Random (bounded) dimension

// Start with random k-dimensional term:

3 for i Ð 1 to k do Ii
RÐÝ t1, . . . , muzI; // Create random index-set

4 for i Ð 1 to T do
5 n0 Ð 0;
6 n1 Ð 0;
7 p0 Ð pCI (0);
8 if p0 = 1 then n1 Ð n1 + 1;
9 else n0 Ð n0 + 1;

10 for i Ð 1 to 3N do
11 k1

RÐÝ t0, 1un;// Random key 1

12 k2
RÐÝ t0, 1un;// Random key 2

13 p1 Ð pCI (k1);
14 p2 Ð pCI (k2);
15 p1,2 Ð pCI (k1 ` k2);

// Update counters:

16 if p1 = 1 then n1 Ð n1 + 1;
17 else n0 Ð n0 + 1;
18 if p2 = 1 then n1 Ð n1 + 1;
19 else n0 Ð n0 + 1;

// Linearity test:

20 if p1 ` p2 � p1,2 and p0 ` p1 ` p2 � p1,2 then
// Non-linear, add term:

21 k Ð k + 1;

22 Ik
RÐÝ t1, . . . , muzI;

23 break;

24 if n0 = 3N or n1 = 3N then
// Constant, remove term:

25 j RÐÝ I;
26 I Ð Izj;
27 k Ð k� 1;

28 else
// Linear term:

29 return I;

30 return reject;

4.2 Preprocessing 67

Proof. Similar to the previous theorem, we set all but the j-th undetermined vari-

ables to zero; in this case, xj = 1. The theorem states aj = a0 + pI = a0 +
°

vPCI
p|v.

As before,

pI = pS(I) = a0 +
ņ

i=1

aixi = a0 + aj,

since xi = 0 for all i R tI Y ju. Hence, pI + a0 = aj.

Given a maxterm tI and using the results of Theorem 4.2 and Theorem 4.3,

we have a direct algorithm for reconstructing the maxterm’s superpoly by only

querying the black box. We present the superpoly reconstruction, explicitly dis-

tinguishing the private variables from public variables, in Algorithm 4.2. Note

that the costliest parts of the algorithm are, as in Algorithm 4.1, the cube sums,

which are explicity computed on lines 6 and 13; hence, given n private variables,

the complexity of Algorithm 4.2 is (n + 1)2|I|. Using this result, we can further

estimate the reconstruction time of l superpolys given the master polynomial p

of degree d to require O(l(n + 1)2d�1) black box queries (i.e., polynomial evalua-

tions).

Example 4.5. Let us consider the reconstruction of the superpoly for maxterm

tI3 : I3 = t1, 2u of Example 4.4. First, we set the undertermined v3 = 0 and sum

over the cube (the cube variables are underlined) to find the constant term:

a0 = p(0, 0, 0, 0, 0, 0) + p(0, 0, 0, 1, 0, 0) + p(0, 0, 0, 0, 1, 0) + p(0, 0, 0, 1, 1, 0) = 0.

Then we calculate the remaining terms (setting only xj = 1 when computing aj):

a1 = a0 + p(1, 0, 0, 0, 0, 0) + p(1, 0, 0, 1, 0, 0) + p(1, 0, 0, 0, 1, 0) + p(1, 0, 0, 1, 1, 0) = 1,

a2 = a0 + p(0, 1, 0, 0, 0, 0) + p(0, 1, 0, 1, 0, 0) + p(0, 1, 0, 0, 1, 0) + p(0, 1, 0, 1, 1, 0) = 1,

a3 = a0 + p(0, 0, 1, 0, 0, 0) + p(0, 0, 1, 1, 0, 0) + p(0, 0, 1, 0, 1, 0) + p(0, 0, 1, 1, 1, 0) = 0.

4.3 Online Attack 68

Algorithm 4.2: Superpoly reconstruction
Input : Master polynomial p(x1, . . . , xn, v1, . . . , vm).

Maxterm index-set I.
Output: Reconstructed superpoly pS(I).

1 begin
2 J ÐH // Index of coefficients in superpoly

// Compute the constant term:

3 for i Ð 1 to n do xi Ð 0;// Set key to zero

4 foreach i R I do vi Ð 0;// Set all undetermined variables to zero

5 pI Ð 0;
6 foreach v P CI do pI Ð pI ` p|v;
7 a0 Ð pI ;

// Compute the remaining terms:

8 for j Ð 1 to n do
9 for i Ð 1 to n do

10 if i=j then xi Ð 1;
11 else xi Ð 0;

12 pI Ð 0;
13 foreach v P CI do pI Ð pI ` p|v;
14 aj Ð a0 ` pI ;
15 if aj = 1 then
16 J Ð tJ Y ju;

17 return pS(I) = a0 +
°

jPJ xj; // Return symbolic superpoly

Given the coefficients, the reconstucted superpoly for tI3 = v1v2 is pS(I3) = x1 + x2.

It is important to observe that, without any knowledge of p’s form, we recovered

tI3’s superpoly. This simple result can be confirmed algebraically using the defi-

nition of p from Example 4.4.

4.3 Online Attack

In the online phase, the goal of the attacker is to fully or partially recover the secret

key. Thus, during this phase, the attacker is only allowed to adaptively modify the

public variables when querying the black box cryptosystem. Figure 4.2 highlights

4.3 Online Attack 69

Black box

x RÐÝ t0, 1un

b Ð p(x, vi)

Adversary A
vi = (v1, . . . , vm)

b P t0, 1u

i

txj : j ¤ nu

Figure 4.2 Online phase of the cube attack

the attack scenario, in which adversary A performs multiple queries to the black

box, the results of which are used to recover bits txj : j ¤ nu of the secret/random

key x.

Assuming that ` ¤ n linearly independent superpolys were found during the

preprocessing phase, the online phase consists of:

1. Performing black box queries to compute the sum pIi P t0, 1u over cube CIi ,

for each maxterm tIi : 1 ¤ i ¤ `.

2. Taking the pIi ’s and the reconstructed superpolys from the preprocessing

phase to solve a system of linear equations in the private variables.

More explicitly, after the preprocessing phase, the attacker precomputes the

4.3 Online Attack 70

l � n binary matrix of superpolys:

A =

pS(I1)

pS(I2)
...

pS(I`)

.

Then, during the online phase, A computes the vector of cube sums

pJ = (pI1 , pI2 , � � � , pI`),

and solves AxJ = p for x, the secret key. For a full key-recover, i.e., ` = n, the

adversary may precompute the inverse of square matrix A, and simply compute

xJ = A�1p. This reduces the complexity of the equation-solving from O(n3) to

O(n2), as explained in [46],

We emphasize that the preprocessing phase is done only once for a cryptosys-

tem, while the online phase is performed individually for each key. Hence, a

higher complexity for the preprocessing stage is tolerated in the hopes of lower-

ing the complexity of the online attack. Given a master polynomial of maximum

degree d the complexity of the online phase is O(n2 + n � 2d�1). Moreover, as we

showed in the previous section, the overall complexity of the preprocessing in

only slightly larger, linear in n. Thus, for cryptosystems with low degree master

polynomials, the cube attack becomes a very attractive and efficient key-recovery

attack.

Chapter 5

Linear Differential Cryptanalysis

Differential cryptanalysis is a general technique that has been widely applied to

the analysis of many cryptosystems, including block ciphers, stream ciphers, and

hash functions. Informally, differential cryptanalysis is concerned with the prop-

agation of input (XOR) differences to a function, and their effects the output.

More specifically, given a function f (x), one is concerned with finding differen-

tials (or differential trails) ∆i
(f ,p)
ÝÝÝÑ ∆o such that f (x)` f (x ` ∆i) = ∆o holds with

probability p for a random input x. For example, in the case of block ciphers

or stream ciphers, the attacker commonly wishes to construct differentials with

initial difference ∆i in plaintext (or initial value) in order to observe a known

∆o that is a function of the (sub)key. Correspondingly, in the case of hash func-

tions, an attacker may seek to find colliding message pairs (x1, x2) : x1 � x2 and

f (x1) = f (x2). Using differential cryptanalysis, this problem is reformulated to

that of finding high-probability trails with ∆i � 0 and ∆o = 0, along with conform-

ing input messages x (see Section 5.2).

Although differential cryptanalysis originally appeared in the study of block

ciphers, specifically the Data Encryption Standard (DES) block cipher [26], we

71

72

only focus on the technique’s application to hash functions, in this thesis. More

specifically, we focus on finding collisions in hash functions. Chabaud and Joux [38]

presented the first linear differential collision attack on SHA-0. Using a linearized

model of the hash function, they found trails (with input differences in the mes-

sage) that lead to a collision of the original hash function with a higher proba-

bility than the birthday bound1 Similar strategies were later used by Rijmen and

Oswald [101] on SHA-1 and by Indesteege and Preneel [64] on EnRUPT. In [99],

Pramstaller et al. related the problem of finding high-probability linear differen-

tials to the problem of finding low-weight codewords of a linear code. The recent

work of Brier et al. [34] further analyzed this relation for hash functions whose

operations consist only of additions, XORs, and rotates; hence, these functions

are referred to as AXR hash functions.

In brief, this framework reformulates the problem of finding message pairs

that conform to a linear differential trail to that of finding preimages of zero of a

condition function. The search for preimages is accelerated by using a dependency

table, which implicitly takes advantage of message modification techniques [23,

36, 69, 114–116]. Moreover, given a linear differential trail, these concepts further

allows for complexity estimation of the corresponding collision attack. Below, we

introduce Brier et al.’s generalized framework [34, 35] and our extensions [67].

1 For a hash function f : t0, 1u� Ñ t0, 1un, the birthday attack entails the evaluation of f with

random inputs x1, x2 until a collision is found, i.e., f (x1) = f (x2). According to the birthday

problem it will take approximately 2n/2 (the birthday bound) function evaluations for a collision

to be found; a technique requiring fewer function evaluations than the birthday bound is an attack

on f .

5.1 Constructing Differential Trails 73

5.1 Constructing Differential Trails

As explained in [34, 67], we can attribute a fixed-input-length compression func-

tion Compress : t0, 1um � t0, 1uv Ñ t0, 1uh, where m ¥ h, to any hash function,

regardless of its design, This compression function maps an m-bit message and

v-bit IV to an h-bit output. This ‘construction’ is created to allow one to find colli-

sions for the compression function that directly translate to collisions for the hash

function. We note that this notion of a compression function does not necessarily

coincide with the frequently used compression function in the context of Merkle-

Damgård, HAIFA, and other iterated constructions. For example, we can simply

restrict the domain of the hash function and consider this as the hash function’s

compression function.

In this thesis, we focus on a differential cryptanalysis approach to finiding

collisions. Specifically, we are interested in finding differences ∆ such that there is

a high probability of a random message pair (M, M`∆) and random (but public)

initial vector (IV) V leading to a collision for the compresion function:

Compress(M, V)` Compress(M` ∆, V) = 0. (5.1)

Since the IV is common to both compression functions, and thus has no effect

in the differential setting, we simplify the notation of the compression function

to Compress(M). Furthermore, we assume that Compress is an AXR function and

hence search for differentials by linearizing the compression function. We denote

the linearized compression function by Compresslin and search for differences ∆

such that

Compresslin(M, V)` Compresslin(M` ∆, V) = 0. (5.2)

Since the difference is independent of the message M and IV V, we further sim-

plify the notation to Compresslin(∆). Once linear differentials are found, we pro-

5.1 Constructing Differential Trails 74

ceed to search for random messages M such that the compression function differ-

ences conform to the linear ones:

Compress(M)` Compress(M` ∆) = Compresslin(∆) = 0. (5.3)

Below, we establish the notation used in the remaining sections and then intro-

duce three methods for finding differential trails.

5.1.1 Notation

For any input M to the compression function, we denote A(M) and B(M) as

the concatenation of all left and, respectively, right addends that are added in

the course of computing Compress(M). Likewise, we define C(M) as the con-

catenation of the corresponding carry words. Thus, if na is the number of w-

bit additions affected in the course of one evaluation of the compression func-

tion, each of A(M), B(M) and C(M) contains naw bits. Analogously, for any

input ∆ to the linearized compression function, we denote α(∆) and β(∆) the

concatenation of the left and, respectively, right addends that are XORed in the

course of computing Compresslin(∆), setting their most significant bits to zero2.

We denote the individual addends i = 0, . . . , na � 1 with a superscript, e.g.,

Ai(M) denotes the i-th left addend in the compression function, and Ci(M) =

(Ai(M) + Bi(M))` Ai(M)` Bi(M).

5.1.2 Raw Probability

From (5.2), it is clear that searching for a differential is equivalent to the problem

of finding preimages of zero of Compresslin. However, since our goal is to find

2The most significant bits of each addition are linear.

5.1 Constructing Differential Trails 75

collisions in the non-linear compression function, we are interested in finding dif-

ferentials such that, for a random message M and random IV V, (5.3) holds with

a high probabilty. However, a random preimage might not be the best solution,

i.e., it might not be the differential with the highest probability, and so we must

compute the raw probability, p∆, for each candidate ∆:

p∆ = Pr[Compress(M)` Compress(M` ∆) = Compresslin(∆)]. (5.4)

Lemma 5.1 (Lemma 1 [34]). For any random w-bit addends A and B, the probability

that addition is linear (in GF(2)) in the difference of A + B and its perturbed version

(A` ∆A) + (B` ∆B) is given by:

Pr[((A` ∆A) + (B` ∆B))` (A + B) = ∆A ` ∆B] = 2�wt((∆A_∆B)^(2w�1�1)),

where ∆a and ∆b are constants, wt(�) denotes the Hamming weight, and _ is the bitwise-

OR operation.

Note that the second equality, involving the term ∆A`∆B, in Lemma 5.1 comes

directly from the properties of the XOR:

((A` ∆A)` (B` ∆B))` (A` B) = ∆A ` ∆B.

Furthermore, we point out that the most signifiant bits, which are linear, are

cleared with the 2w�1 � 1 mask, and thus have no effect on the probability.

To illustrate the significance of Lemma 5.1, consider a trivial compression

function Compress with a single (non-linear) w-bit addition (among other linear

operations). Suppose we also have a differece ∆ in the kernel of Compresslin, i.e.,

Compresslin(∆) = 0. Using the lemma, we can compute the probability that the

difference Compress(M)` Compress(M` ∆) behaves like Compresslin(∆), for a ran-

dom message and initial value, also random. Then, among the various candidate

5.1 Constructing Differential Trails 76

∆’s, we can find the trail that will most likely lead to a collision, i.e., the trail with

the highest raw probability.

Lemma 5.2 (Lemma 2 [34]). For any random m-bit message and v-bit initial value,

the probability that the difference Compress(M) ` Compress(M ` ∆) behaves like the

difference of its linear equivalent, Compresslin(∆), is given by:

p∆ = Pr[Compress(M)` Compress(M` ∆) = Compresslin(∆)] = 2�wt(α(∆)_β(∆)).

Since we are only interested in differentials for which ∆ is in the kernel of

Compresslin, we can use Lemma 5.2 to directly compute the (raw) lower bound

probability of finding a collision for any such ∆.

5.1.3 Forward Differential Trails

As described previously, we linearize the compression function of a hash function

to find message differences that can be used for a collision attack. The most direct

approach to finding good differentials is to then search for differences with high

raw probability. We call these trails forward differentials.

Using the canonical bases, Compresslin can be written as a m � h matrix H,

such that Compresslin(∆) = H∆. Similarly, we let A∆ = α(∆), and B∆ = β(∆).

Thus, as explained in [34], the problem of finding differential trails is similar

to that of finding low-weight codewords, i.e., given parity check matrix H of a

linear code we are searching for codewords ∆ : H∆ = 0. In the search for low-

weight codewords we simply need to find a ∆ that is of low Hamming weight.

Conversely, in the differential trail search problem, we search for codewords ∆

that have low Hamming weight A∆_ B∆. Although the latter problem is more

difficult (as it generalizes the first), low-weight codewords commonly have high

5.1 Constructing Differential Trails 77

raw probabilities, i.e., low-weight A∆ _ B∆, and hence we approach the search

with low-weight ∆’s as candidates.

For many hash function parameters (e.g., in CubeHash varying r and b), the

matrix H does not have full rank, as noted in [34], thus one can find differences

with high raw probability in the set of linear combinations of at most λ kernel

basis vectors. Letting τ be the dimension of H’s kernel, the number of kernel basis

λ ¥ 1 is chosen such that a subset of combinations can be exhaustively searched

over all
°λ

i=1 (τ
i) possible choices. In this thesis, we extend [34] by parallelizing

this search, which in turn allows us to consider a larger subset of elements—here,

we set λ = 4.

5.1.4 Reverse Differential Trails

In Section 5.2, we introduce a method of finding messages that satisfy (5.3) for a

given ∆. The basic observation is that a differential ∆ imposes a number of condi-

tions on the addends which, for a collision attack, must be satisfied by modifying

the input message M. Depending on ∆, these conditions can appear at various

stages of the compression function. As previously observed in [23, 38, 85, 99, 116],

conditions in early steps of the computation can be more easily satisfied than

those in later steps. This is due to message modifications, (probabilistic) neutral

bits, submarine modifications and other freedom degrees use (see e.g., [23]). Hence,

this motivates the search for differences ∆ such that α(∆)_ β(∆) is sparse at the

end of the trail. As observed in [67], this is generally not the case for forward dif-

ferential trails found using the method of Section 5.1.3; most forward differential

trails are sparse at the beginning and dense at the end, due to the diffusion of the

linearized compression function.

Assuming the transformations of the hash function are invertible, we can de-

5.1 Constructing Differential Trails 78

fine a reverse linear compression funtion, Compressrlin. The function Compressrlin is

defined in the same way as Compresslin, except with inverse linearized round trans-

formations, i.e., the steps of Compresslin are reversed. Further, suppose that the

m-bit input message to the compression function is actually composed of t m1-bit

message blocks to the hash function. Consequently, a differential ∆ is composed

of t (sub)differentials ∆ = ∆0} � � � }∆t�1. Following this, we define a reverse differ-

ential as a difference ∆1 = ∆1
0} � � � }∆

1
t�1 that lies in the kernel of Compressrlin. Like

forward differentials, a reverse differential is sparse at the beginning of the trail

and dense at the end. However, the ‘reverse’ of this differential ∆2 = ∆1
t�1} � � � }∆

1
0

has the property of being dense in the beginning and sparse at the end. More

importantly, because Compressrlin is the reverse of Compresslin, ∆2 lies in the kernel

of Compresslin. In Section 7.2.2, we apply the new reverse differential search to

finding collisions for CubeHash-5/96.

Finally, we note that the search for reverse differentials is mostly identical to

the exhaustive search described in previous section for forward differentials. The

only difference is the linear-code for which the parity check matrix is defined; in

this case, H is defined so that H∆ = Compressrlin(∆) = 0.

5.1.5 Randomized Differential Trails

Note that the kernel of matrix H contains 2τ different elements. The above meth-

ods find the best differences out of a subset of
°λ

i=1 (τ
i) elements. We may find

better results by increasing λ or by repeating the search for another choice of ba-

sis vectors. Using ideas from [99], we propose an alternative, randomized, search

algorithm that does not depend on the choice of the kernel basis, as done in [67].

Let ∆0, . . . , ∆τ�1 be a kernel basis of Compresslin, and denote G as the matrix

whose τ rows consist of the binary vectors ∆i}α(∆i)}β(∆i) for 0 ¤ i ¤ τ � 1.

5.2 Finding Collisions Using Condition Functions 79

Elementary row operations on G preserve this structure; that is, the rows always

have the form ∆}α(∆)}β(∆), where ∆ lies in the kernel of Compresslin and has raw

probability wt(α(∆) _ β(∆)). We call this the row raw probability. The task of

finding a more optimal differential is equivalent to finding a linear combination

of the rows that leads to the highest row raw probability. Starting with the index

of the row with the highest row raw probability, denoted imax, we iterate through

the following steps:

1. Randomly choose a column index j and let i be the smallest row index such

that Gi,j = 1. If no such i exists, choose a different column index.

2. For all row indices k = i + 1, . . . , τ � 1 such that Gk,j = 1:

• add row i to row k,

• set imax = k if row k has a higher raw probability than row imax.

3. Move row i to the bottom of G, shifting rows i + 1, . . . , τ � 1 up by one.

Using this algorithm, we are able to find differentials that are at least as good

as the previous two methods with considerably less computational effort, as

shown [67]. In Section 7.2.2, we restate these results for CubeHash, comparing

them to the best exhaustive search method for λ = 4.

5.2 Finding Collisions Using Condition Functions

Sections 5.1.3- 5.1.5 introduced three approaches to finding linear differential trails

for a compression function Compress. In this section, we introduce a method

for finding messages M which, given a differential ∆, leads to a collision attack

(and/or second preimage attack) on the compression function.

5.2 Finding Collisions Using Condition Functions 80

Definition 5.1 (Definition 1 [35]). Following the notation established in Section 5.1.1,

and the results of Lemma 5.1 and Lemma 5.2, a message M is said to conform to

the trail of ∆ if and only if:

((Ai(M)` αi(∆)) + (Bi(M)` βi(∆)))` (Ai(M) + Bi(M)) = αi(∆)` βi(∆).

Thus, the raw probability p∆ of Lemma 5.2 corresponds to the probability that

a random message M conforms to the trail of ∆, where, a message is conforming

if and only if (5.3) holds. Therefore, the problem of finding a colliding message

pair (M, M ` ∆) for the compression function can be reformulated to the prob-

lem of finding messages that conform to the trail of ∆. For every differential, we

define a condition function which, in turn, is used to find such conforming mes-

sages. However, we first restate Lemma 3 of [34], from which the definition of the

condition function follows directly.

Lemma 5.3 (Lemma 3 [34]). Let δ = 2i, and A, B, and C be three w-bit words, where

C = (A + B) ` A ` B and subscript i denotes the i-th bit of a word. Then, for any

i : 0 ¤ i w� 1,

((A` δ) + (B` δ))` (A + B) = δ` δ ô Ai ` Bi ` 1 = 0, (5.5)

(A + (B` δ))` (A + B) = 0` δ ô Ai ` Ci = 0, (5.6)

((A` δ) + B)` (A + B) = δ` 0 ô Bi ` Ci = 0. (5.7)

Proof. We first prove (5.5) and then (5.6) from which (5.7) directly follows.

(a) Let S = A + B, and similarly S1 = A1 + B1, where A1 = A` δ and B1 = B` δ.

Since δ is introduced at the i-th bit, the sum bits (Si, S1i) and generated carries

(Ci+1, C1
i+1) must be equal for the equality to hold. First, we compute the

5.2 Finding Collisions Using Condition Functions 81

sum bits:

Si = Ai ` Bi ` Ci,

S1i = A1
i ` B1

i ` C1
i = (Ai ` 1)` (Bi ` 1)` Ci = Ai ` Bi ` Ci,

6 Si = S1i.

Similarly, for the carry bits:

Ci+1 = (Ai ^ Bi)_ (Ci ^ (Ai ` Bi)),

C1
i+1 = (A1

i ^ B1
i)_ (C1

i ^ (A1
i ` B1

i))

= ((Ai ` 1)^ (Bi ` 1))_ (Ci ^ ((Ai ` 1)` (Bi ` 1)))

= ((Ai ` 1)^ (Bi ` 1))_ (Ci ^ (Ai ` Bi))).

Thus, in the forward direction:

Ci+1 = C1
i+1 ñ (Ai ^ Bi) = ((Ai ` 1)^ (Bi ` 1)) = (Ai ^ Bi)

ñ Ai � Bi

ñ Ai ` Bi ` 1 = 0.

In the reverse direction:

(Ai ` Bi) = 1 ñ (Ai ^ Bi)_ (Ai ^ Bi) = 1

ñ ((Ai ^ Bi)_ Ai)^ ((Ai ^ Bi)_ Bi) = 1

ñ ((Ai _ Ai)^ (Ai _ Bi)) = ((Ai _ Bi)^ (Bi _ Bi))

ñ (Ai _ Bi) = (Bi _ Ai)

ñ (Ai ^ Bi) = (Bi ^ Ai)

ñ (Ai ^ Bi) = (Bi ^ Ai)

ñ Ci+1 = C1
i+1.

This completes the proof for (5.5).

5.2 Finding Collisions Using Condition Functions 82

(b) As above, let S = A + B, B1 = B` δ, and S1 = A + B1. For the sum bits:

Si = Ai ` Bi ` Ci,

S1i = Ai ` B1
i ` C1

i = Ai ` (Bi ` 1)` Ci = Ai ` Bi ` Ci ` 1,

6 Si ` S1i = 1.

Assuming Ci+1 = C1
i+1, the latter Si ` S1i = 1 ñ S` S1 = δ. Hence, we are

again left to prove the relationship between equality of the carry bits and

the condition (in this case, Ai ` Ci = 0). As before:

Ci+1 = (Ai ^ Bi)_ (Ci ^ (Ai ` Bi)),

C1
i+1 = (Ai ^ B1

i)_ (C1
i ^ (A1

i ` B1
i))

= (Ai ^ (Bi ` 1))_ (Ci ^ (Ai ` (Bi ` 1))).

Using some algebraic manipulation and given that p` q = (p^ q)_ (p^ q),

we can rewrite the carry bits as:

Ci+1 = ((Ai ^ Bi)_ Ci)^ (Ai _ Bi),

C1
i+1 = ((Ai ^ B1

i)_ Ci)^ (Ai _ B1
i)

= ((Ai ^ Bi)_ Ci)^ (Ai _ Bi).

Then, for the forward case, Ci+1 = C1
i+1 ñ Ai = Ci, we consider two cases.

First, letting Bi = 0:

Ci+1 = ((Ai ^ 0)_ Ci)^ (Ai _ 0)

= Ci ^ Ai,

C1
i+1 = ((Ai ^ 1)_ Ci)^ (Ai _ 1)

= Ai _ Ci,

6 Ci+1 = C1
i+1 ñ Ci ^ Ai = Ci _ Ai ñ Ai = Ci.

5.2 Finding Collisions Using Condition Functions 83

Correspondingly, letting Bi = 1:

Ci+1 = ((Ai ^ 1)_ Ci)^ (Ai _ 1)

= Ai _ Ci,

C1
i+1 = ((Ai ^ 0)_ Ci)^ (Ai _ 0)

= Ci ^ Ai,

6 Ci+1 = C1
i+1 ñ Ai _ Ci = Ci ^ Ai ñ Ai = Ci.

For the reverse case, we let Ai = Ci, and compute the carries:

Ci+1 = ((Ai ^ Bi)_ Ai)^ (Ai _ Bi)

= (Ai ^ (Ai _ Bi))^ (Ai _ Bi)

= Ai ^ (Ai _ Bi)

= Ai,

C1
i+1 = ((Ai ^ Bi)_ Ai)^ (Ai _ Bi)

= (Ai ^ (Ai _ Bi))^ (Ai _ Bi)

= Ai ^ (Ai _ Bi)

= Ai,

6 Ai = Ci ñ Ci+1 = C1
i+1.

This completes the proof for (5.6).

(c) Since addition is commutative, the proof for (5.7) is the same as that of (5.6),

except A and B are swapped.

In Lemma 5.1, we estimated the probability that modular addition in a dif-

ferential context behaves like an XOR, i.e., given two constant differences ∆a and

∆b to (random) addends A and B, respectively, we estimated the probability of

addition being linear in ((A ` ∆A) + (B ` ∆B)) ` (A + B). Lemma 5.3, in turn,

5.2 Finding Collisions Using Condition Functions 84

imposes conditions on the inputs A and B (right hand sides of (5.5), (5.6), and

(5.7)) necessary to make the additions linear. We now extend this lemma to the

whole compression function.

Definition 5.2. Given a ∆ in the kernel of the linearized compression function,

Compresslin, we define a condition function Y = Condition∆(M, V) whose domain

is the same as that of the compression function, but has an output Y of length

y = � log2 p∆ = wt(α(∆) _ β(∆)). Let i0, . . . , iy�1 be the bit positions of the

y non-zero bits in α(∆) _ β(∆). For j = 0, . . . , y � 1, the condition function is

defined as:

Yj =

$''''&
''''%

Aij(∆)` Bij(∆)` 1 if (αij(∆), βij
(∆)) = (1, 1),

Aij(∆)`Cij(∆) if (αij(∆), βij
(∆)) = (0, 1),

Bij(∆)`Cij(∆) if (αij(∆), βij
(∆)) = (1, 0).

By Proposition 1 in [34], and intuitively from Lemma 5.3, the problem of find-

ing a message M that conforms to the trail of ∆ is equivalent to the problem of

finding a preimage M of zero of the condition function, i.e., M : Condition∆(M) =

0.

In the previous section, we established the preliminaries necessary to find dif-

ferentials. Subsequently, in this section, we have introduced a method of finding

messages that conform to the trails of these differentials. Using these concepts,

we now have a method to carry out and estimate second preimage attacks. Specif-

ically, given a compression function with an h-bit output and a differential path

∆, if the number of bit conditions y h, i.e., p∆ ¡ 2�h, we can consider this

as a (theoretical) second preimage attack. Moreover, if 1/p∆ condition function

evalauations is pratically attainable, we may find the preimages by randomly try-

ing approximately 1/p∆ random messages as inputs to the condition function

before finding a preimage of zero.

5.3 Freedom Degrees Use: Dependency Table 85

5.3 Freedom Degrees Use: Dependency Table

Previously, neutral bits [23], message modification techniques [116], and prob-

abilistic neutral bits [4], among other, have been introduced as freedom degrees

use to accelerate hash function collision searches. However, in this thesis, we

use a more-recent freedom degrees use technique called the dependency table [34].

The dependency table technique, which implicitly uses probabilistic neutral bits,

takes advantage of a function’s limited diffusion properties. The observation of

freedom degrees use techniques is that a (target) function does not always mix

its input bits perfectly3, and statistical biases can be observed in the output bits.

The non-random relationship between the inputs and outputs can then be used

to modify the inputs, with a certain degree of freedom, to attain a desired output.

In the case of the condition function, we use these techniques to modify the input

message until the desired output, zero, is attained. To summarize, we use the

dependency table to construct a partition of the input bits and, correspondingly,

the output bits such that modifying certain bits in the input only affects a subset

of the output bits. Using the partitions, we then create an algorithm to efficiently

find preimages (of zero) of the condition function.

Recall that we are working with a condition function Condition∆(M, V) that

maps an m-bit message and a v-bit initial value to an y-bit output. If Condition∆

mixed its input well then then it would take roughly 2m function evaluations to

find a preimage of zero. However, as in [34], we suppose an ideal situation where

Condition∆ does not mix its input bit well and we are given (input) partitions
�`

i=1 Mi = t0, . . . , m � 1u and (output) partitions
�`

i=0 Yi = t0, . . . , y � 1u such

that for j = 0, . . . , ` the output bits with position indices in Yj only depend on

3Informally, the output of a function that mixes its inputs well cannot be statistically distin-

guished from a random sequence, regardless of the chosen input.

5.3 Freedom Degrees Use: Dependency Table 86

the input bits with position indices in
�j

i=1 Mi. We construct the segments (or

blocks) Mi and Yi using the dependecy table.

To create the dependency table, we, first create a probabilistic-effect table P of

size y�m, where each entry Pj,k is a measure of the effect (or influence) an input

message bit k has on output bit j. Then, given a threshold γ : 0 ¤ γ 1
2 and table

P, we create the binary dependecy table T such that each entry Tj,k = 1 if Pj,k ¡ γ

and Tj,k = 0 otherwise. Informally, entry Tj,k is set to 1 only if the input bit k highly

affects output bit j, i.e., changing the k-th input bit likely changes the j-th output

bit. For a given number of test iterations N (e.g., N = 100, 000), Algorithm 5.1

presents an algorithm for creating the probabilistic-effect and dependacy tables.

Given the dependency table, we construct the input and output partition using

Algorithm 2 of [34]. For completeness, we present a slightly modified version of

this algorithm in Algorithm 5.2, where we denote row j of the dependency table

T by Tj,� and column k by T�,k. In lines 8–11, we construct a bulk Mi consisting

of input message bits that have the most effect on the (remaining) output bits.

Similarly, in lines 4–6 we construct a bulk Yi consisting of output bits that are not

affected by the remaining message bits, i.e., these were only affected by
�i

j=1 Mj.

In Algorithm 5.3, we present a tree-based backtracking algorithm that, given

the input and output partitions of Condition∆, sequentially modifies the input

blocks Mi until all output blocks are null. The basis for the algorithm, as dis-

cussed in [34], is to first find an initial value V that makes (at least) Y0 null. Then,

at each later step (or level) i, we find a random message bulk for Mi making (at

least) Yi null, leaving Yj for j i unaffected, i.e., to null. As explained in [34], the

partitioning is not always ideal and in practice M1, . . . ,Mi might not fully influ-

ence Yi. Thus, if we are level i and after 2min(|Mi|,|Yi|) we have not found a random

bulk Mi that makes Yi null, we backtrack to step i� ri, find an alternative Mi�ri

5.3 Freedom Degrees Use: Dependency Table 87

Algorithm 5.1: Calculating the probabilistic-effect and dependancy tables
Input : Condition function Condition∆.

Threshold γ.
Output: Probabilistic-effect table P and dependancy table T.

1 begin
// Clear table:

2 for k Ð 0 to m� 1 do
3 for j Ð 0 to y� 1 do Pj,k Ð 0;

// Compute the probabilistic-effect table:

4 for k Ð 0 to m� 1 do
5 for n Ð 0 to N � 1 do
6 M RÐÝ t0, 1um;
7 Y0 Ð Condition∆(M, V);
8 Mk Ð Mk ` 1;
9 Y1 Ð Condition∆(M, V);

10 for j Ð 0 to y� 1 do
11 if Y0

j � Y1
j then Pj,k Ð Pj,k + 1

N ;

// Compute the dependancy table:

12 for k Ð 0 to m� 1 do
13 for j Ð 0 to y� 1 do
14 if Pj,k ¡ γ then Tj,k Ð 1;
15 else Tj,k Ð 0;

16 return (P, T);

that makes Yi�ri null, and then proceed forward. Unlike the algorithm in [34],

where the backtracking steps are manually set by the cryptanalyst, our modified

algorithm backtracks ri steps at level i, having estimated Mi�ri to have the most

effect on Yi. We use Algorithm 5.4 to compute the backtrack steps, where a max

limit of rmax steps is imposed.

To estimate the complexity of Algorithm 5.3 we use induction on the number

of condition function evaluations at level i. Suppose at level i we examine 2qi

random message bulks for Mi to make Yi null. Each of the 2qi random message

bulks make Yi null with probability 2�|Yi|. Thus, we expect approximately 2q1i+1 =

5.3 Freedom Degrees Use: Dependency Table 88

Algorithm 5.2: Creating input and output partitions of a condition function
Input : Dependency table T.
Output: Paritions

�`
i=1 Mi = t0, . . . , m� 1u and

�`
i=0 Yi = t0, . . . , y� 1u.

1 begin
2 i Ð 0;
3 while T � H do
4 foreach j :

°
t Tj,t = 0 do

// All-zero row, no message bit strongly affects output j
5 Y` Ð tY` Y ju;
6 RemoveRow(Tj,�);

7 i Ð i + 1;
8 while T � H and Ej :

°
t Tj,t = 0 do

9 k Ð argmax
k

°
t Tk,t; // Column with highest number of 1’s

// Message bit k affects the most number of output bits

10 Mi Ð tMi Y ku;
11 RemoveColumn(T�,k);

12 Yi Ð t0, . . . , y� 1uz
�i�1

k=0 Yk;
13 ` Ð i;
14 return (tM1, . . . ,M`u, tY0, . . . ,M`u);

2qi�|Yi| surviving candidates, i.e., 2q1i+1 message bulks make Yi null. At step i + 1,

we take the 2q1i+1 candidates, and for each, we only need test at most 2|Mi+1|

message blocks to make Yi+1 null, since we have |Mi+1| bits of freedom. Hence,

at level i + 1 we examine at most a total of 2q1i+1+|Mi+1| = 2qi+1 messages, of

which 2q1i+2 will make Yi+1 null. Since q1i+1 = qi + |Yi| and, from the induction,

qi+1 � q1i+1 ¤ |Mi+1|. Furthermore, for the algorithm to succeed, the number of

surviving candidates q1i+1 ¥ 0 for i = 0, . . . , `. Using these results, we compute

the algorithm parameters, qi = |Yi|+ max(0, qi+1 � |Mi+1|), for i = `� 1, . . . , 0

and q` = |Y`|. By definition of qi, we evaluate 2qi condition functions at each step

i. Thus, the theoretical complexity, c∆ of finding a preimage of zero for Condition∆

5.3 Freedom Degrees Use: Dependency Table 89

Algorithm 5.3: Tree-based backtracking preimage search

Input : Paritions
�`

i=1 Mi = t0, . . . , m� 1u and
�`

i=0 Yi = t0, . . . , y� 1u.
Output: Preimage (M, V) of Condition∆(M, V) = 0.

1 begin
2 M RÐÝ t0, 1um;
3 repeat
4 V RÐÝ t0, 1uv;
5 Y Ð Condition∆(M, V);
6 until Di P Y0 : Yi � 0;
7 for d Ð 1 to ` do
8 c Ð 0; // Counter for number of function evaluations

9 repeat
10 foreach k PMd do Mk

RÐÝ t0, 1u;
11 Y Ð Condition∆(M, V);
12 c Ð c + 1;
13 until Di P

�d
j=0 Yj : Yi � 0 or c ¥ 2min(|Md|,|Yd|);

14 if Di P
�d

j=0 Yj : Yi � 0 then
// Backtrack:

15 d Ð d� rd;
16 if d = 0 then goto 1;

17 return (M, V);

using Algorithm 5.3 is givn by

c∆ =
`̧

i=0

2qi . (5.8)

We point out that the parameters and algorithm complexity were previously de-

rived in [34], and our explanation deviates only slightly. Additionally, theoretical

analysis of the complexity of the adaptive backtracking is not an easy task, and

is considered to be future work. However, as in [34], we do account for the case

of non-ideal partitions, where segments Mi+1, . . . ,M` have influence on Yj for

j ¤ i. For this, we let 2�pi denote the probabilty that Mi has no influence on Yj for

0 ¤ j i, and thus will not make an already-null bulk non-null. Hence, the num-

5.3 Freedom Degrees Use: Dependency Table 90

Algorithm 5.4: Computing adaptive backtrack steps
Input : Probabilistic-effect table P.

Maximum backtrack step rmax.
Output: Backtrack steps rd : d = 0, . . . `.

1 begin
2 r0 Ð 0;
3 r1 Ð 1;
4 for d Ð 2 to ` do
5 for i Ð max(0, d� rmax) to i do

// Compute normalized influence of Mi on Yd:

6 si Ð 0;
7 foreach k PMi do
8 foreach j P Yd do si Ð si + Pj,k;

9 si Ð si/(|Mi|+ |Yd|);
10 rd Ð d� argmax

i
si;

11 return trd : 0 ¤ d ¤ `u;

ber of surviving candidates at step i is 2q1i+1 = 2qi � 2�|Yi| � 2�pi and so the non-ideal

parameters are simply qi = pi + |Yi|+ max(0, qi+1 � |Mi+1|), for i = `� 1, . . . , 0

and q` = |Y`|. Using the new parameters, the theoretical complexity c∆ can then

be recomputed using (5.8).

Chapter 6

Cryptography and Cryptanalysis on

GPUs

In this chapter we present our approach to implementing the eSTREAM ciphers,

SHA-3 hash functions, and the cube-attack on NVIDIA graphics processing units.

In porting algorithms to the GPU we have developed a number of patterns that

are common to the stream ciphers, hash functions and cryptanalytic algorithm.

Below we present the challenge in porting code to the GPU and summarize the

main optimizations. Though we only present the application of these patterns to

stream ciphers and hash functions, we believe that they are applicable to other

symmetric cryptographic algorithms. An example of these patterns applied in

the block cipher setting is presented in [95].

The GPU parallel thread execution (PTX1) ISA [91] has a very limited instruc-

tion set, when compared to other high-performance gaming processors such as

the Cell B.E. With respect to integer arithmetic operations, programmers have

1We note that the PTX is an intermediate description and not the actual GPU ISA. The latter is

not publicly available.

91

92

access to 32-bit bitwise operations (and, or, xor, etc.), left/right shifts, 32-bit ad-

ditions (with carry-in and carry-out), and 32-bit multiplication (sometimes imple-

mented using several 24-bit multiplication instructions).

Given the simplicity of PTX, to gain the most speedup from the raw compu-

tational power, it is imperative that the kernels be very compact (especially with

respect to register utilization and shared memory allocation). Compact and non-

divergent kernels allow for the execution of more simultaneous threads, and can

thus increase the performance of the target algorithm. Thus, when implementing

common stream cipher and hash function building blocks, a simple approach is

also usually the most optimal. For example, a rotation of a 32-bit word is imple-

mented using two shifts (shl and shr), and an or instruction. Furthermore, for

many of the primitives we can store the full internal state, and sometimes even

the input message block, in registers. Although this limits the number of simul-

taneous threads per SM, it also lowers the copies to and from (shared) memory

and thereby contributes to a faster implementation, overall. Additionally, when

possible, we manually unroll loops, such as the compression functions of hash

functions, since branching on the SMs can lead to a degradation in performance

when threads of a common thread block take divergent paths and execution is

serialized. Moreover, conditional statements consisting of a small number of op-

erations in each basic block are implemented using predicate instructions, instead

of branches. This is because PTX allows for the predication of almost all instruc-

tions. Nevertheless, when branching is necessary (e.g., the compression function

of Skein-512), the thread execution is synchronized (at a barrier near the branch)

and the branch instruction is executed uniformly by all the threads.

When considering algorithms using 64-bit operations, the number of registers

and instructions usually doubles. For example, a 64-bit addition is performed

6.1 GPU Implementation of eSTREAM Ciphers 93

using two additions with carry (add.cc). Similarly, rotations by x � 0 mod 32 are

implemented using 4 shift and 2 or 32-bit instructions. For these algorithms,

rather than using expensive registers to cache chain values or message blocks, we

resort to using shared memory for caching. We, again, stress that the restriction

on shared memory bank access applies to all our algorithms, and thus a 64-bit

cache value requires 2 (non-conflicting) memory accesses per 64-bit word.

6.1 GPU Implementation of eSTREAM Ciphers

In this section we present uniform GPU API for stream cipher implementations

following the ECRYPT eSTREAM API [47]. We then present estimates for the

eSTREAM profile using instruction counts for both a generic modern architecture

and NVIDIA GPUs followed by actual implementation results of all but one of

the stream ciphers.

6.1.1 gSTREAM Framework

Compared to the SHA-3 candidates, see Section 6.2, many of the eSTREAM

stream ciphers have simple designs. Hence, when porting the original 32-bit

CPU code, which is usually already well-suited for GPUs, to the GPU it is more

appropriate to devote effort to the design and optimization of a generic stream

cipher GPU interface than minute cipher details.

We designed the GPU stream cipher framework (gSTREAM) to be easily adopt-

able by programmers using the ECRYPT eSTREAM API; for most eSTREAM func-

tions, we provide a counterpart gSTREAM function that handles the GPU de-

tails transparently. Figure 6.1 shows a typical program flow using the gSTREAM

framework. To the programmer using the API, with the exception of specifying

6.1 GPU Implementation of eSTREAM Ciphers 94

gSTREAM_init

Initialize device

Initialize cipher state

gSTREAM_keysetup

Allocate keys buffer

Copy keys to device

gSTREAM_ivsetup

Allocate IVs buffer

Copy IVs to device

Launch KeyIVSetup

gSTREAM_process_bytes

Allocate work buffer

Copy inputs to device

Launch ProcessBytes

Copy output to host

gSTREAM_exit

Free allocated buffers

Free cipher state

User-provided code

Figure 6.1 Program flow using the gSTREAM framework.

the device and number of streams (number of threads � number of blocks) the

GPU is transparent. Moreover, even these details can be further abstracted by pro-

viding a dual CPU implementation which is used in cases where the programmer

does not have access to a GPU. Similarly, the GPU stream cipher implementor is

only required to provide the implementation details of the stream cipher: defining

the key/iv setup function, and the process bytes (i.e., generate keystream) func-

tion. Boiler-plate code for converting row-based buffers, containing keys or plain-

texts, to the GPU stream-based (i.e., column-based) buffers and device to/from

host copies and allocations is provided. Below we present the details of the main

functions; the full API, test code, and example implementations are presented in

Appendix D.

Initialization

1 void gSTREAM init(gSTREAM ctx* ctx, int device, int nr threads, int nr blocks);

Given the device number, and grid dimensions, the function initializes the device,

setting the appropriate properties (e.g., pinned memory), and executes any user-

provided cipher-state initialization code.

6.1 GPU Implementation of eSTREAM Ciphers 95

Key and IV setup

1 void gSTREAM keysetup(gSTREAM ctx* ctx, u8* keys, u32 keysize, u32 ivsize);

Given an initialized context, column-aligned keys and key- and iv-size, the func-

tion allocates the multi-stream key buffers, transforms the input keys and copies

them to the device.

1 void gSTREAM ivsetup(gSTREAM ctx* ctx, u8* ivs);

Given an already key-setup context, and column-aligned IVs, the function allo-

cates they multi-stream IV buffers, transforms the input IVs and copies them to

the device. The function then launches a user-defined kernel that does the actual

key-IV setup.

Keystream generation

1 void gSTREAM process bytes(gSTREAM action action, gSTREAM ctx* ctx,

2 u8* inputs, u8* outputs, u32 length);

Given an action (encrypt, decrypt, or generate keystream), a column-aligned in-

put buffer, an output buffer and input length (in bytes), the function allocates

working buffers on the device, and transforms column-aligned input to stream-

aligned device input. The function then launches the user-defined kernel that

does the actual byte processing, and copies the device stream-aligned output to

the column-aligned output buffer.

1 void gSTREAM keystream bytes(gSTREAM ctx* ctx, u8* keystreams, u32 length);

Given the length (in bytes), the function generates the desired keystream output.

1 void gSTREAM exit(gSTREAM ctx* ctx);

6.1 GPU Implementation of eSTREAM Ciphers 96

Deallocates any dynamically allocated buffers, both on the device and host, and

destroys context. The function then executes any user-defined code that deallo-

cates the cipher state.

6.1.2 Implementation of eSTEAM Ciphers

We ported the eSTREAM ciphers to the gSTREAM framework, benchmarking the

keystream generators. Similar to the work in [32] and Section 6.2, we estimate the

performance on a hypothetical 32-bit (modern) architecture.

The estimates for all the eSTREAM ciphers are shown in Table 6.1 where cxor

denotes a conditional xor. These raw instruction counts are obtained from the

optimized implementations as submitted to ECRYPT, except for the Grain steam

cipher. We note that only the number of instructions in the keystream genera-

tor are considered. Since load and store operations are hard to predict (due to

possible cache misses), and may be incompatible between platforms, only arith-

metic instructions are taken into account (i.e., the required moves, loads/stores,

including all the possible table-lookups, are ignored).

We would like to stress that the performance figures presented in Table 6.1

are estimates for a hypothetical 32-bit architecture, the instruction set of which

includes all the operations shown in the columns of Table 6.1. Moreover, we as-

sume that such a machine can dispatch one instruction per clock cycle. Estimating

the actual performance number on modern platforms is considerably more dif-

ficult because they often have access to a separate SIMD unit, which is ignored

by our estimates. The motivation for providing cycle/byte estimates is to have

a rough estimates that can be used as a starting point to create more accurate

platform-specific speed estimations, e.g., the Cell and GPU.

To estimate the rough performance of the stream ciphers on a single GPU of

6.1 GPU Implementation of eSTREAM Ciphers 97

Cipher b and or xor cxor shft rot add mul cmp C/B

Trivium 4 3 15 11 0 30 0 30 0 0 22.25

MICKEY v2 1 17 0 30 8 27 0 0 0 0 656

Grain 1 312 48 344 0 504 0 0 0 0 1212

Rabbit 16 8 0 16 0 32 12 40 32 8 9.25

Salsa20 64 0 0 320 0 0 320 338 0 0 15.28

HC-128 4 1 0 2 0 0 3 13 0 9 7.0

SOSEMANUK 80 45 10 190 0 100 20 60 20 0 5.6

Table 6.1 Performance estimates, in cycles/byte (C/B), for eSTREAM ci-
phers based on the number of 32- arithmetic instructions used in the
keystream generator (which processes b bytes). We assume that all oper-
ations stated in the columns are single instruction operations.

the GTX 295 graphics card, we divide the cycles/byte figure of Table 6.1 by a factor

of 240. A factor of 240 is used because a single GTX 295 GPU contains contains

30 SMs, for a total of 240 SPs, each dispatching an instruction each cycle. The

GPU estimates are presented in Table 6.1.2, along with actual implementation

results. Note that the GPU estimated performance results do not account for

message memory-register copies or moves. Additionally, they do not account

for kernel launch overhead, host-to/from-device copies, or possible table-setup

timings (e.g., copying a table to shared memory). More importantly, we note that

with the exception of MICKEY v2 and Grain, the estimates are overly optimistic

since they also do not account for the limited PCIe bandwidth. A 16 lane PCIe

v2 card would have a raw bandwidth of 64Gb/s, without account for operating

system overhead or even the direct 20% overhead of the 8b/10b encoding scheme.

For most of the stream ciphers the measured performance is, as expected,

lower than the estimated figures. Despite this, we note that for all but HC-128,

6.1 GPU Implementation of eSTREAM Ciphers 98

Stream cipher
Estimate Measured

C/B Gb/s C/B Gb/s

Trivium 0.09 106.8 0.23 43.2

MICKEY v2 2.73 3.68 2.97 3.35

Grain 5.05 1.97 4.09 2.43

Rabbit 0.05 225.8 0.23 42.5

Salsa20 0.11 94.32 0.23 42.4

HC-128 0.04 280.5 4.39 2.26

SOSEMANUK 0.03 393.3 — —

Table 6.2 GPU performance results and estimates for eSTREAM ciphers.
The GPU implementations process 680 blocks of 256 threads on a single
NVIDIA GTX 295 GPU.

the measured performance either closely matches the estimate or peaks at nearly

43 Gb/s, indicating a bandwidth limitation. We provide two example implemen-

tations of MICKEY v2 and Trivium in Section D.2 and D.3, respectively. Fur-

thermore, for completeness, we discuss the performance of the ciphers with a

less-direct implementation, specifically Grain, HC-128, and SOSEMANUK.

As Grain is a hardware-oriented stream cipher, the original submission code

did not aim to optimize the code for CPU implementations [59, 60]. Hence, we

provide an alternative implementation that is well suited for software, without

the use of 64-bit instructions (or registers) or SIMD units. The code is presented

in Appendix C, and Figure 6.2 shows the performance comparison with the orig-

inal submission. When generating keystreams of length between 1KB and 128KB,

our implementation is, on average, 6.6 times faster than the original implementa-

tion. Hence, we use this implementation when estimating the performance of and

6.1 GPU Implementation of eSTREAM Ciphers 99
Grain estream vs. new (CPU)

0

0.1

0.2

0.3

0.4

0.5

0.6

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

Ti
m

e
(s

ec
on

ds
)

Keystream length

Original

New

Figure 6.2 32-bit Grain Core i7 920 (2.8GHz) benchmarking results of
original eSTREAM, unoptimized submission, and new software-oriented
Grain implementation. The average speedup factor of 6.6 is achieved
without use of any SIMD or 64-bit instructions.

porting the algorithm to the GPU. As shown in Table the measured performance

of Grain closely matches its estimate.

HC-128 is a software-oriented stream cipher with a keystream generator that

depends on the modification of two 2KB secret tables, P and Q (see [117]). Impor-

tantly, at each iteration step an element of the tables is updated [117], and so the

memory access relative to the arithmetic instruction count is quite high. When

porting to the GPU, it is important to remember that each SM is limited to 16KB

of shared memory, and so it would not be possible to launch a grid with thread

blocks consisting of more than 4 threads that store the P and Q tables in shared

memory (each thread would need at least 4KB for the tables alone). In addition,

a thread block of 4 threads would give rise to many scheduling inefficiencies and

so, as to launch a larger number of threads, in our implementation we store the

6.2 GPU Implementation of SHA-3 Candidates 100

secret tables in global memory. As mentioned in Chapter 3, global memory trans-

fer is also very costly; this performance penalty is observed in HC-128’s very low

throughput, as shown in Table 6.1.2.

SOSEMANUK is also a software-oriented stream cipher, using design prin-

ciples from from the SNOW 2.0 stream cipher, and SERPENT block cipher [15].

Compared to the other eSTREAM cipher, SOSEMANUK is considerably more

complex and, though appropriate for CPU implementations, not well-suitable for

current GPUs 2. The SOSEMANUK design uses multiplication and division of

elements in F232 by basis element α. In the actual implementation3, this is accom-

plished using two lookup tables the combined size of which would exceed not

only shared memory (16KB), but the constant memory cache (32KB). Hence, we

leave its implementation to future work and GPUs with larger caches.

6.2 GPU Implementation of SHA-3 Candidates

In this section we present estimates for the SHA-3 candidates using instruction

counts for both a generic modern architecture and NVIDIA GPUs followed by

actual implementations of all the non-AES hash functions. This chapter has been

presented in the form of a conference paper at the Workshop on Cryptographic

Hardware and Embedded Systems 2010, see [32].

In addition to the general porting patterns mentioned in the chapter introduc-

tion, some hash function-specific optimizations were used in implementing the

SHA-3 candidates. Specifically, for algorithms with small-to-medium sized chain

values (e.g., 256- or 512-bits), we buffer the chain values in registers. To avoid

2Based on our implementations, only Trivium, Rabbit and Salsa20 are deemed suitable for

current GPUs.
3Available at http://www.ecrypt.eu.org/stream/sosemanukp3.html

http://www.ecrypt.eu.org/stream/sosemanukp3.html

6.2 GPU Implementation of SHA-3 Candidates 101

multiple kernel launches, each thread processes multiple message blocks. This,

in conjunction with the caching of the chaining values, not only simplifies the

multi-block hashing, but also results in a faster implementation (than, for exam-

ple, executing multiple kernels and having to read/write chain values from/to

global memory). For algorithms with larger-sized chain values or internal states,

we cache the chain values in shared memory. In implementing algorithms that

use shared memory, we require that the thread block size always be a multiple of

16 threads (usually at least 64 threads) and further (implicitly) assert that the n-th

thread (counting from 0) loads/stores any shared memory cached values from/to

bank n mod 16, as to avoid bank conflicts.

6.2.1 AES-Inspired SHA-3 Candidates

A popular design choice of the SHA-3 hash function designers was to use AES-

like byte oriented operations (and, in some cases the AES round function itself) as

building blocks in the compression function of their hash function. The second-

round SHA-3 candidates following this paradigm include ECHO [13], Fugue [56],

Grøstl [54], and SHAvite-3 [25]. The motivation for using AES-like operations

is mainly because AES has successfully withstood much cryptanalytic effort and,

moreover, one can exploit the high capabilities of AES-like functions on a wide va-

riety of architectures. Moreover, many of the design teams have pointed out the

new Intel AES instruction set and claimed several performance figures outper-

forming the other candidates (for a more detailed analysis, cf. [14]). Considering

the possible widespread use of these processors in the future, these designs will

likely have a clear advantage.

Although several optimization methods for these hash functions are possible

on particular processors, such as using the Intel AES instruction set, we ana-

6.2 GPU Implementation of SHA-3 Candidates 102

lyze the performance of AES-inspired candidates in a more generic setting. More

precisely, we simply count the number of ‘AES-like’ operations required for the

compression function of each candidate, as this gives an intuition of how these

designs behave in architectures without native AES-instructions, such as the Pow-

erPC, SPARC, and most low-power microcontrollers. Table 6.4 provides these

rough estimates. Note that since the operations may differ per candidate, we

clearly differentiate all possibilities, particularly the variants of the ‘Mix-Column’

(MC) operation used in AES.

The estimates given in Table 6.4 provide a good indication on the performance

of the AES-inspired candidates, especially for hashing extremely long messages,

where we simply focus on the compression functions. It should, however, be

noted that the techniques used to implement the MC operations used by these

candidates account for the largest performance loss/gain. Typically, the MC op-

eration is implemented using a number of xor operations and the XTIME function.

The latter treats a byte-value as a polynomial in the finite field F28 and performs

modular multiplication by a fixed modulus and multiplier. In practice, XTIME can

be implemented using a shift and a conditional xor. An upper bound on the re-

quired MC-operations, working on single byte-values, is given in Table 6.3. First,

the double and quadruple of the X elements are computed in MCX for X P t8, 16u;

the octuple for MC16 is not needed since all the constants in Fugue are below 8.

We note that these require 2 �X XTIME operations, and that the number of required

xor operations depend on the constants. Counting the latter, for MC4 in AES and

MC8 in Grøstl, there are at most 4 � 5 � 4 = 16 and 14 � 8 � 8 = 104 xor in-

structions, since the rows are simply rotations of each other. Similarly, in Fugue

there are 4� (10 + 8 + 14 + 9� 4) = 148 xor instructions, corresponding to its

constants. We stress that these (naive) estimates should be treated as an upper

6.2 GPU Implementation of SHA-3 Candidates 103

XTIME xor size of table(s) xor rotate

(byte) in bytes

MC4 (AES) 4 16
1,024 3 3

4,096 3 0

MC8 (Grøstl) 16 104
2,048 7 7

16,384 7 0

MC16 (Fugue) 32 148
4,096 15 15

65,536 15 0

Table 6.3 Straight-forward estimates for the different mix-column opera-
tions without (left) and with (right) the use of T-tables. Note that the xor

and rotate instruction counts for the T-table approach in MCX operate
on (8 � X)-bit values.

bound; as illustrated by the implementation of MC4 in [95], the number of times

XTIME and xor are required is lower: 3 and 15, respectively.

Following the “T-table” approach [40], the MC and substitution steps can be

performed by using lookup tables on 32-bit (and larger) processors. The use

of T-tables can greatly reduce the number of required operations; estimates of

the cost of the different MC steps using a varying number of T-tables (as the

different tables are simply rotations of each other) are also stated in Table 6.3.

The MCX T-table variants require X � 1 xor, and 0 or X � 1 rotate instructions

(depending on the number of tables used) operating on X-byte values. The use

of T-tables is, however, not always favorable where, for example, in memory

constraint environments, the tables might be too big.

Among the four AES-inspired second-round SHA-3 candidates, ECHO and

SHAvite-3 make use of the AES round itself and can highly benefit from Intel

AES instruction set. Therefore, it is relatively easy to infer the speed estimates for

6.2 GPU Implementation of SHA-3 Candidates 104

these two hash functions once we have those for AES. We use the recent work by

Osvik et al. [95] on AES to obtain estimates for our target platforms. Based on

their results, the corresponding workload required to implement the compression

function of the AES-inspired candidates is given in Table 6.4. As an example of

how SHAvite-3 performs under this result (given the estimates of Table 6.4), one

requires 52 AES round function evaluations plus 1280 8-bit xors to perform one

compression function invocation of SHAvite-3, compressing a 64 byte message

block. From [95] we learn that one AES round can be implemented in 78600 cycles

on a single GTX 295 GPU when hashing 600 blocks of 256 streams simultaneously.

Hence, SHAvite-3 is estimated to achieve performance of 52�78600+1280
64�256�600 = 0.42 cy-

cles/byte on the GPU.

We note that the performance estimates given in Table 6.4 for Grøstl and Fugue

are conservative. This is because the naive estimates for MC8 and MC16 use

the estimate from Table 6.3, leaving room for significant optimizations. These

numbers can be further improved on platforms where a T-table approach is faster

than computing the Mix-Column operation. For example, on the GPU, placing the

smaller (2KB) table in shared memory, Grøstl would require two 32-bit lookups

in addition to the 7 xor and 7 rotate (64-bit) instructions.

6.2.2 Other SHA-3 Candidates

The non-AES based SHA-3 candidates use a variety of techniques and ideas in

their hash function designs. As in the stream cipher case, from a performance

perspective, it is interesting to have an indication of the number of required in-

structions per byte. An approximation of this is given in Table 6.5. We note that

operations ending with a ‘c’ indicate that one of the input parameters is comple-

mented before use, eqv denotes bitwise equivalence (i.e., xorc) and csub denotes

6.2 GPU Implementation of SHA-3 Candidates 105

Hash function b (R) SB MC4 MC8 MC16 xor C/B Gb/sec

AES-128 [95] 16 10 — — — — 16 0.32 30.9

ECHO-256 192 256 — 512 — — 448 0.85 11.7

Fugue-256 4 — 32 — — 2 60 0.62 16.1

Grøstl-256 64 — 1280 — 160 — 1472 1.23 8.1

SHAvite-3-256 64 52 — — — — 1280 0.42 23.7

Table 6.4 The number of AES-like operations per b bytes for all AES-
inspired candidates and the performance estimation on a single GTX 295
GPU. (R): One AES encryption round, SB: Substitution operation, MCX:
Mix-Column operation over X bytes (i.e., X=4 is identical to the one used
in AES). Note that Shift-Row operations are ignored because it can be
dispatched through the Mix-Column operation. The xor count is per-
byte.

conditional subtraction. These raw instruction counts are obtained from the op-

timized implementations as submitted to NIST and only the number of instruc-

tions in the compression function are considered; we only account for arithmetic

instructions.

We stress that the performance figures presented in Table 6.5 are estimates

for a hypothetical single-dispatch 32-bit architecture, the instruction set of which

includes all the operations shown in the columns of Table 6.5. Estimating the

actual performance number on modern platforms is considerably more difficult

because they often have access to a separate SIMD unit, which is ignored by our

estimates. However, these estimates can be used as a starting point to create more

accurate platform-specific speed estimations, for instance for the Cell and GPU

architectures. Note that while the multiplications by the candidate SIMD operate

on 16-bit operands, the multiplications in Shabal are by one of the constants {3,

5}. Each of the latter multiplications can be converted into a shift and addition, if

6.2 GPU Implementation of SHA-3 Candidates 106

cheaper than native multiplication.

As noted before, the PTX ISA is quite limited, and therefore some of the in-

structions in Table 6.5 will have to be implemented by multiple, simpler, instruc-

tions. For example, each rotate is implemented using two shift instruction and

an or; each andc is implemented using a not and an and, etc. Taking the imple-

mentation of these non-native instructions into account, as in the stream cipher

case, we divide the (slightly higher) instruction count of Table 6.5 by a factor of

240. These estimates are presented in Table 6.6, along with actual implementation

results.

The estimated performance results do not account for message memory-register

copies or moves, kernel launch overhead, etc. For fair comparison, we, how-

ever, do account for the chain value copies to/from registers and global memory;

this rough figure was measured for the different sizes using a kernel that simply

copied the state to registers and back to global memory. Nevertheless, our GPU

estimates are certainly optimistic and implementation results, measuring the full

hash function, are higher. Additionally, for algorithms with huge internal states

or expanded messages, e.g., SIMD, the use of local storage might not be easily

avoided and the implementation results are expected to be much worse than the

estimates.

Along with considering the general port patters and optimization techniques

when implementing the candidates, we further emphasize the details of Keccak

and Hamsi. Since using large tables on the GPU is prohibited, we estimate and

implement Keccak with on-the-fly interleaving (Keccak-256: in Table 6.6) and di-

vide the execution of Hamsi into two kernels. The latter requires the use of a very

large 32KB table (which is larger than all the fast memories on the SMs) for the

message expansion, and, thus, necessitates a less direct implementation approach.

6.2 GPU Implementation of SHA-3 Candidates 107

H
as

h
fu

nc
ti

on
b

a
d
d

s
u
b

m
u
l

a
n
d

n
a
n
d

e
q
v

o
r

r
o
t
a
t
e

s
h
i
f
t

x
o
r

C
/B

c
s
u
b

a
n
d
c

o
r
c

H
as

h
fu

nc
tio

ns
op

er
at

in
g

on
32

-b
it

w
or

ds

BL
A

K
E-

32
64

48
0

—
—

—
—

—
—

32
0

—
50

8
20

.4

BM
W

-2
56

64
29

6
58

—
—

—
—

—
21

2
14

4
27

7
15

.4

C
ub

eH
as

h-
16

/1
1

51
2

—
—

—
—

—
—

51
2

—
51

2
15

36
.0

C
ub

eH
as

h-
16

/3
2

32
51

2
—

—
—

—
—

—
51

2
—

51
2

48
.0

H
am

si
-2

56
4

—
—

—
24

12
—

24
72

24
28

7
11

0.
8

JH
-2

56
64

—
—

—
17

92
11

52
28

8
68

8
—

80
0

40
24

13
6.

6

K
ec

ca
k-

25
6

13
6

—
—

—
75

6
38

4
—

62
4

12
48

36
0

42
24

55
.9

Lu
ff

a-
25

6
32

—
—

—
14

4
—

96
96

39
2

—
75

6
46

.4

Sh
ab

al
-2

56
64

52
16

96
—

48
48

—
11

2
—

24
2

9.
6

SI
M

D
-2

56
64

81
7

90
1

25
6

41
9

85
2

—
—

25
6

28
8

80
4

17
6

74
.5

H
as

h
fu

nc
tio

ns
op

er
at

in
g

on
64

-b
it

w
or

ds

Sk
ei

n-
51

2
64

49
7

-
-

1
-

-
-

28
8

-
30

5
17

.0

Ta
bl

e
6.

5
Pe

rf
or

m
an

ce
es

ti
m

at
es

fo
r

al
ln

on
-A

ES
in

sp
ir

ed
SH

A
-3

ca
nd

id
at

es
ba

se
d

on
th

e
nu

m
be

r
of

32
-

an
d

64
-b

it
ar

it
hm

et
ic

in
st

ru
ct

io
ns

us
ed

in
th

e
va

ri
ou

s
co

m
pr

es
si

on
fu

nc
ti

on
s

(w
hi

ch
pr

oc
es

s
b

by
te

s)
.

W
e

as
su

m
e

th
at

al
lo

pe
ra

ti
on

s
st

at
ed

in
th

e
co

lu
m

ns
ar

e
si

ng
le

in
st

ru
ct

io
n

op
er

at
io

ns
.

6.3 Multi-GPU Implementation of the Cube Attack 108

The proposed two-part approach requires: (i) a kernel in which 16 threads expand

the 32-bit message to 256-bits (each using 2 1KB tables and an atomic xor), and

(ii) a kernel implementing the actual compression function. Because the message

expansion requires random access reads and uses atomic instructions (to global

memory), estimates without considering the effects of memory operations are

expected to diverge.

As expected, we observe that the actual performance numbers in Table 6.6 are

slightly higher than the corresponding estimated figures. In most cases, how-

ever, the performance overhead is a result of the memory copies (host-to-device

and global memory-to-registers). We confirmed this conjecture by measuring the

throughput of the compression functions working on a single message block, the

results of which are shown [in brackets] in Table 6.6. We note that the imple-

mentation result of SIMD does not, however, agree with our estimated figure.

We attribute the extremely low performance to using local memory for the mes-

sage expansion (4096 bits) and having a single thread do the full compression;

splitting the compression function across multiple threads would likely improve

SIMD’s performance. Additionally, we highlight the Shabal implementation, for

which we heavily used the optimized reference code, required the use of a non-

inline function in the permutations as to address a compiler optimization bug;

the fully-inlined, but buggy, implementation is twice as fast.

6.3 Multi-GPU Implementation of the Cube Attack

In this section we present some of the implementation details for the cube attack,

as describe in Chapter 4. Our implementation is limited to to the offline phase:

the preprocessing stage. Specifically, we implement algorithms for finding max-

6.3 Multi-GPU Implementation of the Cube Attack 109

Algorithm
Estimate Measured

C/B Gb/s C/B C/B Gb/s

BLAKE-32 (0.13) (76.4) [0.13] 0.27 36.8

BMW-256 (0.10) (99.4) [0.27] 0.27 36.8

CubeHash-16/1 (10.9) (0.91) [11.0] 11.1 0.90

CubeHash-16/32 (0.34) (29.2) [0.35] 0.36 27.6

Hamsi-256 (0.64) (15.5) [0.66] 5.19 1.91

JH-256 (0.67) (14.8) [0.75] 0.76 13.1

Keccak-256 (0.31) (32.1) [0.56] 0.56 17.7

Luffa-256 (0.32) (31.1) [0.34] 0.35 28.4

Shabal-256 (0.07) (141.9) [0.56] 0.69 14.4

SIMD-256 (0.43) (23.1) [0.65] 3.60 2.76

Skein-512 (0.22) (45.2) [0.29] 0.46 22.1

Table 6.6 Performance results and estimates for the non-AES based SHA-
3 candidates for the GPU architecture. The implementations process 680
blocks of 64 threads on a single NVIDIA GTX 295 GPU. Measurements of
only the compression function are shown in [brackets].

terms, testing the linearity of such maxterms, and superpoly reconstruction given

a maxterm. Although our implementation can easily be modified to include the

online attack, we do not implement it as there are many tools well-suited for this

task (recall that the main part of the online phase consists of solving a set of linear

equations over GF(2)). Moreover, one of the main advantages of the cube attack is

the trade off in online time/complexity for a longer/more complex preprocessing

stage.

6.3 Multi-GPU Implementation of the Cube Attack 110

� � �

0

2J

1

2J

2T
� 1

2J

0

� � � 0

2J

1

2J

2T
� 1

2J

2B
� 1

� � �

� � �

0

0

2J

1

2J

2T
� 1

2J

0

� � � 0

2J

1

2J

2T
� 1

2J

2B
� 1

� � �

� � �

2D
� 1

Figure 6.3 Finding a maxterm for high-dimensional cube. In this setting
every thread across 2D devices (each containing 2B blocks) computes the
sum over a sub-cube of dimension J.

6.3.1 Finding Maxterms

In Chapter 4 we presented a concrete algorithm for finding maxterms. We imple-

mented this algorithm (Algorithm 4.1) in the context of a single-threaded CPU,

using C, and multi-GPU, using CUDA. The C implementation is used when the

degree of the black box polynomial is assumed to be low, in addition to serving

as a reference for the multi-GPU implementation.

One of the key-observations to efficiently implementing the cube attack on

multiple GPUs is that the sum over a cube can be divided among different threads.

For example, for a very high-dimensional cube I of degree k we can can compute

pCI by delegating sub-cube summations to different threads on different devices,

as shown in Figure 6.3. In this scenario every thread on the 2D devices is in-

dependently computing a sum over a sub-cube of size J. Each thread-block is

in turn reducing the individual thread summations into a sub-cube of degree

T + J, since there are T threads per block. Finally, B = |I| � (D + T + J) thread

blocks are scheduled on each device. We note that our implementation uses 2D

6.3 Multi-GPU Implementation of the Cube Attack 111

0

2J

1

2J

2T
� 1

2J

0

� � � 0

2J

1

2J

2T
� 1

2J

1

� � �

� � �

0

2J

1

2J

2T
� 1

2J

2B
� 1

� � �

d

Figure 6.4 Finding a maxterm for medium-dimensional cube. In this
setting every thread block computes a full cube sum by delegating 2T

threads a sub-cube of dimension J. 2B different maxterms are analysed in
parallel on a single device d.

‘virtual’ devices which are mapped to physical devices in a round-robin fashion.

For example, in a system consisting of 3 physical devices, we define D = 2, i.e.,

22 virtual devices, in which the fourth virtual device maps to the first physical

device.

Though the previous implementation approach is viable, it is limited in sev-

eral ways. First, the algorithms only searches for a single maxterm at any one

time. Second, reducing the 2B sub-cube summations on each devices requires the

use of a global memory cache, and similarly reducing the 2D sub-cube summa-

tions requires the use of a CPU thread. Third, and worse yet, multiple kernel

launches are required to fully implement Algorithm 4.1. This is a direct result

of implementing the BLR test which requires the summation over the same cube

multiple times. Though our initial implementation included this approach, our

benchmarking results showed that it is, indeed, quite inefficient and its use is

only applicable to very high dimensional cubes (where the kernel launches and

global-memory access are no longer the primary bottlenecks).

6.3 Multi-GPU Implementation of the Cube Attack 112

We also implemented Algorithm 4.1 by delegating the sub-cube summations

according to Figure 6.4. In this setup, each thread block, on device d, searches

for a maxterm. Hence, on each device we search for 2B maxterms with cubes of

degree k, in parallel, which multiplicatively increases according to the number of

physical devices in the system. Each thread block then computes the full cube

sum among T threads, which, in turn, compute the sum of a sub-cube of degree

J, such that T + J = k. We note that the thread blocks in our actual implemen-

tation are not restricted to working with a cube of degree k, rather they are only

restricted to a dimension range and generate the dimension and index-set ran-

domly. Additionally, since the SPs operate on 32-bit words, our implementations

are optimized to compute 32 ciphertext bits in parallel (a form of bitslicing). We

now present some additional implementation-specific details for this approach.

Upon launching a kernel, the first thread of each thread block chooses the di-

mension k of the cube and then randomly chooses an index-set I of such dimen-

sion. The index-set I is then written to shared memory, along with other values

necessary for coherence (e.g. random number generator seed and the counters

n0, n1 of Algorithm 4.1); we primarily use the shared memory as a cache, updat-

ing the thread local values on every synchronization point. Addressing the need

of a random number generator we implemented a 32-bit XOR-Shift random num-

ber generator [77], the seed of which is cached in shared memory. The latter point

is necessary so that the threads in the thread block generate the same thread-local

keys used in the BLR tests. An alternative approach would entail 2 threads gen-

erating random keys that are then cached in shared memory; this approach is,

however, less efficient than generating the keys on-the-fly primarily because of

the communication overhead in reading the keys from the cache and having the

majority of the threads stall, waiting for the keys to be generated. Similar to the

6.3 Multi-GPU Implementation of the Cube Attack 113

initial point of generating I, the first thread is used to write I to global memory,

if the BLR tests confirm the linearity of its superpoly. Otherwise, the thread block

finishes with no (successful) results. Taking the aforementioned details into con-

sideration, the implementation of Algorithm 4.1 follows directly. We note that for

our tests try each maxterm 20 times (i.e., T = 20 following Algorithm 4.1), and

perform the BLR tests 3N = 128 times. Furthermore, we have a simple algorithm

setting J, the sub-cube size each thread sums over, and 2T, the number of threads

per block, according to the bound of the cube dimension; the number of threads

rounded to the nearest multiple of 64.

6.3.2 Superpoly Reconstruction

The implementation of the superpoly reconstruction algorithm given in Algo-

rithm 4.2 follows directly from our maxterm search implementation detailed above.

We, again, use a thread block to do a full cube-sum, each thread performing a sum

over a sub-cube of size J. Unlike the maxterm search implementation, however,

we reconstruct a single maxterm using all the devices. Specifically, every thread

block computes a single coefficient. Following the kernel execution, the coeffi-

cients are copied from the device to the host (CPU) and the constant coefficient is

added (XOR) to all the coefficients.

6.3.3 Performance Measurements

Our implementation targets any black-box polynomial implementing a set of

macros, and is thus not specific to any of the ciphers we cryptanalyzed in this

work. To measure the performance of our GPU implementation, relative to the

CPU counterpart, we benchmarked the both the maxterm search and superpoly

6.3 Multi-GPU Implementation of the Cube Attack 114

k CPU 1 GPU 2 GPUs 3 GPUs 4 GPUs

12 49.5 8.1 7.55 7.38 4.75

13 217.81 28.8 27.82 14.6 17.87

14 1159.43 83.87 55.98 29.8 32.15

15 3988.91 176.1 116.4 60.04 62.67

16-17 25322.29 718.61 468.84 241.35 236.03

Table 6.7 Performance measurements of the maxterm search algorithm
in seconds on the simplified version of Trivium. In the final case the
dimension was bounded between 16 and 17. Our CPU implementation
executes on an Intel Core i7 920 (2.67GHz). Our GPU implementations
execute on GTX 295 graphics cards, varying the number of GPUs used
in the search. Each run was limited to searching for 80 terms, with the
number of tries set to T = 20, and number of BLR tests set to 3N = 128.

reconstruction algorithms. As the maxterm search depends on randomness and

as such is not easily benchmarked, we note that our results serve to only give a

rough comparison. The code will be available publicly and, as such, benchmark-

ing by third parties is recommended to confirm our results. Table 6.7 summarizes

our benchmarking results for the maxterm search algorithm, while Table 6.8 sum-

marizes the performance of the superpoly reconstruction implementation.

As our results show, the maxterm search algorithm is well-suited for a multi-

GPU setting. Increasing the number of GPUs almost directly results in a greater

speedup. Compared to the CPU implementation, we measured the multi-GPU

implementations to be considerably faster, with factors of up to 107. Note, how-

ever, that the overhead of the threads library is not negligible when increasing

the number of GPUs in the system. For example, the 3 GPUs performance is

comparable to the 4 GPUs, sometimes even faster.

In the superpoly reconstruction case, a single GPU also outperforms the single

6.3 Multi-GPU Implementation of the Cube Attack 115

k CPU 1 GPU 2 GPUs 3 GPUs 4 GPUs

12 2.54 0.4 0.75 0.74 4.74

13 5.09 0.47 0.76 0.74 4.74

14 10.2 0.61 0.82 0.73 4.76

15 20.43 0.93 1.02 1.05 5.13

16 40.84 1.52 1.33 1.20 5.44

17 81.67 2.71 2.45 1.92 5.76

Table 6.8 Performance measurements of the superpoly reconstruction al-
gorithm in seconds on the simplified version of Trivium. Our CPU im-
plementation executes on an Intel Core i7 920 (2.67GHz). Our GPU im-
plementations execute on GTX 295 graphics cards, varying the number of
GPUs used in the search.

CPU implementation by up to a factor of 42. As expected, increasing the dimen-

sion size results in the GPU outperforming the CPU since the memory copies and

kernel launches are minimal when compared to the actual computation time. As

before, we note that increasing the number of GPUs in the system does not al-

ways result in a speedup. This is primarily because of the threads library setup,

memory device to/from host copies, cache misses, and kernel launches dominate

the computation. Compared to the maxterm search algorithm, the superpoly

reconstruction algorithm is less complex and thus such issues arise. Neverthe-

less, the results of the single GPU implementation highlight that the algorithm is

well-suited for this architecture and we expect it to outperform the CPU imple-

mentation with larger factors than the current 42�, for higher-dimensional cubes.

For completeness and since this is the first implementation of the XOR-Shift

random number generators on GPUs, we measure the performance of the imple-

mentation given in Appendix E. Using a 256 thread blocks, each block consisting

6.3 Multi-GPU Implementation of the Cube Attack 116

of 256 threads, which in turn generate 100,000 random numbers we measured

the performance of XOR-Shift to be 0.0094 cycles/byte on a single GPU of the

GTX 295 graphics card. This figure closely agrees with the estimated 0.0063

cycles/byte estimate, which we compute by dividing the number of cycles (6)

required to compute a 32-bit sample using 240 SPs. We further note that this ran-

dom number generator grossly outperforms other common, but GPU-inefficient,

random number generators, such as the widely-used Mersenne Twister [78, 98].

Chapter 7

Cryptanalysis Results

In this chapter we present our analysis results. We analyze MICKEY and Trivium

using the cube attack, and, dually, BLAKE and CubeHash using the linear differ-

ential cryptanalysis framework. We further present implementation details and

performance measurements of the linear differential cryptanalysis framework; the

corresponding details for the cube attack were presented in Section 6.3.

7.1 Applying the Cube Attack

Our implementation of the cube attack is designed to target any black box poly-

nomial. We do not take advantage of the internal details of the analyzed stream

ciphers. This is primarily because we are interested in providing a general frame-

work that can easily be used to analyse many algorithms, though still allowing

for simple cipher-specific extensions. To verify the correctness of our implemen-

tation we apply the cube attack to the Trivium stream cipher, confirming the

results of [45]. Given the confidence in our implementation we further analyze

the MICKEY stream cipher.

117

7.1 Applying the Cube Attack 118

7.1.1 Trivium

As in [45], we analyse a Trivium (see Section 2.1.1) by reducing the number of

initialization rounds to 672, i.e., Npre = 672. Our analysis primarily serves to

verify our implementation, rather than undertake variants of Trivium with initial-

ization rounds beyond those of [45]. Since our implementation produces 32-bits,

in parallel, we present the maxterms for out bit index 672 to 703. Table 7.1 shows

several maxterms and their corresponding superpolys our maxterm search algo-

rithm found. These maxterms were previously presented in [45], affirming the

confidence in our framework. In addition, we found some new maxterms which

we present in Table 7.2. Although our analysis led to considerably more maxterms

than we show, we only present the smallest maxterm necessary in the recovery of

a particular bit. Note that our results can be used to carry out an online partial-

key recovery attack on this simplified variant of Trivium. We believe that further

analysis could lead to a full-key recovery attack, though an extension to the full

Trivium is not direct.

7.1.2 MICKEY

As with Trivium, we use the multi-GPU cube attack framework to analyze a sim-

plified version of MICKEY stream cipher detailed in Section 2.1.2. We analyzed

MICKEY with no initial vector and no state updates during the Key and IV setup,

i.e., Npre = 0. Varying the cube dimension sizes to up to 20, we found no terms

with a linear superpoly. Although increasing the cube dimension to a larger, but

still manageable size (e.g., 32), or leveraging the internal details of the simplified

cipher could potentially reveal maxterms, we believe that the full MICKEY cipher

is resistant to such black box.

7.1 Applying the Cube Attack 119

Maxterm, I Output bit # Superpoly

{3,13,18,26,38,40,47,49,55,57,66,79} 672 1 + x01 + x25

{2,5,7,10,14,24,27,39,49,56,57,61} 672 1 + x14

{3,5,14,16,18,20,33,56,57,65,73,75} 672 1 + x24

{2,12,17,25,37,39,46,48,54,56,65,78} 673 1 + x00 + x24

{0,5,8,11,13,21,22,26,36,38,53,79} 673 x12

{0,5,8,11,13,22,26,36,37,38,53,79} 673 x13

{10,13,15,17,30,37,39,42,47,57,73,79} 673 1 + x21 + x66

{3,14,21,25,38,43,44,47,54,56,58,68} 674 1 + x01 + x10 + x51

{8,11,13,17,23,25,35,45,47,54,70,79} 674 1 + x39 + x57 + x66

{2,13,20,24,37,42,43,46,53,55,57,67} 675 1 + x00 + x09 + x50

{11,18,20,33,45,47,53,60,61,63,69,78} 675 x04

{1,3,6,7,12,18,22,38,47,58,67,74} 675 x07

{1,12,19,23,36,41,42,45,52,54,56,66} 676 1 + x08 + x49 + x68

{6,11,14,19,33,39,44,52,58,60,74,79} 676 1 + x28

{0,6,10,16,19,31,43,50,66,69,77,79} 676 x40 + x58 + x64

{1,6,8,19,22,33,39,44,60,68,74,79} 677 1 + x03 + x35 + x63

{7,14,16,18,27,31,37,43,48,55,63,78} 677 x05

{1,5,7,18,21,32,38,43,59,67,73,78} 678 1 + x02 + x34 + x62

Table 7.1 Trivium analysis results: maxterms presented in [45] and con-
firmed using our cube attack framework

7.1 Applying the Cube Attack 120

Maxterm, I Output bit # Superpoly

{ 1, 3, 14, 20, 23, 40, 43, 46, 52, 53, 55, 57, 65} 672 x57

{ 0, 2, 15, 19, 23, 27, 30, 35, 36, 45, 46, 50, 60, 65, 72} 672 x65

{ 6, 7, 10, 23, 27, 31, 34, 47, 54, 57, 63, 67, 72, 79} 672 x56

{ 1, 23, 30, 36, 40, 49, 52, 53, 55, 56, 57, 60, 64, 67, 71, 77} 672 x64

{ 0, 18, 22, 27, 35, 38, 45, 46, 56, 61, 66, 71, 74, 77} 673 x63

{ 8, 15, 17, 20, 22, 23, 30, 35, 47, 53, 54, 66, 68, 71, 75} 673 x22

{ 2, 5, 7, 10, 18, 20, 26, 33, 45, 47, 64, 67, 70, 73, 75, 77} 673 x62

{ 5, 8, 13, 16, 21, 26, 30, 38, 39, 40, 43, 44, 46, 52, 62, 64} 673 1 + x66

{ 0, 8, 10, 12, 19, 36, 38, 40, 44, 45, 69, 71} 673 x27 + x54

{ 0, 2, 14, 19, 20, 22, 29, 30, 36, 53, 58, 64, 70, 72, 79} 674 x55

{ 1, 6, 11, 12, 22, 30, 33, 40, 46, 63, 68, 71, 79} 674 x60

{ 1, 7, 14, 21, 31, 47, 53, 57, 61, 62, 67, 71, 72, 73, 79} 674 x21 + x51

{ 1, 12, 19, 33, 34, 35, 46, 58, 65, 70, 71, 72, 78} 674 x54

{ 2, 3, 9, 10, 12, 24, 26, 33, 39, 40, 49, 51, 58, 62, 63, 66, 70} 674 x59

{ 1, 14, 18, 19, 25, 26, 42, 43, 45, 47, 50, 53, 55, 65, 69, 70, 79} 674 x51

{ 1, 5, 11, 14, 15, 17, 18, 21, 27, 29, 30, 39, 41, 58, 70, 72} 674 x41

{ 3, 4, 7, 15, 21, 22, 23, 36, 38, 47, 50, 52, 63, 74, 79} 675 x61

{ 4, 8, 12, 15, 18, 22, 23, 36, 44, 54, 72, 79} 676 x62 + x68

{ 1, 5, 14, 19, 22, 35, 37, 40, 51, 53, 56, 75, 78} 676 1 + x67

{ 6, 18, 19, 20, 22, 26, 34, 36, 40, 43, 51, 55, 60, 78} 676 x20

{ 0, 17, 19, 28, 31, 35, 38, 39, 43, 50, 58, 62, 65, 78} 678 x15

{ 8, 14, 16, 20, 23, 31, 41, 45, 46, 51, 55, 64, 69, 71, 75, 76, 78} 678 x58

{ 2, 7, 10, 15, 16, 19, 29, 33, 38, 49, 57, 61, 65, 70, 77} 679 x16

{ 1, 6, 17, 24, 27, 28, 33, 36, 39, 41, 61, 67, 69, 71, 72, 73, 75} 693 x35

{ 3, 10, 18, 20, 25, 27, 28, 29, 30, 33, 42, 49, 60, 64, 66, 67, 78} 696 x29

Table 7.2 Trivium analysis results: new maxterms found with our cube
attack framework

7.2 Applying Linear Differential Cryptanalysis 121

0 10 20 30 40

BLAKE64/1

BLAKE64/2

BLAKE64/3

BLAKE64/4

BLAKE64/5

Time (hours)

8 Threads

4 Threads

2 Threads

1 Thread

Figure 7.1 Framework performance comparison varying the number of
threads when searching for trails on the full BLAKE64 hash function.

7.2 Applying Linear Differential Cryptanalysis

We extend the implementation of the linear differential cryptanalysis framework

presented by Brier et al. [34]. In Chapter 5 we detail some of our extensions,

including the addition of the adaptive backtracking algorithm, the fine-grained

message modification algorithms, extension to a larger kernel basis, and a gen-

eralization to arbitrary hash functions. The generalization allows us to easily

analyze hash functions other than CubeHash [34], and to demonstrate this we

present our analysis results on variants of the BLAKE hash function.

Using the OpenMP optimizations mentioned in Chapter 3 we further paral-

lelize the framework. As most of the computation time is spent executing the

compression functions, we take a coarse grained approach and optimize the trail

search algorithm by performing N number of searches in parallel, where N is the

number of CPUs in the system. To evaluate the speedup, we measured the perfor-

7.2 Applying Linear Differential Cryptanalysis 122

r BLAKE32 BLOKE32 FLAKE32 BLAZE32 BRAKE32

1 813 813 805 70 70

2 1876 1858 1856 1286 774

3 2933 2907 2942 2139 2262

4 4010 3993 4005 3309 3321

5 5090 5060 508 4345 4344

Table 7.3 The minimal number of conditions y found using the forward
search algorithm for BLAKE32 variants, the conditions corresponding to
the raw probability 2�y.

mance of the framework in searching for paths on BLAKE64 varying the number

of rounds and number of threads; Figure 7.1 presents these results, from which we

observe an almost linear speedup. Using our modified parallel implementation

we present our analysis of BLAKE and CubeHash below.

7.2.1 BLAKE

We analyze the BLAKE hash function family, including BLAKE32 and BLAKE64

presented in Section 2.2.1. As BLAKE relies on an internal compression function,

we limit our analysis to this function, given in Algorithm 2.5. An attack on the

compression function is sufficient to indicate design weaknesses in the full hash

function. For our analysis, we define the linearized compression function by

replacing every addition in Algorithm 2.5 with an XOR. As we did not expect

to find an attack on the full BLAKE, we varied the number of rounds and also

analyzed the toy versions presented in Section 2.2.1.

Our results are summarized in Table 7.3, and Table 7.4 for BLAKE32 and

BLAKE64 variants, respectively. The bold entries indicate a second preimage at-

7.2 Applying Linear Differential Cryptanalysis 123

r BLAKE64 BLOKE64 FLAKE64 BLAZE64 BRAKE64

1 1820 1820 1815 107 429

2 3988 3979 3975 2696 2747

3 6194 6145 6197 4820 4803

4 8394 8346 8400 6848 6911

5 10596 10521 10614 8960 8973

Table 7.4 The minimal number of conditions y found using the forward
search algorithm for BLAKE64 variants, the conditions corresponding to
the raw probability 2�y.

tack on the compression function with a 512-bit output, i.e., any differential path

with a raw probability 2�y above 2�512 is considered a theoretical attack. Unlike

our analysis of CubeHash (see Section 7.2.2), our analysis of BLAKE has revealed

only 5 theoretical attacks. For these attacks we present the differential trails in

Appendix F.1. We note that our attacks are on round-reduced toy versions, which

do not extend to the full BLAKE. Moreover, as our results confirm, BLAKE is

resistant to generic linear differential attacks.

7.2.2 CubeHash

As with the BLAKE hash function, we analyze round-reduced versions of the

CubeHash hash function presented in Section 2.2.2. Here we give our results,

previously presented in [67], in addition to several new results not previously

considered.

Unlike BLAKE, CubeHash is not built by iterating a compression function,

and as such we must first define it. Following [34, 67] we define the fixed-input-

length compression function Compress. In this work, Compress is parametrized

7.2 Applying Linear Differential Cryptanalysis 124

by a 1024-bit initial value V and compresses t (t ¥ 1) b-byte message blocks

M = M0} � � � }Mt�1. The output H = Compress(M, V) consists of the last 1024� 8b

bits of the internal state after tr round transformations processing M.

A colliding message pair (M, M`∆) for Compress directly extends to a collision

of CubeHash by appending a pair of message blocks (Mt, Mt ` ∆t) such that ∆t

erases the difference in the first 8b bits of the internal state. The difference ∆t is

called the erasing block difference. We note that when searching for collisions of

Compress, the parameter V is not restricted to be the initial value of CubeHash.

Specifically, V can be the state after processing some message prefix Mpre. Thus,

a pair of colliding messages for the hash function then has the general form

(Mpre}M}Mt}Msuff, Mpre}M` ∆}Mt ` ∆t}Msuff)

for an arbitrary message suffix Msuff.

We linearize the compression function of CubeHash, i.e. Compresslin, to find

message differences that can be used for a collision attack as described in Chap-

ter 5. Let Compresslin be the linearization of Compress obtained by replacing all

modular additions in the round transformation, Algorithm 2.7, with XORs and

setting V = 0. Using the canonical bases, Compresslin can be written as a matrix

H of dimension (1024� 8b)� 8bt. Let τ be the dimension of its kernel. As noted

in [34] and discussed in Chapter 5, the matrix H does not have full rank for many

parameters r/b and t, and one can find differences with high a raw probabil-

ity (imposing a small number of conditions) in the set of linear combinations of

at most λ kernel basis vectors, where λ ¥ 1 is chosen such that the set can be

searched exhaustively.

The success of a second preimage or collision attack heavily depend on the

choice of the kernel basis. Table 7.5 compares the minimal number of conditions

7.2 Applying Linear Differential Cryptanalysis 125

b/r 4 5 6 7 8 16

32 156 1244 400 1748 830 2150

64 130 205 351 447 637 1728

96 62 127 142 251 266 878

32 189 1952 700 2428 830 2150

64 189 1514 700 1864 637 1728

96 67 128 165 652 329 928

Table 7.5 Minimal number of conditions found for λ = 3 using two dif-
ferent algorithms to determine the kernel bases.

for λ = 3 for two different choices of the kernel basis. The results in the first three

rows are obtained using the same algorithm as in [34] to determine the bases.

The results in the last three rows are obtained using the more standard procedure

implemented for example in the Number Theory Library of Shoup [105].

As discussed in Chapter 5, the inverse raw probability is an upper bound of

the theoretical complexity, and as such, we expect that differences with a high

raw probability have a low theoretic complexity. However, a higher raw proba-

bility does not always imply a lower theoretic complexity. There are differences

with lower raw probability that lead to a lower theoretic complexity than that of

a difference with a higher raw probability. Hence, when searching for minimal

complexity of the collision attack, simply considering the number of conditions

imposed by a difference is not sufficient. The examples in Table 7.5 serve to high-

light our motivation for implementing the reverse and randomized differential

trail search methods.

We note that the linearized round transformation of CubeHash is invertible

and let Compressrlin be defined in the same way as Compresslin but with inverse

7.2 Applying Linear Differential Cryptanalysis 126

r linear

inverse

rounds

�

�

∆t

H

r linear

inverse

rounds

�`�

�

?

∆t�1

r linear

inverse

rounds

�`�

�

?

∆1

�`�

�

?

∆0

08b

01024�8b

Figure 7.2 Computation of Compressrlin on input ∆1 = ∆0} � � � }∆t�1. If
∆1 lies in the kernel, H = 0 and ∆ = ∆t} � � � }∆1 lies in the kernel of
Compresslin.

linearized round transformations. Suppose that ∆1 = ∆0} � � � }∆t�1 lies in the

kernel of Compressrlin and ∆t equals the (discarded) first 8b bits of the state after

the tr linear inverse round transformations processing ∆1 as shown in Fig. 7.2.

Then, the difference ∆ = ∆t} � � � }∆1 lies in the kernel of Compresslin and ∆0 is

the corresponding erasing block difference. As for the linearized compression

function we determine a basis of the kernel of Compressrlin and exhaustively search

for linear combinations of at most λ kernel basis vectors of high raw probability.

Due to the diffusion of the inverse transformation, these trails tend to be dense at

the beginning and sparse at the end.

b/r 4 5 6 7 8 16

32 156 1244 394 1748 830 2150

64 130 205 309 447 637 1728

96 38 127 90 251 151 709

Table 7.6 Minimal number of conditions y found with the randomized
search. Values in bold improve over the values in Table 7.5.

Table 7.6 shows the best found raw probabilities after 200 trials of 600 iterations

7.2 Applying Linear Differential Cryptanalysis 127

using the randomized search algorithm detailed in Section 5.1.5 and previously

presented in [67]. Estimating the corresponding theoretic complexities using the

condition function described in Section 5.2 yields the improved collision attacks

presented in Table 7.7.

b/r 4 5 6 7 8 16

32 – – 180 – – –

64 – – 132 – – –

96 7 – 51 – 80 –

Table 7.7 Logarithmic theoretical complexities c∆ of improved collision
attacks.

For CubeHash-r/b there is a generic collision attack with complexity of about

2512�4b. For b ¡ 64 this is faster than the generic birthday attack on hash functions

with output length h = 512. For b = 96, specifically, the generic attack has a

complexity of about 2128. Our attacks clearly improve over this bound.

In addition to the aforementioned analysis, which we originally presented

in [67], we also consider CubeHash variants with the number of rounds r and

bytes per message, b, not previously considered in [34, 67]. Table 7.8 shows the

number of iterations t and conditions y found using the algorithms of Chapter 5

for the new variants. The bold entries correspond successful theoretical second

preimage attacks on CubeHash. For example, our trail for CubeHash-4/10 with

189 condition bits indicates a theoretical second preimage attack on the algorithm

that can be carried out successfully using a single function evaluation, with prob-

ability of 2�189. In other words, using a single function evaluation we can produce

a second preimage with probability 2�189. We give the differential trails for these

attacks in Appendix F.2.

7.2 Applying Linear Differential Cryptanalysis 128

r/b 10 20 24 36 96

1 (4, 32) (4, 30) (4, 30) (3, 13) (1, 0)

2 (2, 32) (2, 30) (2, 30) (2, 28) (1, 18)

3 (4, 478) (4, 394) (4, 394) (3, 343) (1, 54)

4 (2, 189) (2, 156) (2, 156) (2, 130) (1, 40)

5 (4, 1517) (4, 1244) (4, 1244) (4, 965) (1, 127)

6 (2, 478) (2, 394) (2, 394) (2, 309) (1, 93)

7 (4, 2124) (4, 1748) (4, 1748) (4, 1418) (1, 251)

8 (2, 1009) (2, 830) (2, 830) (2, 637) (1, 191)

9 (2, 2025) (2, 1788) (2, 1788) (2, 1713) (1, 428)

10 (2, 1517) (2, 1244) (2, 1244) (2, 965) (1, 360)

Table 7.8 Cubehash (t, y)

As with the previous cases, we use the condition function approach, describe

in Section 5.2, to analyse the algorithm’s susceptability to collision attacks. Ta-

bles 7.9, 7.10, 7.11, and 7.12 show the reduced time complexities of collision at-

tacks corresponding to the trails given in Table 7.8, using a 1-, 2-, 4- and 8-bit

message modification level, respectively. Considering a 512-bit output length, the

bold entries in the table highlight the successful theoretical collision attacks, with

complexities 2c∆ less than the birthday bound, i.e., 2c∆ 2256.

We note these attacks are new and complement the previous results of [34,67].

Additionally, this is also the first implementation considering sub-byte message

modification techniques. Although [34] suggests that using a 1-, 2-, or 4-bit mes-

sage modification technique, i.e., using bit-level dependency table, is likely to

reduce the complexity of a collision attack our results suggest a minimal improve-

7.2 Applying Linear Differential Cryptanalysis 129

r/b 10 20 24 36 96

1 6.05 5.93 5.93 4.75 –

2 6.14 6.08 6.04 5.83 5.17

3 263.9 100.4 87.8 65.1 6.90

4 101.9 71.8 62.5 45.9 6.47

5 1244 801.8 738.4 338.5 82.2

6 364.4 205.5 192.6 146.6 57.6

7 1853 1233 1135 1233 211.6

8 953.5 630.7 589.5 340.1 150.2

9 1884 1496 1459 1311 404.3

10 1404 1053 1024 643.3 323.0

Table 7.9 CubeHash logarithmic collision complexities c∆ with 1-bit mod-
ifications.

r/b 10 20 24 36 96

1 6.05 5.93 5.93 4.75 –

2 6.21 6.13 6.01 5.83 5.17

3 262.3 95.5 80.6 35.1 6.94

4 99.8 61.5 51.1 37.1 6.61

5 1242 801.6 735.7 331.3 70.1

6 361.3 198.5 181.6 142.2 54.5

7 1851 1228 1130 1228 197.4

8 949.4 626.8 592.5 336.0 144.7

9 1881 1491 1450 1290 374.2

10 1401 1046 1011 631.6 315.7

Table 7.10 CubeHash logarithmic collision complexities c∆ with 2-bit
modifications.

7.2 Applying Linear Differential Cryptanalysis 130

r/b 10 20 24 36 96

1 6.17 6.02 6.02 4.76 –

2 6.29 6.30 6.04 5.83 5.17

3 262.1 87.9 67.0 28.3 7.11

4 97.7 62.6 54.3 35.7 7.14

5 1241 795.9 732.4 324.7 66.5

6 357.0 195.6 178.5 139.7 56.0

7 1850 1226 1130 1226 192.9

8 951.1 624.1 589.7 327.6 142.4

9 1876 1486 1443 1268 365.0

10 1398 1042 1009 629.5 311.4

Table 7.11 CubeHash logarithmic collision complexities c∆ with 4-bit
modifications.

r/b 10 20 24 36 96

1 6.21 6.15 6.02 4.75 –

2 6.61 6.51 6.30 5.90 5.17

3 260.8 82.3 66.9 67.1 7.98

4 98.2 60.3 55.7 39.1 8.34

5 1239 798.5 732.7 322.3 70.6

6 357.1 196.8 185.1 141.6 60.3

7 1845 1229 1131 1229 194.5

8 949.6 629.8 593.2 330.4 150.5

9 1875 1488 1446 1260 366.0

10 1397 1042 1008 635.8 319.5

Table 7.12 CubeHash logarithmic collision complexities c∆ with 8-bit
modifications.

7.2 Applying Linear Differential Cryptanalysis 131

ment, in many cases none. Moreover, we find that the sub-byte implementations

are considerably slower often are less efficient in finding actual collisions. We

evaluated the latter point by searching for collisions in the variants with the num-

ber of rounds r 3.

For completeness we illustrates the significance of our proposed reverse dif-

ferential trail search algorithm by presenting a collision for CubeHash-5/96, the

trail complexity of which was presented in Table 7.5.

We consider two linear differences found using the forward and reverse trail

the methods of Section 5.1.3 and 5.1.4 respectively. Both consist of two 96-byte

blocks, a first block that lies in the kernel of the linearized compression function

and a second one that is the corresponding erasing block difference. They are

given by

∆0
a = 40000000 00000000 40000000 00000000 00000000 00000000

00000000 00000000 00200000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000040

00000000 00000040 00000000 00020000 00000000 00000000 ,

∆1
a = 01000111 01000111 00000000 00000000 8008002A 00000000

08000022 00000000 00000000 00000000 00000000 00000000

00000000 00000000 11040000 00000000 40000101 01000111

00000000 00000000 00002208 00000000 08002000 00000000

7.2 Applying Linear Differential Cryptanalysis 132

and

∆0
b = 08000208 08000208 00000000 00000000 40000100 00000000

00400110 00000000 00000000 00000000 00000000 00000000

00000000 00000000 0800A000 00000000 08000888 08000208

00000000 00000000 40011000 00000000 00451040 00000000 ,

∆1
b = 80000000 00000000 80000000 00000000 00000000 00000000

00000000 00000000 00400000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000080

00000000 00000080 00000000 00040000 00000000 00000000 .

The number of conditions imposed by ∆a and ∆b are 127 and 134, respectively.

Despite its lower raw probability, ∆a has a theoretical complexity of 231.9 compres-

sion function calls, which is much less than 268.7 for ∆b. As discussed above, this

is due to the different structure of α_ β. We recall that y denotes the Hamming

weight of α_ β and let

yi =
32(i+1)¸
k=32i

wt(αk _ βk).

That is, yi is the number of conditions imposed by a difference at round i. Ta-

ble 7.13 compares the values yi for ∆a and ∆b. The conditions imposed in the first

two rounds can easily be satisfied by appropriate message modifications, and

thus, do not significantly increase the complexity of the attack — contrary to the

conditions imposed in the last two rounds.

Due to its low theoretical complexity, we can use ∆b to find a collision and to

confirm empirically the estimated theoretical complexity. As mentioned before,

we can construct a collision for the hash function out of a collision for the com-

pression function. Using a dependency table at byte-level, we obtained a partition

7.2 Applying Linear Differential Cryptanalysis 133

y1 y2 y3 y4 y5 y log2(c∆)

a 14 17 23 30 43 127 68.7

b 44 36 25 17 12 134 31.9

Table 7.13 Number of conditions per round theoretical complexities.

of the condition function attributed to ∆0
b using Algorithm 5.2 (see Table 7.14).

Then, using the tree-based backtracking algorithm given in Algorithm 5.3, we

found several collisions after 222.41 to 232.25 condition function calls. One of them,

found after 229.1 condition function calls, is given by

Mpre = F06BB068 487C5FE1 CCCABA70 0A989262 801EDC3A 69292196

8848F445 B8608777 C037795A 10D5D799 FD16C037 A52D0B51

63A74C97 FD858EEF 7809480F 43EB264C D6631863 2A8CCFE2

EA22B139 D99E4888 8CA844FB ECCE3295 150CA98E B16B0B92 ,

M0 = 3DB4D4EE 02958F57 8EFF307A 5BE9975B 4D0A669E E6025663

8DDB6421 BAD8F1E4 384FE128 4EBB7E2A 72E16587 1E44C51B

DA607FD9 1DDAD41F 4180297A 1607F902 2463D259 2B73F829

C79E766D 0F672ECC 084E841B FC700F05 3095E865 8EEB85D5 .

For M1 = 0, the messages Mpre}M0}M1 and Mpre}M0`∆0
b}M

1`∆1
b collide to the

7.2 Applying Linear Differential Cryptanalysis 134

same digest

H = C2E51517 C503746E 46ECD6AD 5936EC9B

FF9B74F9 2CEA4506 624F2B0B FE584D2C

56CD3E0E 18853BA8 4A9D6D38 F1F8E45F

2129C678 CB3636D4 D865DE13 410E966C

for CubeHash-5/96. Instead of M1 = 0, any other M1 can be chosen and, more-

over, the colliding messages can be extended by an arbitrary message suffix Msuff.

We note, as in our earlier work [67], that our method of backward computation

lead to the first practical collision attack on CubeHash-5/96. Additionally, the

randomized search yielded new highly probable differential trails which lead to

improved collision attacks for up to eight rounds. However, it is important to also

note that our analysis did not lead to an attack on the official CubeHash-16/32.

7.2 Applying Linear Differential Cryptanalysis 135

i Mi Yi qi

0 H H 0.00
1 {2, 6, 66} {1, 2} 2.00
2 {10, 1, 9, 14, 74, 5, 13, 65, 17, 70} {5} 1.35
3 {73, 7, 16, 19, 18, 78, 25, 37, 41} {23, 24} 2.00
4 {69, 77, 24, 33} {21, 22} 2.00
5 {50, 89} {12, 13} 2.00
6 {20, 27, 45, 88} {11} 1.15
7 {57, 4} {38} 1.00
8 {80} {7, 8} 2.00
9 {38, 40, 81, 3, 28, 32} {34} 1.24

10 {49} {41} 1.00
11 {58} {19, 20, 42, 43} 4.00
12 {91} {16, 17} 2.00
13 {23, 34, 44, 83} {29, 30} 2.07
14 {90} {14} 1.07
15 {15, 26} {15} 1.07
16 {36} {37, 55} 2.31
17 {42, 46, 48} {25, 26} 2.12
18 {56} {18, 31, 40} 3.01
19 {59} {48, 79} 2.00
20 {84, 92, 0} {35} 1.00
21 {82} {9, 10, 27, 28, 32, 33} 6.04
22 {31, 51} {44, 56, 64} 3.03
23 {71} {6} 1.00
24 {11, 54, 67} {3} 1.00
25 {75} {78} 1.00
26 {21, 55} {46, 59} 2.00
27 {63} {50} 1.00
28 {79} {45, 49, 65, 70} 4.00
29 {12} {71} 1.06
30 {22} {58, 67, 81, 82, 83} 5.00
31 {29, 62} {63} 1.03
32 {87, 95} {53, 54, 74, 76, 85} 5.01
33 {39, 47} {39} 1.01
34 {53, 8} {69, 88, 89} 3.30
35 {30} {77, 86, 94, 98} 5.04
36 {60, 61} {62, 91, 101, 102} 4.35
37 {35, 52} {61, 90, 103} 4.22
38 {43} {36, 57, 60, 104, 111} 5.77
39 {64} {0} 1.33
40 {68} {4} 2.03
41 {72} {97, 100, 121} 8.79
42 {76} {66, 80, 92, 93} 13.39
43 {85} {47, 112} 16.92
44 {93} {51, 52, 68, 72, 75, 87, 95} 22.91
45 {86, 94} {73, 84, 96, 99, 105, . . . , 110, 113, . . . , 132, 133} 31.87

Table 7.14 Partition sets corresponding to the trail ∆b for CubeHash-5/96.
Numbers in Mi are byte indices, whereas numbers in Yi are bit indices.

Chapter 8

Conclusion

Efficiency of stream cipher and hash function algorithms is a very important de-

sign criterion, almost parallel with security. This work presents a generic frame-

work for analyzing and evaluating the performance of such algorithms; specifi-

cally, we estimate the performance of the eSTREAM ciphers, and second-round

SHA-3 candidates in the ongoing competition to establish a new cryptographic

hash standard, SHA-3. Using this framework as a base, we then take advantage

of platform-specific optimization techniques to provide more precise performance

estimates for NVIDIA Graphics Processing Units. We further support our analysis

by presenting multi-stream implementation results of all but one of the eSTREAM

ciphers and all non-AES based SHA-3 candidates.

Simultaneously, we present the first (to our knowledge) open source multi-

GPU implementation of the cube attack. The framework can be used to analyze

arbitrary black box polynomials, while also providing speedup factors an order

of magnitude greater than corresponding CPU implementations. To verify the

soundness of our implementation we analyze the Trivium stream cipher, confirm-

ing previously found results, in addition to several new equations for finding key

136

137

bits of the round reduced variant. We further analyze the MICKEY v2 stream

cipher, the results of which lead us to conclude that the cipher is not susceptible

to such algebraic attacks, given our limitation to cubes of dimensions up to 20.

However, we note that the main motivation behind the framework implementa-

tion is to provide for a means for third parties to verify cryptanalysis results, a

tool we believe the cryptanalysis community has been lacking.

Finally, we present two methods for finding improved linear differential trails

for CubeHash and extend the linear differential cryptanalysis framework of Brier

et al. to allow for parallel trail searches, finer-grained dependency tables and

a more generic interface. Our method of backward computation lead to the first

practical collision attack on CubeHash-5/96, while the randomized search yielded

new highly probable differential trails applicable to finding improved collision at-

tacks for up to eight rounds. Furthermore, our extended, generalized framework

implementation was used to analyze toy versions of the BLAKE hash function

family and several new CubeHash variants not previously considered. Though

our analysis did not lead to an attack on the official CubeHash-16/32 or BLAKE

hash functions, to our knowledge, our results show the best attacks on simplified

versions of these two hash functions. We believe that these results will motivate

further analysis which we hope will reach the goal of understanding the strengths

and weaknesses of the full algorithms.

Appendix A

BLAKE Constants

For completeness we give the initial values h0
i ’s, permutation functions σr(i)’s,

and constants ci’s of the BLAKE family, as detailed in [8]; these are shown in

Table A.1, Table A.2, and Table A.3, respectively. Literals starting with 0x are in

hexadecimal form.

BLAKE-28 BLAKE-32 BLAKE-48 BLAKE-64

h0
0 0xC1059ED8 0x6A09E667 0xCBBB9D5DC1059ED8 0x6A09E667F3BCC908

h0
1 0x367CD507 0xBB67AE85 0x629A292A367CD507 0xBB67AE8584CAA73B

h0
2 0x3070DD17 0x3C6EF372 0x9159015A3070DD17 0x3C6EF372FE94F82B

h0
3 0xF70E5939 0xA54FF53A 0x152FECD8F70E5939 0xA54FF53A5F1D36F1

h0
4 0xFFC00B31 0x510E527F 0x67332667FFC00B31 0x510E527FADE682D1

h0
5 0x68581511 0x9B05688C 0x8EB44A8768581511 0x9B05688C2B3E6C1F

h0
6 0x64F98FA7 0x1F83D9AB 0xDB0C2E0D64F98FA7 0x1F83D9ABFB41BD6B

h0
7 0xBEFA4FA4 0x5BE0CD19 0x47B5481DBEFA4FA4 0x5BE0CD19137E2179

Table A.1 BLAKE intial values

Note that since there are only 10 permuation functions, for BLAKE-t48, 64u,
138

139

the permutation function used for rounds 9 and above are simply σ(r mod 10)(i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ0(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1(i) 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3

σ2(i) 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4

σ3(i) 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8

σ4(i) 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13

σ5(i) 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9

σ6(i) 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11

σ7(i) 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10

σ8(i) 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5

σ9(i) 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

Table A.2 BLAKE permutation function

140

BLAKE-t28, 32u BLAKE-t48, 64u

c0 0x243F6A88 0x243F6A8885A308D3

c1 0x85A308D3 0x13198A2E03707344

c2 0x13198A2E 0xA4093822299F31D0

c3 0x03707344 0x082EFA98EC4E6C89

c4 0xA4093822 0x452821E638D01377

c5 0x299F31D0 0xBE5466CF34E90C6C

c6 0x082EFA98 0xC0AC29B7C97C50DD

c7 0xEC4E6C89 0x3F84D5B5B5470917

c8 0x452821E6 0x9216D5D98979FB1B

c9 0x38D01377 0xD1310BA698DFB5AC

c10 0xBE5466CF 0x2FFD72DBD01ADFB7

c11 0x34E90C6C 0xB8E1AFED6A267E96

c12 0xC0AC29B7 0xBA7C9045F12C7F99

c13 0xC97C50DD 0x24A19947B3916CF7

c14 0x3F84D5B5 0x0801F2E2858EFC16

c15 0xB5470917 0x636920D871574E69

Table A.3 BLAKE constant values

Appendix B

MICKEY v2 Constants

The tap vector T for register r is defined below:

T = (1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0,

1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0,

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0,

0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0).

Similarly, the bit vectors used by Clocks to update the s register are:

C0 = (0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,

0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0),

141

142

C1 = (0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1,

0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1,

0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1,

1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0),

F0 = (1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1,

0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0),

F1 = (1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0,

0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0,

0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1,

0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1).

Appendix C

Software Implementation of Grain

In Chapter 6 we presented general-purpose CPU benchmarking results for a 32-bit

software implementation of, the Grain stream cipher. As mentioned, unlike most

of the eSTREAM cipher submissions the Grain submission was not optimized for

software. Simply basing the GPU code on the submission code would have re-

sulted in a wholly inefficient implementation, and, thus we first optimized Grain

(following the ECRYPT API) for software. Using the original submitted source

code1, we only modified the C functions implementing the keystream generator

and IV setup.

The modifications to the original Grain submission are four-fold:

1. Below, we provide the modified data structure containing the internal state

of the cipher, defined in the standard ecrypt-sync.h header file (the reader

unfamiliar with the ECRYPT eSTREAM API is referred to the original Grain

submission source code).

1 typedef struct {
2 u32 s[3];
3 u32 b[3];

1Available at http://www.ecrypt.eu.org/stream/grainpf.html

143

http://www.ecrypt.eu.org/stream/grainpf.html

144

4 const u8* p key;
5 u32 keysize;
6 u32 ivsize;
7 } ECRYPT ctx;

2. The tables used in the original Grain implementation, as defined in grain.h,

were removed as deemed unnecessary.

3. The new keystream generator and supporting macros are given below. We

note that the keystream generator is a direct implementation of Grain and

refer to [59, 60] for a description of the cipher.

1 #define S0 (ctx�>s[0])
2 #define S1 (ctx�>s[1])
3 #define S2 (ctx�>s[2])
4

5 #define B0 (ctx�>b[0])
6 #define B1 (ctx�>b[1])
7 #define B2 (ctx�>b[2])
8

9 /* Helper macros for retrieving specific bits of a shift register */
10 #define get64(S) (S##2)
11 #define get63(S) (S##1>>31)
12 #define get62(S) (S##1>>30)
13 #define get60(S) (S##1>>28)
14 #define get56(S) (S##1>>24)
15 #define get52(S) (S##1>>20)
16 #define get51(S) (S##1>>19)
17 #define get46(S) (S##1>>14)
18 #define get45(S) (S##1>>13)
19 #define get43(S) (S##1>>11)
20 #define get38(S) (S##1>> 6)
21 #define get37(S) (S##1>> 5)
22 #define get33(S) (S##1>> 1)
23 #define get31(S) (S##0>>31)
24 #define get28(S) (S##0>>28)
25 #define get25(S) (S##0>>25)
26 #define get23(S) (S##0>>23)
27 #define get21(S) (S##0>>21)
28 #define get15(S) (S##0>>15)
29 #define get14(S) (S##0>>14)
30 #define get13(S) (S##0>>13)
31 #define get10(S) (S##0>>10)

145

32 #define get9(S) (S##0>> 9)
33 #define get4(S) (S##0>> 4)
34 #define get3(S) (S##0>> 3)
35 #define get2(S) (S##0>> 2)
36 #define get1(S) (S##0>> 1)
37 #define get0(S) (S##0)
38

39 /* Helper macros for setting specific bits of a shift register */
40 #define set79(S,bit) (S##2=(S##2&(˜(1<<15)))|((bit&1)<<15))
41

42 /* Helpter macro for XORing bits into the shift register */
43 #define xor79(S,bit) (S##2ˆ=((bit&1)<<15))
44

45

46 /* The nonlinear function as defined in the article */
47 #define h(x0,x1,x2,x3,x4)\
48 ((x1)ˆ(x4)ˆ((x0)&(x3))ˆ((x2)&(x3))ˆ((x3)&(x4))ˆ((x0)&(x1)&(x2))\
49 ˆ((x0)&(x2)&(x3))ˆ((x0)&(x2)&(x4))ˆ((x1)&(x2)&(x4))ˆ((x2)&(x3)&(x4)))
50

51 /* Helper macro for shifting 3 32�bit registers */
52 #define SHIFT FSR(S)\
53 do {\
54 S##0=(S##0>>1)|(((S##1)&1)<<31);\
55 S##1=(S##1>>1)|(((S##2)&1)<<31);\
56 S##2=(S##2>>1);\
57 } while(0)
58

59

60 /*
61 * Function: grain keystream
62 *
63 * Synopsis
64 * Generates a new bit and updates the internal state of the cipher.
65 */
66 u8 grain keystream(ECRYPT ctx* ctx) {
67 u32 x0 = get3(S),
68 x1 = get25(S),
69 x2 = get46(S),
70 x3 = get64(S),
71 x4 = get63(B);
72

73 /* Compute output bit */
74 u32 Z = get1(B) ˆ get2(B) ˆ get4(B) ˆ get10(B) ˆ get31(B) ˆ get43(B) ˆ get56(B)
75 ˆ h(x0,x1,x2,x3,x4);
76

146

77 /* Compute linear feedback bit */
78 u32 S80 = get62(S) ˆ get51(S) ˆ get38(S) ˆ get23(S) ˆ get13(S) ˆ get0(S);
79

80 /* Compute nonlinear feedback bit */
81 #if !defined(COMBINE TERMS)
82

83 u32 B80 = (get0(S)) ˆ (get62(B)) ˆ (get60(B)) ˆ (get52(B)) ˆ (get45(B))
84 ˆ (get37(B)) ˆ (get33(B)) ˆ (get28(B)) ˆ (get21(B))
85 ˆ (get14(B)) ˆ (get9(B)) ˆ (get0(B)) ˆ (get63(B)&get60(B))
86 ˆ (get37(B)&get33(B)) ˆ (get15(B)&get9(B))
87 ˆ (get60(B)&get52(B)&get45(B)) ˆ (get33(B)&get28(B)&get21(B))
88 ˆ (get63(B)&get45(B)&get28(B)&get9(B))
89 ˆ (get60(B)&get52(B)&get37(B)&get33(B))
90 ˆ (get63(B)&get60(B)&get21(B)&get15(B))
91 ˆ (get63(B)&get60(B)&get52(B)&get45(B)&get37(B))
92 ˆ (get33(B)&get28(B)&get21(B)&get15(B)&get9(B))
93 ˆ (get52(B)&get45(B)&get37(B)&get33(B)&get28(B)&get21(B));
94

95 #else
96 /* Some terms are used multiple times, ’cache’ them.
97 The number in the comments of the following lines denotes the
98 number of occurrences in computing s {i+80}.
99 */

100

101 u32 B33 28 21 = (get33(B)&get28(B)&get21(B)); /* 3 */
102 u32 B52 45 37 = (get52(B)&get45(B)&get37(B)); /* 2 */
103 u32 B52 37 33 = (get52(B)&get37(B)&get33(B)); /* 2 */
104 u32 B60 52 45 = (get60(B)&get52(B)&get45(B)); /* 2 */
105 u32 B63 60 = (get63(B)&get60(B)); /* 3 */
106 u32 B37 33 = (get37(B)&get33(B)); /* 3 */
107 u32 B45 28 = (get45(B)&get28(B)); /* 2 */
108 u32 B15 9 = (get15(B)&get9(B)); /* 2 */
109 u32 B21 15 = (get21(B)&get15(B)); /* 2 */
110

111 u32 B80 = (get0(S)) ˆ (get62(B)) ˆ (get60(B)) ˆ (get52(B)) ˆ (get45(B))
112 ˆ (get37(B)) ˆ (get33(B)) ˆ (get28(B)) ˆ (get21(B))
113 ˆ (get14(B)) ˆ (get9(B)) ˆ (get0(B)) ˆ (B63 60) ˆ (B37 33) ˆ (B15 9)
114 ˆ (B60 52 45) ˆ (B33 28 21) ˆ (get63(B)&B45 28&get9(B))
115 ˆ (get60(B)&B52 37 33) ˆ (B63 60&B21 15)
116 ˆ (B63 60&B52 45 37) ˆ (B33 28 21&B15 9)
117 ˆ (B52 45 37&B33 28 21);
118 #endif
119

120 /* Shift registers */
121 SHIFT FSR(S);

147

122 SHIFT FSR(B);
123 /* Feedback bit */
124 set79(S,S80);
125 set79(B,B80);
126

127 return Z&1;
128 }

4. The modified IV setup function is given below:
1 void ECRYPT ivsetup(
2 ECRYPT ctx* ctx,
3 const u8* iv)
4 {
5 u32 outbit;
6 int i;
7 u8 *b=(u8*)ctx�>b;
8 u8 *s=(u8*)ctx�>s;
9

10 /* Copy key to context data structure */
11 for(i=0;i<10;i++)
12 b[i]=ctx�>p key[i];
13

14 /* Copy IV to context data structure */
15 for(i=0;i<ctx�>ivsize/8;i++)
16 s[i]=iv[i];
17

18 /* Set remaining bits to 1, as describe in paper */
19 for(i=ctx�>ivsize/8;i<10;i++)
20 s[i]=0xff;
21

22 /* Do initial clockings */
23 for (i=0;i<INITCLOCKS;++i) {
24 outbit=grain keystream(ctx);
25 xor79(S,outbit);
26 xor79(B,outbit);
27 }
28 }

We note that our implementation is not highly optimized and taking advan-

tage of SIMD instructions, 64-bit instructions, or inline assembly would provide

for additional speedup. Regardless, this implementation is 6.6 times faster than

the reference implementation.

Appendix D

gSTREAM API and Implementations

D.1 gSTREAM API

The header file below provides the API for the gSTREAM framework. The API

is very similar to the eSTREAM API, allowing for easier porting of already im-

plemented ciphers that conform to the aforementioned standard. Additionally,

the cu file provides cipher-independent code which may be used as a base for

implementing the portfolio.

gSTREAM.h:

1 #ifndef GSTREAM H
2 #define GSTREAM H
3

4 #define DEBUG
5 #include <stdint.h>
6

7 #define debug(...) \
8 fprintf(stderr, VA ARGS)
9 #else

10 #define debug(...) ;
11 #endif
12

148

D.1 gSTREAM API 149

13 #define CH ENDIANESS32(a) \
14 (((a)>>24) | (((a)>>8)&0x0000FF00) | (((a)<<8) & 0x00FF0000) | ((a)<<24))
15

16

17 typedef uint8 t u8;
18 typedef uint16 t u16;
19 typedef uint32 t u32;
20 typedef uint64 t u64;
21

22 typedef enum { ENCRYPT=0, DECRYPT=1, GEN KEYSTREAM=2 } gSTREAM action;
23

24

25 typedef struct {
26 int nr threads; /* per block */
27 int nr blocks;
28

29 u32 *keys d;
30 u32 key size; /* in bits */
31 int allocated keys;
32

33 u32 *ivs d;
34 u32 iv size; /* in bits */
35 int allocated ivs;
36

37 u32 *buff d, *buff h;
38 u32 buff size; /* in bytes (ceil to nearest 4�bytes) */
39 int allocated buff;
40

41 struct { /* expandable benchmarking struct */
42 unsigned timer;
43 } bench;
44

45 /* Insert cipher�dependent fields here: */
46

47 } gSTREAM ctx;
48

49 /* Initialize device and allocate any state�related buffers.
50 device � which device to use,
51 nr threads � number of threads/block,
52 nr blocks � number of blocks/grid
53 */
54 void gSTREAM init(gSTREAM ctx* ctx, int device, int nr threads, int nr blocks);
55

56 /* Do the key setup.
57 keys � all the stream keys: key[i][] corresponds to the i�th streams’s key,

D.1 gSTREAM API 150

58 keysize � size of key in bits,
59 ivsize � size of iv in bits
60 */
61 void gSTREAM keysetup(gSTREAM ctx* ctx, u8* keys, u32 keysize, u32 ivsize);
62

63 /* Do the iv setup.
64 ivs � all the stream ivs: iv[i][] corresponds to the i�th streams’s iv,
65 */
66 void gSTREAM ivsetup(gSTREAM ctx* ctx, u8* ivs);
67

68 /*
69 inputs � all the stream inputs:
70 input[i][] corresponds to the i�th streams’s input,
71 outputs � all the stream outputs:
72 output[i][] corresponds to the i�th streams’s output,
73 length � input/output length in bytes
74 */
75 void gSTREAM process bytes(gSTREAM action action, gSTREAM ctx* ctx,
76 u8* inputs, u8* outputs, u32 length);
77

78 /* Generate keystream bytes.
79 keystreams[i] = keystream i
80 length � keystream length in bytes
81 */
82 void gSTREAM keystream bytes(gSTREAM ctx* ctx, u8* keystreams, u32 length);
83

84 /* Free any allocated buffers and destroy context. */
85 void gSTREAM exit(gSTREAM ctx* ctx);
86

87 /* Get the measured time elapsed during keystream generation. */
88 double gSTREAM getTimerValue(gSTREAM ctx* ctx);
89

90 #endif

gSTREAM.cu:

1 #include <cutil inline.h>
2 #include <cuda runtime api.h>
3 #include <stdio.h>
4 #include <string.h>
5 #include <errno.h>
6 #include ”gSTREAM.h”
7

8 /* include cipher kernel function cu file */
9

D.1 gSTREAM API 151

10

11 void gSTREAM init(gSTREAM ctx* ctx, int device, int nr threads, int nr blocks){
12

13 cudaDeviceProp deviceProp;
14 int nr streams=nr threads*nr blocks;
15

16 /* set device */
17 cudaGetDeviceProperties(&deviceProp, device);
18 cudaSetDevice(device);
19 debug(”\nUsing device %d: \”%s\”\n”, device, deviceProp.name);
20

21 cutilSafeCall(cudaSetDeviceFlags(cudaDeviceMapHost));
22

23 ctx�>nr threads = nr threads;
24 ctx�>nr blocks = nr blocks;
25 ctx�>allocated keys=0;
26 ctx�>allocated ivs=0;
27 ctx�>allocated buff=0;
28

29 cutilCheckError(cutCreateTimer(&(ctx�>bench.timer)));
30

31 /* allocate cipher state */
32

33 }
34

35 void gSTREAM exit(gSTREAM ctx* ctx) {
36

37 if(ctx�>allocated keys) {
38 cutilSafeCall(cudaFree(ctx�>keys d));
39 }
40

41 if(ctx�>allocated ivs) {
42 cutilSafeCall(cudaFree(ctx�>ivs d));
43 }
44

45 if(ctx�>allocated buff) {
46 cutilSafeCall(cudaFreeHost(ctx�>buff h));
47 }
48

49 cutilCheckError(cutDeleteTimer(ctx�>bench.timer));
50

51 /* free cipher state */
52 }
53

54 void gSTREAM keysetup(gSTREAM ctx* ctx, u8* keys, u32 keysize, u32 ivsize) {

D.1 gSTREAM API 152

55

56 size t keys size;
57 int nr streams=ctx�>nr threads*ctx�>nr blocks;
58 u32* keys h=NULL;
59 size t key size bytes=sizeof(u8)*(((keysize�1)/(sizeof(u8)*8))+1);
60 size t key size nrwords=(((keysize�1)/(sizeof(u32)*8))+1);
61

62 ctx�>key size=keysize;
63 ctx�>iv size=ivsize;
64

65 /* allocate keys */
66 keys size=nr streams*sizeof(u32)*(((keysize�1)/(sizeof(u32)*8))+1);
67 cutilSafeCall(cudaMalloc((void**)&(ctx�>keys d),keys size));
68 ctx�>allocated keys=1;
69 if(!(keys h=(u32*)malloc(keys size))) {
70 fprintf(stderr,”Could not allocate keys h: %s\n”,strerror(errno));
71 exit(�1);
72 }
73

74 /* copy byte�aligned keys to word�stream�aligned keys */
75 {
76 u32 *curr key;
77 u8* tmp keys=keys;
78

79 /* allocate a current working key */
80 if(!(curr key=(u32*)malloc(sizeof(u32)*key size nrwords))) {
81 fprintf(stderr,”Could not allocate curr key: %s\n”,strerror(errno));
82 exit(�1);
83 }
84 memset(curr key,0x00,sizeof(u32)*key size nrwords);
85

86 for(int i=0;i<nr streams;i++) {
87 /* copy one of the keys to current key */
88 memcpy(curr key,tmp keys,key size bytes);
89 tmp keys+=key size bytes;
90 /* copy current key to stream�aligned one */
91 for(int j=0;j<key size nrwords;j++) {
92 keys h[j*nr streams+i]=CH ENDIANESS32(curr key[j]);
93 }
94 }
95

96 free(curr key);
97 }
98

99

D.1 gSTREAM API 153

100 /* Copy keys to device and free them from host */
101 cutilSafeCall(cudaMemcpy(ctx�>keys d,keys h,keys size,
102 cudaMemcpyHostToDevice));
103 free(keys h);
104

105 }
106

107 void gSTREAM ivsetup(gSTREAM ctx* ctx, u8* ivs) {
108

109 int nr streams=ctx�>nr threads*ctx�>nr blocks;
110 /* initialize the registers to all zeros */
111

112 if(ctx�>iv size>0) {
113 u8* tmp ivs=ivs;
114 u32* ivs h=NULL;
115 size t ivs size=
116 nr streams*sizeof(u32)*(((ctx�>iv size�1)/(sizeof(u32)*8))+1);
117

118 u32 *curr iv;
119 size t iv size bytes=sizeof(u8)*(((ctx�>iv size�1)/(sizeof(u8)*8))+1);
120 size t iv size nrwords=(((ctx�>iv size�1)/(sizeof(u32)*8))+1);
121

122 cutilSafeCall(cudaMalloc((void**)&(ctx�>ivs d),ivs size));
123 ctx�>allocated ivs=1;
124

125 if(!(ivs h=(u32*)malloc(ivs size))) {
126 fprintf(stderr,”Could not allocate ivs h: %s\n”,strerror(errno));
127 exit(�1);
128 }
129

130 /* allocate a current working iv */
131 if(!(curr iv=(u32*)malloc(sizeof(u32)*iv size nrwords))) {
132 fprintf(stderr,”Could not allocate curr iv: %s\n”,strerror(errno));
133 exit(�1);
134 }
135 memset(curr iv,0x00,sizeof(u32)*iv size nrwords);
136

137 for(int i=0;i<nr streams;i++) {
138 /* copy one of the ivs to current iv */
139 memcpy(curr iv,tmp ivs,iv size bytes);
140 tmp ivs+=iv size bytes;
141 /* copy current iv to stream�aligned one */
142 for(int j=0;j<iv size nrwords;j++) {
143 ivs h[j*nr streams+i]=CH ENDIANESS32(curr iv[j]);
144 }

D.1 gSTREAM API 154

145 }
146 free(curr iv);
147

148 /* Copy ivs to device and free them from host */
149 cutilSafeCall(cudaMemcpy(ctx�>ivs d,ivs h,ivs size,
150 cudaMemcpyHostToDevice));
151 free(ivs h);
152 }
153

154 /* Load in iv, key and preclock */
155 /* cipher */ keyivsetup<<<ctx�>nr blocks,ctx�>nr threads>>>(/* cipher state */
156 ,ctx�>keys d
157 ,ctx�>key size
158 ,ctx�>ivs d
159 ,ctx�>iv size);
160 cutilCheckMsg(”Kernel execution failed”);
161 cudaThreadSynchronize();
162

163 }
164

165 void gSTREAM keystream bytes(gSTREAM ctx* ctx, u8* keystreams, u32 length) {
166 gSTREAM process bytes(GEN KEYSTREAM,ctx,NULL,keystreams,length);
167 }
168

169 void gSTREAM process bytes(gSTREAM action action, gSTREAM ctx* ctx,
170 u8* inputs, u8* outputs, u32 length) {
171 int nr streams=ctx�>nr blocks*ctx�>nr threads;
172 size t length nr words=(((length�1)/(sizeof(u32)))+1);
173 size t buff size=nr streams*length nr words*sizeof(u32);
174 u32* tmp buffer;
175

176 /* allocate buffer */
177 if((!ctx�>allocated buff)||((length nr words*sizeof(u32))>ctx�>buff size)) {
178 if(ctx�>allocated buff) {
179 free(ctx�>buff h); //alocate a large buffer
180 }
181 cutilSafeCall(cudaHostAlloc((void**)&(ctx�>buff h),buff size,
182 cudaHostAllocMapped));
183 cutilSafeCall(cudaHostGetDevicePointer((void **)&(ctx�>buff d),
184 ctx�>buff h,0));
185 ctx�>allocated buff=1;
186 ctx�>buff size=length nr words*sizeof(u32);
187 }
188

189 /* allocate a current working buffer */

D.1 gSTREAM API 155

190 if(!(tmp buffer=(u32*)malloc(sizeof(u32)*length nr words))) {
191 fprintf(stderr,”Could not allocate tmp buffer: %s\n”,strerror(errno));
192 exit(�1);
193 }
194

195 if(action!=GEN KEYSTREAM) {
196 for(int i=0;i<nr streams;i++) {
197 /* copy one of the inputs to current working buffer */
198 memcpy(tmp buffer,inputs,length);
199 inputs+=length;
200 /* copy current iv to stream�aligned one */
201 for(int j=0;j<length nr words;j++) {
202 ctx�>buff h[j*nr streams+i]=CH ENDIANESS32(tmp buffer[j]);
203 }
204 }
205 }
206

207 /* process bytes */
208 cutilCheckError(cutStartTimer(ctx�>bench.timer));
209 /* cipher */ process bytes<<<ctx�>nr blocks,ctx�>nr threads>>>(action
210 ,/* cipher state */
211 ,ctx�>buff d
212 ,length nr words);
213 cutilCheckMsg(”Kernel execution failed”);
214 cudaThreadSynchronize();
215 cutilCheckError(cutStopTimer(ctx�>bench.timer));
216

217 /* copy from working buffer to output buffer */
218 for(int i=0;i<nr streams;i++) {
219 /* copy one of the keystreams to current keystream */
220 for(int j=0;j<length nr words;j++) {
221 tmp buffer[j]=ctx�>buff h[i+j*nr streams];
222 }
223 memcpy(outputs,tmp buffer,length);
224 outputs+=length;
225 }
226

227 free(tmp buffer);
228 }
229

230 double gSTREAM getTimerValue(gSTREAM ctx* ctx) {
231 return cutGetTimerValue(ctx�>bench.timer);
232 }

D.1 gSTREAM API 156

In addition to API files we provide a sample program which may be used to

test keystream generation, encryption, and decryption for all gSTREAM cipher

implementations. The program output may be used to test against eSTREAM

reference implementations.

gSTREAM test.h:

1 #ifndef GSTREAM TEST H
2 #define GSTREAM TEST H
3

4 #include <stdlib.h>
5 #include ”gSTREAM.h”
6

7 #define PRINT KEYIV 0
8 #define PRINT INPUT 0
9 #define PRINT OUTPUT 1

10

11 /* Given a seed, the number of streams=nr threads*nr blocks, key size,
12 iv size, and buffer byte�size generate buff size bytes keystream bytes.
13 If action is ENCRYPT or DECRYPT, a random buffer of same size is
14 created and the respective action (rather than generate keystream)
15 is performed.
16 */
17

18 void do test(int seed, int dev no, int nr threads, int nr blocks,
19 gSTREAM action action,
20 size t key size bytes,
21 size t iv size bytes, size t buff size bytes);
22

23 #endif

gSTREAM test.cpp:

1 #include <string.h>
2 #include <stdio.h>
3 #include <errno.h>
4 #include <cutil inline.h>
5 #include <cuda runtime api.h>
6 #include ”gSTREAM.h”
7 #include ”gSTREAM test.h”
8

D.1 gSTREAM API 157

9 /* Allocate and generate many random keys and random ivs. */
10 static void gen rand keys ivs(u8 **keys, size t key size,
11 u8 **ivs, size t iv size,
12 int nr) {
13 unsigned i;
14

15 if(!(*keys=(u8*)malloc(sizeof(u8)*key size*nr))) {
16 fprintf(stderr, ”Failed to allocate keys: %s\n”, strerror(errno));
17 exit(�1);
18 }
19

20 if(!(*ivs=(u8*)malloc(sizeof(u8)*iv size*nr))) {
21 fprintf(stderr, ”Failed to allocate ivs: %s\n”, strerror(errno));
22 exit(�1);
23 }
24 for(i=0;i<nr*key size;i++) { (*keys)[i]=(u8)rand();}
25 for(i=0;i<nr*iv size;i++) { (*ivs)[i]=(u8)rand();}
26 }
27

28 /* Generate random buffer. */
29 static void gen rand buffs(u8 *buffs, size t buff size, int nr) {
30 unsigned i;
31 for(i=0;i<nr*buff size;i++) {
32 buffs[i]=(u8)rand();
33 }
34 }
35

36 void do test(int seed, int dev no, int nr threads, int nr blocks,
37 gSTREAM action action,
38 size t key size bytes,
39 size t iv size bytes, size t buff size bytes) {
40

41

42 gSTREAM ctx ctx;
43 u8 *keys, *ivs, *buffs;
44 int nr streams=nr threads*nr blocks;
45 double ms time;
46

47 srand(seed);
48

49 gen rand keys ivs(&keys,key size bytes,&ivs,iv size bytes,nr streams);
50

51 if(PRINT KEYIV){
52 /* print keys and ivs */
53 unsigned i;

D.1 gSTREAM API 158

54 printf(”Keys:\n”);
55 for(i=0;i<nr streams*key size bytes;i++) {
56 printf(”0x%02x, ”,keys[i]);
57 if(!((i+1)%key size bytes)) { printf(”\n”); }
58 }
59

60 printf(”IVs:\n”);
61 for(i=0;i<nr streams*iv size bytes;i++) {
62 printf(”0x%02x, ”,ivs[i]);
63 if(!((i+1)%iv size bytes)) { printf(”\n”); }
64 }
65 }
66

67 if(!(buffs=(u8*)malloc(sizeof(u8)*buff size bytes*nr streams))) {
68 fprintf(stderr, ”Failed to allocate buffs: %s\n”, strerror(errno));
69 exit(�1);
70 }
71

72 /* initialize context */
73 gSTREAM init(&ctx,dev no,nr threads,nr blocks);
74

75 /* do the key and iv setup */
76 gSTREAM keysetup(&ctx,(u8*)keys,key size bytes*8,iv size bytes*8);
77 gSTREAM ivsetup(&ctx,(u8*)ivs);
78

79 if(action==GEN KEYSTREAM) {
80 gSTREAM keystream bytes(&ctx,(u8*)buffs,buff size bytes);
81 } else {
82 gen rand buffs(buffs,buff size bytes,nr streams);
83 if(PRINT INPUT) {
84 /* print input */
85 unsigned i;
86 printf(”Input:\n”);
87 for(i=0;i<nr streams*buff size bytes;i++) {
88 printf(”0x%02x, ”,buffs[i]);
89 if(!((i+1)%buff size bytes)) { printf(”\n”); }
90 }
91 }
92 gSTREAM process bytes(ENCRYPT,&ctx,(u8*)buffs,(u8*)buffs,buff size bytes);
93 }
94

95

96

97 if(PRINT OUTPUT){
98 /* print output */

D.2 MICKEY v2 Example Implementation 159

99 unsigned i;
100 printf(”Output:\n”);
101 for(i=0;i<nr streams*buff size bytes;i++) {
102 printf(”0x%02x, ”,buffs[i]);
103 if(!((i+1)%buff size bytes)) { printf(”\n”); }
104 }
105 }
106

107 ms time=gSTREAM getTimerValue(&ctx);
108

109 debug(”Elapsed time: %f ms, %f cycles/byte\n”,ms time
110 ,1242*1000*ms time/(buff size bytes*nr streams));
111

112 gSTREAM exit(&ctx);
113

114 free(keys);
115 free(ivs);
116 free(buffs);
117

118 }

D.2 MICKEY v2 Example Implementation

Below we present a full gSTREAM implementation of the MICKEY v2 stream

cipher. This implementation corresponds to the benchmarking result presented

in Chapter 6.

gSTREAM.h:

1 #ifndef GSTREAM H
2 #define GSTREAM H
3

4 #define DEBUG
5 #include <stdint.h>
6

7 #ifdef DEBUG
8 #define debug(...) \
9 fprintf(stderr, VA ARGS)

10 #else
11 #define debug(...) ;
12 #endif

D.2 MICKEY v2 Example Implementation 160

13

14 #define CH ENDIANESS32(a) \
15 (((a)>>24) | (((a)>>8)&0x0000FF00) | (((a)<<8) & 0x00FF0000) | ((a)<<24))
16

17

18 typedef uint8 t u8;
19 typedef uint16 t u16;
20 typedef uint32 t u32;
21 typedef uint64 t u64;
22

23 typedef enum { ENCRYPT=0, DECRYPT=1, GEN KEYSTREAM=2 } gSTREAM action;
24

25 typedef struct {
26 u32 *r d;
27 u32 *s d;
28 } MICKEY ctx;
29

30 typedef struct {
31 int nr threads; /* per block */
32 int nr blocks;
33

34 u32 *keys d;
35 u32 key size; /* in bits */
36 int allocated keys;
37

38 u32 *ivs d;
39 u32 iv size; /* in bits */
40 int allocated ivs;
41

42 u32 *buff d, *buff h;
43 u32 buff size; /* in bytes (ceil to nearest 4�bytes) */
44 int allocated buff;
45

46 struct { /* expandable benchmarking struct */
47 unsigned timer;
48 } bench;
49

50 /* Insert cipher�dependent fields here: */
51 MICKEY ctx mctx;
52

53 } gSTREAM ctx;
54

55 /* Initialize device and allocate any state�related buffers.
56 device � which device to use,
57 nr threads � number of threads/block,

D.2 MICKEY v2 Example Implementation 161

58 nr blocks � number of blocks/grid
59 */
60 void gSTREAM init(gSTREAM ctx* ctx, int device, int nr threads, int nr blocks);
61

62 /* Do the key setup.
63 keys � all the stream keys: key[i][] corresponds to the i�th streams’s key,
64 keysize � size of key in bits,
65 ivsize � size of iv in bits
66 */
67 void gSTREAM keysetup(gSTREAM ctx* ctx, u8* keys, u32 keysize, u32 ivsize);
68

69 /* Do the iv setup.
70 ivs � all the stream ivs: iv[i][] corresponds to the i�th streams’s iv,
71 */
72 void gSTREAM ivsetup(gSTREAM ctx* ctx, u8* ivs);
73

74 /*
75 inputs � all the stream inputs:
76 input[i][] corresponds to the i�th streams’s input,
77 outputs � all the stream outputs:
78 output[i][] corresponds to the i�th streams’s output,
79 length � input/output length in bytes
80 */
81 void gSTREAM process bytes(gSTREAM action action, gSTREAM ctx* ctx,
82 u8* inputs, u8* outputs, u32 length);
83

84 /* Generate keystream bytes.
85 keystreams[i] = keystream i
86 length � keystream length in bytes
87 */
88 void gSTREAM keystream bytes(gSTREAM ctx* ctx, u8* keystreams, u32 length);
89

90 /* Free any allocated buffers and destroy context. */
91 void gSTREAM exit(gSTREAM ctx* ctx);
92

93 /* Get the measured time elapsed during keystream generation. */
94 double gSTREAM getTimerValue(gSTREAM ctx* ctx);
95

96 #endif

gSTREAM.cu:

1 #include <cutil inline.h>
2 #include <cuda runtime api.h>
3 #include <stdio.h>

D.2 MICKEY v2 Example Implementation 162

4 #include <string.h>
5 #include <errno.h>
6 #include ”gSTREAM.h”
7

8 #include ”MICKEY kernel.cu”
9

10 void gSTREAM init(gSTREAM ctx* ctx, int device, int nr threads, int nr blocks){
11

12 cudaDeviceProp deviceProp;
13 MICKEY ctx *mctx=&ctx�>mctx;
14 int nr streams=nr threads*nr blocks;
15

16

17

18 /* set device */
19 cudaGetDeviceProperties(&deviceProp, device);
20 cudaSetDevice(device);
21 debug(”\nUsing device %d: \”%s\”\n”, device, deviceProp.name);
22

23 cutilSafeCall(cudaSetDeviceFlags(cudaDeviceMapHost));
24

25 ctx�>nr threads = nr threads;
26 ctx�>nr blocks = nr blocks;
27 ctx�>allocated keys=0;
28 ctx�>allocated ivs=0;
29 ctx�>allocated buff=0;
30

31 cutilCheckError(cutCreateTimer(&(ctx�>bench.timer)));
32

33 /* allocate Rabbit state */
34

35 cutilSafeCall(cudaMalloc((void**)&(mctx�>r d),nr streams*4*sizeof(u32)));
36 cutilSafeCall(cudaMalloc((void**)&(mctx�>s d),nr streams*4*sizeof(u32)));
37 }
38

39 void gSTREAM exit(gSTREAM ctx* ctx) {
40 MICKEY ctx *mctx=&ctx�>mctx;
41

42 if(ctx�>allocated keys) {
43 cutilSafeCall(cudaFree(ctx�>keys d));
44 }
45

46 if(ctx�>allocated ivs) {
47 cutilSafeCall(cudaFree(ctx�>ivs d));
48 }

D.2 MICKEY v2 Example Implementation 163

49

50 if(ctx�>allocated buff) {
51 cutilSafeCall(cudaFreeHost(ctx�>buff h));
52 }
53

54 cutilCheckError(cutDeleteTimer(ctx�>bench.timer));
55

56 cutilSafeCall(cudaFree(mctx�>r d));
57 cutilSafeCall(cudaFree(mctx�>s d));
58 }
59

60 void gSTREAM keysetup(gSTREAM ctx* ctx, u8* keys, u32 keysize, u32 ivsize) {
61

62 size t keys size;
63 int nr streams=ctx�>nr threads*ctx�>nr blocks;
64 u32* keys h=NULL;
65 size t key size bytes=sizeof(u8)*(((keysize�1)/(sizeof(u8)*8))+1);
66 size t key size nrwords=(((keysize�1)/(sizeof(u32)*8))+1);
67

68 ctx�>key size=keysize;
69 ctx�>iv size=ivsize;
70

71 /* allocate keys */
72 keys size=nr streams*sizeof(u32)*(((keysize�1)/(sizeof(u32)*8))+1);
73 cutilSafeCall(cudaMalloc((void**)&(ctx�>keys d),keys size));
74 ctx�>allocated keys=1;
75 if(!(keys h=(u32*)malloc(keys size))) {
76 fprintf(stderr,”Could not allocate keys h: %s\n”,strerror(errno));
77 exit(�1);
78 }
79

80 /* copy byte�aligned keys to word�stream�aligned keys */
81 {
82 u32 *curr key;
83 u8* tmp keys=keys;
84

85 /* allocate a current working key */
86 if(!(curr key=(u32*)malloc(sizeof(u32)*key size nrwords))) {
87 fprintf(stderr,”Could not allocate curr key: %s\n”,strerror(errno));
88 exit(�1);
89 }
90 memset(curr key,0x00,sizeof(u32)*key size nrwords);
91

92 for(int i=0;i<nr streams;i++) {
93 /* copy one of the keys to current key */

D.2 MICKEY v2 Example Implementation 164

94 memcpy(curr key,tmp keys,key size bytes);
95 tmp keys+=key size bytes;
96 /* copy current key to stream�aligned one */
97 for(int j=0;j<key size nrwords;j++) {
98 keys h[j*nr streams+i]=CH ENDIANESS32(curr key[j]);
99 }

100 }
101

102 free(curr key);
103 }
104

105 /* Copy keys to device and free them from host */
106 cutilSafeCall(cudaMemcpy(ctx�>keys d,keys h,keys size,
107 cudaMemcpyHostToDevice));
108 free(keys h);
109

110 }
111

112 void gSTREAM ivsetup(gSTREAM ctx* ctx, u8* ivs) {
113 MICKEY ctx *mctx=&ctx�>mctx;
114

115 int nr streams=ctx�>nr threads*ctx�>nr blocks;
116 /* initialize the registers to all zeros */
117

118 if(ctx�>iv size>0) {
119 u8* tmp ivs=ivs;
120 u32* ivs h=NULL;
121 size t ivs size=
122 nr streams*sizeof(u32)*(((ctx�>iv size�1)/(sizeof(u32)*8))+1);
123

124 u32 *curr iv;
125 size t iv size bytes=sizeof(u8)*(((ctx�>iv size�1)/(sizeof(u8)*8))+1);
126 size t iv size nrwords=(((ctx�>iv size�1)/(sizeof(u32)*8))+1);
127

128 cutilSafeCall(cudaMalloc((void**)&(ctx�>ivs d),ivs size));
129 ctx�>allocated ivs=1;
130

131 if(!(ivs h=(u32*)malloc(ivs size))) {
132 fprintf(stderr,”Could not allocate ivs h: %s\n”,strerror(errno));
133 exit(�1);
134 }
135

136 /* allocate a current working iv */
137 if(!(curr iv=(u32*)malloc(sizeof(u32)*iv size nrwords))) {
138 fprintf(stderr,”Could not allocate curr iv: %s\n”,strerror(errno));

D.2 MICKEY v2 Example Implementation 165

139 exit(�1);
140 }
141 memset(curr iv,0x00,sizeof(u32)*iv size nrwords);
142

143 for(int i=0;i<nr streams;i++) {
144 /* copy one of the ivs to current iv */
145 memcpy(curr iv,tmp ivs,iv size bytes);
146 tmp ivs+=iv size bytes;
147 /* copy current iv to stream�aligned one */
148 for(int j=0;j<iv size nrwords;j++) {
149 ivs h[j*nr streams+i]=CH ENDIANESS32(curr iv[j]);
150 }
151 }
152 free(curr iv);
153

154 /* Copy ivs to device and free them from host */
155 cutilSafeCall(cudaMemcpy(ctx�>ivs d,ivs h,ivs size,
156 cudaMemcpyHostToDevice));
157 free(ivs h);
158 }
159

160 /* Load in iv, key and preclock */
161 MICKEY keyivsetup<<<ctx�>nr blocks,ctx�>nr threads>>>(mctx�>r d
162 ,mctx�>s d
163 ,ctx�>keys d
164 ,ctx�>key size
165 ,ctx�>ivs d
166 ,ctx�>iv size);
167 cutilCheckMsg(”Kernel execution failed”);
168 cudaThreadSynchronize();
169

170 }
171

172 void gSTREAM keystream bytes(gSTREAM ctx* ctx, u8* keystreams, u32 length) {
173 gSTREAM process bytes(GEN KEYSTREAM,ctx,NULL,keystreams,length);
174 }
175

176 void gSTREAM process bytes(gSTREAM action action, gSTREAM ctx* ctx,
177 u8* inputs, u8* outputs, u32 length) {
178 int nr streams=ctx�>nr blocks*ctx�>nr threads;
179 size t length nr words=(((length�1)/(sizeof(u32)))+1);
180 size t buff size=nr streams*length nr words*sizeof(u32);
181 MICKEY ctx *mctx=&ctx�>mctx;
182 u32* tmp buffer;
183

D.2 MICKEY v2 Example Implementation 166

184 /* allocate buffer */
185 if((!ctx�>allocated buff)||((length nr words*sizeof(u32))>ctx�>buff size)) {
186 if(ctx�>allocated buff) {
187 free(ctx�>buff h); //alocate a large buffer
188 }
189 cutilSafeCall(cudaHostAlloc((void**)&(ctx�>buff h),buff size,
190 cudaHostAllocMapped));
191 cutilSafeCall(cudaHostGetDevicePointer((void **)&(ctx�>buff d),
192 ctx�>buff h,0));
193 ctx�>allocated buff=1;
194 ctx�>buff size=length nr words*sizeof(u32);
195 }
196

197 /* allocate a current working buffer */
198 if(!(tmp buffer=(u32*)malloc(sizeof(u32)*length nr words))) {
199 fprintf(stderr,”Could not allocate tmp buffer: %s\n”,strerror(errno));
200 exit(�1);
201 }
202

203 if(action!=GEN KEYSTREAM) {
204 for(int i=0;i<nr streams;i++) {
205 /* copy one of the inputs to current working buffer */
206 memcpy(tmp buffer,inputs,length);
207 inputs+=length;
208 /* copy current iv to stream�aligned one */
209 for(int j=0;j<length nr words;j++) {
210 ctx�>buff h[j*nr streams+i]=CH ENDIANESS32(tmp buffer[j]);
211 }
212 }
213 }
214

215 /* process bytes */
216 cutilCheckError(cutStartTimer(ctx�>bench.timer));
217 MICKEY process bytes<<<ctx�>nr blocks,ctx�>nr threads>>>(action
218 ,mctx�>r d
219 ,mctx�>s d
220 ,ctx�>buff d
221 ,length nr words);
222 cutilCheckMsg(”Kernel execution failed”);
223 cudaThreadSynchronize();
224 cutilCheckError(cutStopTimer(ctx�>bench.timer));
225

226 /* copy from working buffer to output buffer */
227 for(int i=0;i<nr streams;i++) {
228 /* copy one of the keystreams to current keystream */

D.2 MICKEY v2 Example Implementation 167

229 for(int j=0;j<length nr words;j++) {
230 tmp buffer[j]=ctx�>buff h[i+j*nr streams];
231 }
232 memcpy(outputs,tmp buffer,length);
233 outputs+=length;
234 }
235

236 free(tmp buffer);
237 }
238

239 double gSTREAM getTimerValue(gSTREAM ctx* ctx) {
240 return cutGetTimerValue(ctx�>bench.timer);
241 }

MICKEY kernel.cu:

1 #ifndef MICKEY KERNEL CU
2 #define MICKEY KERNEL CU
3

4 #define mem(mm,i,j,N) ((mm)[(i)+(j)*(N)])
5 #define max(a,b) (((a)>(b))?(a):(b))
6 #define min(a,b) (((a)<(b))?(a):(b))
7

8 /* Barely modified (form original submission) CLOCK R function. */
9 device void CLOCK R(u32 *oR0, u32 *oR1, u32 *oR2, u32 *oR3,

10 int input bit, int control bit) {
11 u32 R0=*oR0, R1=*oR1, R2=*oR2, R3=*oR3;
12 int Feedback bit;
13 int Carry0, Carry1, Carry2;
14 Feedback bit = ((R3 >> 3) & 1) ˆ input bit;
15 Carry0 = (R0 >> 31) & 1;
16 Carry1 = (R1 >> 31) & 1;
17 Carry2 = (R2 >> 31) & 1;
18

19 if (control bit) {
20 R0 ˆ= (R0 << 1);
21 R1 ˆ= (R1 << 1) ˆ Carry0;
22 R2 ˆ= (R2 << 1) ˆ Carry1;
23 R3 ˆ= (R3 << 1) ˆ Carry2;
24 } else {
25 R0 = (R0 << 1);
26 R1 = (R1 << 1) ˆ Carry0;
27 R2 = (R2 << 1) ˆ Carry1;
28 R3 = (R3 << 1) ˆ Carry2;
29 }

D.2 MICKEY v2 Example Implementation 168

30

31 if (Feedback bit) {
32 R0 ˆ= 0x1279327b;
33 R1 ˆ= 0xb5546660;
34 R2 ˆ= 0xdf87818f;
35 R3 ˆ= 0x00000003;
36 }
37 *oR0=R0;
38 *oR1=R1;
39 *oR2=R2;
40 *oR3=R3;
41 }
42

43 /* Barely modified (form original submission) CLOCK S function. */
44 device void CLOCK S(u32 *oS0, u32 *oS1, u32 *oS2, u32 *oS3,
45 int input bit, int control bit) {
46 u32 S0=*oS0, S1=*oS1, S2=*oS2, S3=*oS3;
47 int Feedback bit;
48 int Carry0, Carry1, Carry2;
49

50

51 Feedback bit = ((S3 >> 3) & 1) ˆ input bit;
52 Carry0 = (S0 >> 31) & 1;
53 Carry1 = (S1 >> 31) & 1;
54 Carry2 = (S2 >> 31) & 1;
55

56 S0 = (S0<<1) ˆ ((S0ˆ0x6aa97a30) & ((S0>>1) ˆ (S1<<31) ˆ 0xdd629e9a) & 0xfffffffe);
57 S1 = (S1<<1) ˆ ((S1ˆ0x7942a809) & ((S1>>1) ˆ (S2<<31) ˆ 0xe3a21d63)) ˆ Carry0;
58 S2 = (S2<<1) ˆ ((S2ˆ0x057ebfea) & ((S2>>1) ˆ (S3<<31) ˆ 0x91c23dd7)) ˆ Carry1;
59 S3 = (S3<<1) ˆ ((S3ˆ0x00000006) & ((S3>>1) ˆ 0x00000001) & 0x7) ˆ Carry2;
60

61 if (Feedback bit) {
62 if (control bit) {
63 S0 ˆ= 0x4c8cb877;
64 S1 ˆ= 0x4911b063;
65 S2 ˆ= 0x40fbc52b;
66 S3 ˆ= 0x00000008;
67 } else {
68 S0 ˆ= 0x9ffa7faf;
69 S1 ˆ= 0xaf4a9381;
70 S2 ˆ= 0x9cec5802;
71 S3 ˆ= 0x00000001;
72 }
73 }
74 *oS0=S0;

D.2 MICKEY v2 Example Implementation 169

75 *oS1=S1;
76 *oS2=S2;
77 *oS3=S3;
78 }
79

80 /* Macro version of the CLOCK KG function provided in submission code */
81 #define CLOCK KG(Keystream bit,R0,R1,R2,R3,S0,S1,S2,S3,mixing,input bit) \
82 do { \
83 int control bit r; \
84 int control bit s; \
85 \
86 (Keystream bit) = ((R0) ˆ (S0)) & 1; \
87 control bit r = (((S1) >> 2) ˆ ((R2) >> 3)) & 1; \
88 control bit s = (((R1) >> 1) ˆ ((S2) >> 3)) & 1; \
89 \
90 if((mixing)) { \
91 CLOCK R(&(R0), &(R1), &(R2), &(R3), (((S1)>>18)&1)ˆ(input bit), control bit r);\
92 } else { \
93 CLOCK R(&(R0), &(R1), &(R2), &(R3), (input bit), control bit r); \
94 } \
95 CLOCK S(&(S0), &(S1), &(S2), &(S3), (input bit), control bit s); \
96 } while(0)
97

98 /* Key and iv setup GPU code. */
99 global void MICKEY keyivsetup(u32* g r, u32* g s,

100 u32 *keys, u32 key size,
101 u32 *ivs, u32 iv size) {
102 u32 tID=blockIdx.x*blockDim.x+threadIdx.x;
103 u32 nr streams=blockDim.x*gridDim.x;
104

105 u32 r0,r1,r2,r3,
106 s0,s1,s2,s3;
107 int Keystream bit;
108

109 u32 sub keyiv;
110 int ivkey bit;
111 int ivkey no;
112 int i;
113

114 /* initialize the registers to all�zero */
115 r0=0; s0=0;
116 r1=0; s1=0;
117 r2=0; s2=0;
118 r3=0; s3=0;
119

D.2 MICKEY v2 Example Implementation 170

120 ivkey no=0;
121 while(iv size>0) {
122 /* read in the iv and clock for each bit */
123 sub keyiv = mem(ivs,tID,ivkey no++,nr streams);
124 for(i=0;i<min(iv size,32);i++) {
125 ivkey bit=(sub keyiv&0x80000000)?1:0;
126 CLOCK KG(Keystream bit,r0,r1,r2,r3,s0,s1,s2,s3,1,ivkey bit);
127 sub keyiv<<=1;
128 }
129 iv size=max((int)(iv size�32),0);
130 }
131

132 ivkey no=0;
133 while(key size>0) {
134 /* read in the key and clock for each bit */
135 sub keyiv = mem(keys,tID,ivkey no++,nr streams);
136 for(i=0;i<min(key size,32);i++) {
137 ivkey bit=(sub keyiv&0x80000000)?1:0;
138 CLOCK KG(Keystream bit,r0,r1,r2,r3,s0,s1,s2,s3,1,ivkey bit);
139 sub keyiv<<=1;
140 }
141 key size=max((int)(key size�32),0);
142 }
143

144 for(i=0;i<100;i++) { /* preclock */
145 CLOCK KG(Keystream bit,r0,r1,r2,r3,s0,s1,s2,s3,1,0);
146 }
147 /* write the registers to global state */
148 mem(g r,tID,0,nr streams)=r0; mem(g s,tID,0,nr streams)=s0;
149 mem(g r,tID,1,nr streams)=r1; mem(g s,tID,1,nr streams)=s1;
150 mem(g r,tID,2,nr streams)=r2; mem(g s,tID,2,nr streams)=s2;
151 mem(g r,tID,3,nr streams)=r3; mem(g s,tID,3,nr streams)=s3;
152

153 }
154

155 /* Process (encrypt/decrypt/keystream generate) bytes on the GPU */
156 global void MICKEY process bytes(gSTREAM action act,u32* g r, u32* g s,
157 u32 *buff, u32 nr words) {
158 u32 tID=blockIdx.x*blockDim.x+threadIdx.x;
159 u32 nr streams=blockDim.x*gridDim.x;
160

161 u32 r0,r1,r2,r3,
162 s0,s1,s2,s3;
163

164 int Keystream bit;

D.2 MICKEY v2 Example Implementation 171

165

166 /* read in the current state */
167 r0= mem(g r,tID,0,nr streams); s0= mem(g s,tID,0,nr streams);
168 r1= mem(g r,tID,1,nr streams); s1= mem(g s,tID,1,nr streams);
169 r2= mem(g r,tID,2,nr streams); s2= mem(g s,tID,2,nr streams);
170 r3= mem(g r,tID,3,nr streams); s3= mem(g s,tID,3,nr streams);
171

172 for(int w=0;w<nr words;w++) {
173 u32 output word=0;
174

175 if(act!=GEN KEYSTREAM) {
176 /* if encrypting/decrypting XOR with input */
177 output word= mem(buff,tID,w,nr streams);
178 }
179

180 #pragma unroll 32
181 for(int i=0;i<32;i++) {
182 /* generate 4�bytes of keystream */
183 CLOCK KG(Keystream bit,r0,r1,r2,r3,s0,s1,s2,s3,0,0);
184 output word ˆ= Keystream bit << (31�i);
185 }
186

187 /* write output to global memory */
188 mem(buff,tID,w,nr streams)=CH ENDIANESS32(output word);
189 }
190

191 /* write new (local) state to global state */
192 mem(g r,tID,0,nr streams)=r0; mem(g s,tID,0,nr streams)=s0;
193 mem(g r,tID,1,nr streams)=r1; mem(g s,tID,1,nr streams)=s1;
194 mem(g r,tID,2,nr streams)=r2; mem(g s,tID,2,nr streams)=s2;
195 mem(g r,tID,3,nr streams)=r3; mem(g s,tID,3,nr streams)=s3;
196

197 }
198 #endif

MICKEY test.cpp:

1 #include ”gSTREAM.h”
2 #include ”gSTREAM test.h”
3

4 int main(void) {
5 do test(0
6 ,2,128,680
7 ,GEN KEYSTREAM,10,10
8 ,1024);

D.3 Trivium Example Implementation 172

9 return 0;
10 }

D.3 Trivium Example Implementation

Below we present a full gSTREAM implementation of the Trivium stream cipher.

This implementation corresponds to the benchmarking result presented in Chap-

ter 6.

gSTREAM.h:

1 #ifndef GSTREAM H
2 #define GSTREAM H
3

4 #define DEBUG
5 #include <stdint.h>
6

7 #ifdef DEBUG
8 #define debug(...) \
9 fprintf(stderr, VA ARGS)

10 #else
11 #define debug(...) ;
12 #endif
13

14 #define CH ENDIANESS32(a) (a)
15

16

17 typedef uint8 t u8;
18 typedef uint16 t u16;
19 typedef uint32 t u32;
20 typedef uint64 t u64;
21

22 typedef enum { ENCRYPT=0, DECRYPT=1, GEN KEYSTREAM=2 } gSTREAM action;
23

24 typedef struct {
25 u32 *s32 d;
26 } Trivium ctx;
27

28

29 typedef struct {
30 int nr threads; /* per block */

D.3 Trivium Example Implementation 173

31 int nr blocks;
32

33 u32 *keys d;
34 u32 key size; /* in bits */
35 int allocated keys;
36

37 u32 *ivs d;
38 u32 iv size; /* in bits */
39 int allocated ivs;
40

41 u32 *buff d, *buff h;
42 u32 buff size; /* in bytes (ceil to nearest 4�bytes) */
43 int allocated buff;
44

45 struct { /* expandable benchmarking struct */
46 unsigned timer;
47 } bench;
48

49 /* Insert cipher�dependent fields here: */
50 Trivium ctx tctx;
51

52 } gSTREAM ctx;
53

54 /* Initialize device and allocate any state�related buffers.
55 device � which device to use,
56 nr threads � number of threads/block,
57 nr blocks � number of blocks/grid
58 */
59 void gSTREAM init(gSTREAM ctx* ctx, int device, int nr threads, int nr blocks);
60

61 /* Do the key setup.
62 keys � all the stream keys: key[i][] corresponds to the i�th streams’s key,
63 keysize � size of key in bits,
64 ivsize � size of iv in bits
65 */
66 void gSTREAM keysetup(gSTREAM ctx* ctx, u8* keys, u32 keysize, u32 ivsize);
67

68 /* Do the iv setup.
69 ivs � all the stream ivs: iv[i][] corresponds to the i�th streams’s iv,
70 */
71 void gSTREAM ivsetup(gSTREAM ctx* ctx, u8* ivs);
72

73 /*
74 inputs � all the stream inputs:
75 input[i][] corresponds to the i�th streams’s input,

D.3 Trivium Example Implementation 174

76 outputs � all the stream outputs:
77 output[i][] corresponds to the i�th streams’s output,
78 length � input/output length in bytes
79 */
80 void gSTREAM process bytes(gSTREAM action action, gSTREAM ctx* ctx,
81 u8* inputs, u8* outputs, u32 length);
82

83 /* Generate keystream bytes.
84 keystreams[i] = keystream i
85 length � keystream length in bytes
86 */
87 void gSTREAM keystream bytes(gSTREAM ctx* ctx, u8* keystreams, u32 length);
88

89 /* Free any allocated buffers and destroy context. */
90 void gSTREAM exit(gSTREAM ctx* ctx);
91

92 /* Get the measured time elapsed during keystream generation. */
93 double gSTREAM getTimerValue(gSTREAM ctx* ctx);
94

95 #endif

gSTREAM.cu:

1 #include <cutil inline.h>
2 #include <cuda runtime api.h>
3 #include <stdio.h>
4 #include <string.h>
5 #include <errno.h>
6 #include ”gSTREAM.h”
7

8 #include ”Trivium kernel.cu”
9

10 void gSTREAM init(gSTREAM ctx* ctx, int device, int nr threads, int nr blocks){
11

12 cudaDeviceProp deviceProp;
13 Trivium ctx *tctx=&ctx�>tctx;
14 int nr streams=nr threads*nr blocks;
15

16

17

18 /* set device */
19 cudaGetDeviceProperties(&deviceProp, device);
20 cudaSetDevice(device);
21 debug(”\nUsing device %d: \”%s\”\n”, device, deviceProp.name);
22

D.3 Trivium Example Implementation 175

23 cutilSafeCall(cudaSetDeviceFlags(cudaDeviceMapHost));
24

25 ctx�>nr threads = nr threads;
26 ctx�>nr blocks = nr blocks;
27 ctx�>allocated keys=0;
28 ctx�>allocated ivs=0;
29 ctx�>allocated buff=0;
30

31 cutilCheckError(cutCreateTimer(&(ctx�>bench.timer)));
32

33 /* allocate Trivium state */
34

35 cutilSafeCall(cudaMalloc((void**)&(tctx�>s32 d),nr streams*10*sizeof(u32)));
36 }
37

38 void gSTREAM exit(gSTREAM ctx* ctx) {
39 Trivium ctx *tctx=&ctx�>tctx;
40

41 if(ctx�>allocated keys) {
42 cutilSafeCall(cudaFree(ctx�>keys d));
43 }
44

45 if(ctx�>allocated ivs) {
46 cutilSafeCall(cudaFree(ctx�>ivs d));
47 }
48

49 if(ctx�>allocated buff) {
50 cutilSafeCall(cudaFreeHost(ctx�>buff h));
51 }
52

53 cutilCheckError(cutDeleteTimer(ctx�>bench.timer));
54

55 cutilSafeCall(cudaFree(tctx�>s32 d));
56 }
57

58 void gSTREAM keysetup(gSTREAM ctx* ctx, u8* keys, u32 keysize, u32 ivsize) {
59

60 size t keys size;
61 int nr streams=ctx�>nr threads*ctx�>nr blocks;
62 u32* keys h=NULL;
63 size t key size bytes=sizeof(u8)*(((keysize�1)/(sizeof(u8)*8))+1);
64 size t key size nrwords=(((keysize�1)/(sizeof(u32)*8))+1);
65

66 ctx�>key size=keysize;
67 ctx�>iv size=ivsize;

D.3 Trivium Example Implementation 176

68

69 /* allocate keys */
70 keys size=nr streams*sizeof(u32)*(((keysize�1)/(sizeof(u32)*8))+1);
71 cutilSafeCall(cudaMalloc((void**)&(ctx�>keys d),keys size));
72 ctx�>allocated keys=1;
73 if(!(keys h=(u32*)malloc(keys size))) {
74 fprintf(stderr,”Could not allocate keys h: %s\n”,strerror(errno));
75 exit(�1);
76 }
77

78 /* copy byte�aligned keys to word�stream�aligned keys */
79 {
80 u32 *curr key;
81 u8* tmp keys=keys;
82

83 /* allocate a current working key */
84 if(!(curr key=(u32*)malloc(sizeof(u32)*key size nrwords))) {
85 fprintf(stderr,”Could not allocate curr key: %s\n”,strerror(errno));
86 exit(�1);
87 }
88 memset(curr key,0x00,sizeof(u32)*key size nrwords);
89

90 for(int i=0;i<nr streams;i++) {
91 /* copy one of the keys to current key */
92 memcpy(curr key,tmp keys,key size bytes);
93 tmp keys+=key size bytes;
94 /* copy current key to stream�aligned one */
95 for(int j=0;j<key size nrwords;j++) {
96 keys h[j*nr streams+i]=CH ENDIANESS32(curr key[j]);
97 }
98 }
99

100 free(curr key);
101 }
102

103

104 /* Copy keys to device and free them from host */
105 cutilSafeCall(cudaMemcpy(ctx�>keys d,keys h,keys size,
106 cudaMemcpyHostToDevice));
107 free(keys h);
108

109

110 }
111

112 void gSTREAM ivsetup(gSTREAM ctx* ctx, u8* ivs) {

D.3 Trivium Example Implementation 177

113 Trivium ctx *tctx=&ctx�>tctx;
114

115 int nr streams=ctx�>nr threads*ctx�>nr blocks;
116 /* initialize the registers to all zeros */
117

118 if(ctx�>iv size>0) {
119 u8* tmp ivs=ivs;
120 u32* ivs h=NULL;
121 size t ivs size=
122 nr streams*sizeof(u32)*(((ctx�>iv size�1)/(sizeof(u32)*8))+1);
123

124 u32 *curr iv;
125 size t iv size bytes=sizeof(u8)*(((ctx�>iv size�1)/(sizeof(u8)*8))+1);
126 size t iv size nrwords=(((ctx�>iv size�1)/(sizeof(u32)*8))+1);
127

128 cutilSafeCall(cudaMalloc((void**)&(ctx�>ivs d),ivs size));
129 ctx�>allocated ivs=1;
130

131 if(!(ivs h=(u32*)malloc(ivs size))) {
132 fprintf(stderr,”Could not allocate ivs h: %s\n”,strerror(errno));
133 exit(�1);
134 }
135

136 /* allocate a current working iv */
137 if(!(curr iv=(u32*)malloc(sizeof(u32)*iv size nrwords))) {
138 fprintf(stderr,”Could not allocate curr iv: %s\n”,strerror(errno));
139 exit(�1);
140 }
141 memset(curr iv,0x00,sizeof(u32)*iv size nrwords);
142

143 for(int i=0;i<nr streams;i++) {
144 /* copy one of the ivs to current iv */
145 memcpy(curr iv,tmp ivs,iv size bytes);
146 tmp ivs+=iv size bytes;
147 /* copy current iv to stream�aligned one */
148 for(int j=0;j<iv size nrwords;j++) {
149 ivs h[j*nr streams+i]=CH ENDIANESS32(curr iv[j]);
150 }
151 }
152 free(curr iv);
153

154 /* Copy ivs to device and free them from host */
155 cutilSafeCall(cudaMemcpy(ctx�>ivs d,ivs h,ivs size,
156 cudaMemcpyHostToDevice));
157 free(ivs h);

D.3 Trivium Example Implementation 178

158 }
159 /* Load in iv, key and preclock */
160 Trivium keyivsetup<<<ctx�>nr blocks,ctx�>nr threads>>>(tctx�>s32 d
161 ,ctx�>keys d
162 ,ctx�>key size
163 ,ctx�>ivs d
164 ,ctx�>iv size);
165 cutilCheckMsg(”Kernel execution failed”);
166 cudaThreadSynchronize();
167

168 }
169

170 void gSTREAM keystream bytes(gSTREAM ctx* ctx, u8* keystreams, u32 length) {
171 gSTREAM process bytes(GEN KEYSTREAM,ctx,NULL,keystreams,length);
172 }
173

174 void gSTREAM process bytes(gSTREAM action action, gSTREAM ctx* ctx,
175 u8* inputs, u8* outputs, u32 length) {
176 int nr streams=ctx�>nr blocks*ctx�>nr threads;
177 size t length nr words=(((length�1)/(sizeof(u32)))+1);
178 size t buff size=nr streams*length nr words*sizeof(u32);
179 Trivium ctx *tctx=&ctx�>tctx;
180 u32* tmp buffer;
181

182 /* allocate buffer */
183 if((!ctx�>allocated buff)||((length nr words*sizeof(u32))>ctx�>buff size)) {
184 if(ctx�>allocated buff) {
185 free(ctx�>buff h); //alocate a large buffer
186 }
187 cutilSafeCall(cudaHostAlloc((void**)&(ctx�>buff h),buff size,
188 cudaHostAllocMapped));
189 cutilSafeCall(cudaHostGetDevicePointer((void **)&(ctx�>buff d),
190 ctx�>buff h,0));
191 ctx�>allocated buff=1;
192 ctx�>buff size=length nr words*sizeof(u32);
193 }
194

195

196 /* allocate a current working buffer */
197 if(!(tmp buffer=(u32*)malloc(sizeof(u32)*length nr words))) {
198 fprintf(stderr,”Could not allocate tmp buffer: %s\n”,strerror(errno));
199 exit(�1);
200 }
201

202 if(action!=GEN KEYSTREAM) {

D.3 Trivium Example Implementation 179

203 for(int i=0;i<nr streams;i++) {
204 /* copy one of the inputs to current working buffer */
205 memcpy(tmp buffer,inputs,length);
206 inputs+=length;
207 /* copy current iv to stream�aligned one */
208 for(int j=0;j<length nr words;j++) {
209 ctx�>buff h[j*nr streams+i]=CH ENDIANESS32(tmp buffer[j]);
210 }
211 }
212 }
213

214 /* process bytes */
215 cutilCheckError(cutStartTimer(ctx�>bench.timer));
216 Trivium process bytes<<<ctx�>nr blocks,ctx�>nr threads>>>(action
217 ,tctx�>s32 d
218 ,ctx�>buff d
219 ,length nr words);
220 cutilCheckMsg(”Kernel execution failed”);
221 cudaThreadSynchronize();
222 cutilCheckError(cutStopTimer(ctx�>bench.timer));
223

224 /* copy from working buffer to output buffer */
225 for(int i=0;i<nr streams;i++) {
226 /* copy one of the keystreams to current keystream */
227 for(int j=0;j<length nr words;j++) {
228 tmp buffer[j]=ctx�>buff h[i+j*nr streams];
229 }
230 memcpy(outputs,tmp buffer,length);
231 outputs+=length;
232 }
233

234 free(tmp buffer);
235 }
236

237 double gSTREAM getTimerValue(gSTREAM ctx* ctx) {
238 return cutGetTimerValue(ctx�>bench.timer);
239 }

Trivium kernel.cu:

1 #ifndef Trivium KERNEL CU
2 #define Trivium KERNEL CU
3

4 #define mem(mm,i,j,N) ((mm)[(i)+(j)*(N)])
5 #define max(a,b) (((a)>(b))?(a):(b))

D.3 Trivium Example Implementation 180

6 #define min(a,b) (((a)<(b))?(a):(b))
7

8 #define S(a, n) (s##a##n)
9 #define T(a) (t##a)

10

11 #define S32(a, b) ((S(a, 2) << (64 � (b))) | (S(a, 1) >> ((b) � 32)))
12 #define S64(a, b) ((S(a, 3) << (96 � (b))) | (S(a, 2) >> ((b) � 64)))
13 #define S96(a, b) ((S(a, 4) << (128 � (b))) | (S(a, 3) >> ((b) � 96)))
14

15 #define UPDATE() \
16 do { \
17 T(1) = S64(1, 66) ˆ S64(1, 93); \
18 T(2) = S64(2, 69) ˆ S64(2, 84); \
19 T(3) = S64(3, 66) ˆ S96(3, 111); \
20 \
21 Z(T(1) ˆ T(2) ˆ T(3)); \
22 \
23 T(1) ˆ= (S64(1, 91) & S64(1, 92)) ˆ S64(2, 78); \
24 T(2) ˆ= (S64(2, 82) & S64(2, 83)) ˆ S64(3, 87); \
25 T(3) ˆ= (S96(3, 109) & S96(3, 110)) ˆ S64(1, 69); \
26 } while (0)
27

28 #define ROTATE() \
29 do { \
30 S(1, 3) = S(1, 2); S(1, 2) = S(1, 1); S(1, 1) = T(3); \
31 S(2, 3) = S(2, 2); S(2, 2) = S(2, 1); S(2, 1) = T(1); \
32 S(3, 4) = S(3, 3); S(3, 3) = S(3, 2); S(3, 2) = S(3, 1); S(3, 1) = T(2); \
33 } while (0)
34

35 #define LOAD(s)\
36 do {\
37 S(1,1) = mem((s),tID,0,nr streams); S(2,1) = mem((s),tID,3,nr streams);\
38 S(1,2) = mem((s),tID,1,nr streams); S(2,2) = mem((s),tID,4,nr streams);\
39 S(1,3) = mem((s),tID,2,nr streams); S(2,3) = mem((s),tID,5,nr streams);\
40 \
41 S(3,1) = mem((s),tID,6,nr streams); S(3,3) = mem((s),tID,8,nr streams);\
42 S(3,2) = mem((s),tID,7,nr streams); S(3,4) = mem((s),tID,9,nr streams);\
43 } while(0)
44

45 #define STORE(s)\
46 do {\
47 mem((s),tID,0,nr streams) = S(1,1); mem((s),tID,3,nr streams) = S(2,1);\
48 mem((s),tID,1,nr streams) = S(1,2); mem((s),tID,4,nr streams) = S(2,2);\
49 mem((s),tID,2,nr streams) = S(1,3); mem((s),tID,5,nr streams) = S(2,3);\
50 \

D.3 Trivium Example Implementation 181

51 mem((s),tID,6,nr streams) = S(3,1); mem((s),tID,8,nr streams) = S(3,3);\
52 mem((s),tID,7,nr streams) = S(3,2); mem((s),tID,9,nr streams) = S(3,4);\
53 } while(0)
54

55 global void Trivium keyivsetup(u32* g s,
56 u32 *keys, u32 key size,
57 u32 *ivs, u32 iv size) {
58 u32 tID=blockIdx.x*blockDim.x+threadIdx.x;
59 u32 nr streams=blockDim.x*gridDim.x;
60

61 u32 s11, s12, s13;
62 u32 s21, s22, s23;
63 u32 s31, s32, s33, s34;
64

65 u32 key0,key1,key2;
66 u32 iv0,iv1,iv2;
67

68 /* read key and iv */
69 /* assuming the 4�byte aligned key/iv is 0’ed out if not a multiple of 4�bytes */
70 key0 = (key size>0)? mem(keys,tID,0,nr streams):0;
71 key1 = (key size>32)? mem(keys,tID,1,nr streams):0;
72 key2 = (key size>64)? mem(keys,tID,2,nr streams):0;
73

74 iv0 = (iv size>0)? mem(ivs,tID,0,nr streams):0;
75 iv1 = (iv size>32)? mem(ivs,tID,1,nr streams):0;
76 iv2 = (iv size>64)? mem(ivs,tID,2,nr streams):0;
77

78

79 /* load key and iv */
80 S(1,1)=key0;
81 S(1,2)=key1;
82 S(1,3)=key2&0xffff;
83

84 S(2,1)=iv0;
85 S(2,2)=iv1;
86 S(2,3)=iv2&0xffff;
87

88 S(3,1)=0;
89 S(3,2)=0;
90 S(3,3)=0;
91 S(3,4)=0x00007000;
92

93 #define Z(w)
94 for(int i = 0; i < 4 * 9; ++i) {
95 u32 t1, t2, t3;

D.3 Trivium Example Implementation 182

96

97 UPDATE();
98 ROTATE();
99 }

100

101 STORE(g s);
102

103

104 }
105

106 global void Trivium process bytes(gSTREAM action act, u32* g s,
107 u32 *buff, u32 nr words) {
108 u32 tID=blockIdx.x*blockDim.x+threadIdx.x;
109 u32 nr streams=blockDim.x*gridDim.x;
110

111 u32 s11, s12, s13;
112 u32 s21, s22, s23;
113 u32 s31, s32, s33, s34;
114

115 LOAD(g s);
116

117 #undef Z
118 #define Z(w) (output word ˆ= (w))
119 for(int w=0;w<nr words;w++) {
120 u32 t1, t2, t3;
121 u32 output word=0;
122

123 if(act!=GEN KEYSTREAM) {
124 output word= mem(buff,tID,w,nr streams);
125 }
126

127 UPDATE();
128 ROTATE();
129

130 mem(buff,tID,w,nr streams)=CH ENDIANESS32(output word);
131 }
132

133 STORE(g s);
134

135 }
136 #endif

Trivium test.cpp:

1 #include ”gSTREAM.h”

D.3 Trivium Example Implementation 183

2 #include ”gSTREAM test.h”
3

4 int main(void) {
5 do test(0
6 ,2,128,680
7 ,GEN KEYSTREAM,10,10
8 ,1024);
9 return 0;

10 }

Appendix E

XOR-Shift RNG Implementation

Below we present the implementation of Marsaglia’s XOR-Shift 32-bit random

number generator [77].

xsr rng.h:

1 #ifndef XSR RNG H
2 #define XSR RNG H
3 #include <stdint.h>
4

5 void xsr srand u32(uint32 t seed);
6 uint32 t xsr rand u32(void);
7

8 void xsr srand u64(uint64 t seed);
9 uint64 t xsr rand u64(void);

10 int rand int(int a, int b);
11

12 #define inline xsr def u32() \
13 u32 inline xsr seed u32;
14

15 #define inline xsr srand u32(seed) \
16 { inline xsr seed u32=seed; }
17

18 #define xor lsh(s,f) \
19 ((s)ˆ((s)<<(f)))
20

21 #define xor rsh(s,f) \

184

185

22 ((s)ˆ((s)>>(f)))
23

24 #define inline xsr rand u32() \
25 inline xsr seed u32= \
26 xor lsh(xor rsh(xor lsh(inline xsr seed u32,13),17),5)
27

28 #define inline rand int(a,b) \
29 (a)+((inline xsr rand u32())%((b)�(a)+1));
30

31 #endif

xsr rng.c:

1 #include ”xsr rng.h”
2 #include <stdio.h>
3

4

5 /* 32�bit version: */
6

7 static uint32 t xsr seed u32=2463534242;
8

9 void xsr srand u32(uint32 t seed) { xsr seed u32=seed; }
10

11 uint32 t xsr rand u32(void) {
12 xsr seed u32ˆ=(xsr seed u32<<13);
13 xsr seed u32ˆ=(xsr seed u32>>17);
14 xsr seed u32ˆ=(xsr seed u32<<5);
15 return xsr seed u32;
16

17 }
18

19 /* 64�bit version: */
20

21 static uint64 t xsr seed u64=88172645463325252LL;
22

23 void xsr srand u64(uint64 t seed) { xsr seed u64=seed; }
24

25 uint64 t xsr rand u64(void){
26 xsr seed u64ˆ=(xsr seed u64<<13);
27 xsr seed u64ˆ=(xsr seed u64>>7);
28 xsr seed u64ˆ=(xsr seed u64<<17);
29 return xsr seed u64;
30 }
31 /* random integer [a,b] */
32 int rand int(int a, int b) {

186

33 if(sizeof(int)==sizeof(uint64 t)) {
34 return a+(xsr rand u64()%(b�a+1));
35 } else {
36 return a+(xsr rand u32()%(b�a+1));
37 }
38 }

Appendix F

Differential Trails

In Chapter 7 we presented the complexity of numerous differential trails for both

CubeHash and BLAKE. Though some explicit trails were given and discussed in

previous chapters, for completeness and as a reference we present all the differ-

ential trails in this appendix.

F.1 BLAKE differential trails

In this section we provide the differential trails for some of the paths correspond-

ing to second preimage attacks on round-reduced, toy variants of BLAKE, as in-

troduced in Table 7.3, and Table 7.4. Note that in this section we use /r to denote

the number of rounds.

187

F.1 BLAKE differential trails 188

BLAZE32/1

For ∆, with 1/p∆ = 270:

∆ = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x81, 0x00, 0x81, 0x00, 0x10, 0x19, 0x10, 0x19, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x90, 0x11, 0x90, 0x11, 0x01, 0x08, 0x01, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

BRAKE32/1

For ∆, with 1/p∆ = 270:

∆ = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x81, 0x00, 0x81, 0x00, 0x10, 0x19, 0x10, 0x19, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x90, 0x11, 0x90, 0x11, 0x01, 0x08, 0x01, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

F.1 BLAKE differential trails 189

BLAZE64/1

For ∆, with 1/p∆ = 2107:

∆ = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 190

BRAKE64/1

For ∆, with 1/p∆ = 2429:

∆ = 0x00, 0x40, 0x80, 0x00, 0x00, 0x40, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x20, 0x95, 0x0a, 0x91, 0x48, 0x80, 0xff, 0x89, 0x70, 0x25, 0xb7, 0x39, 0x78,

0x00, 0x00, 0x00, 0x40, 0x20, 0x50, 0x20, 0x10, 0x20, 0x02, 0x18, 0x84, 0x00, 0x12, 0x38, 0x94,

0x81, 0x00, 0x85, 0x22, 0x90, 0x48, 0x90, 0x08, 0x98, 0x18, 0x30, 0x97, 0xbc, 0x12, 0x01, 0xdd,

0x00, 0x00, 0x20, 0x10, 0x20, 0x50, 0x00, 0x40, 0x38, 0xc0, 0x28, 0x06, 0x18, 0xd0, 0x08, 0x16,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails

Below we provide the differential tails (including their corresponding erasing

blocks) for the paths introduced in Table 7.8. As it is of little interest to present

the differentials for paths that are not considered attacks, we only present paths

for which the raw-probability p∆ ¡ 2�512.

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 191

CubeHash-1/10

For ∆ = ∆0} � � � }∆4, 1/p∆ = 232:

∆0 = 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x40, 0x40, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆3 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆4 = 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

CubeHash-2/10

For ∆ = ∆0}∆1}∆2, 1/p∆ = 232:

∆0 = 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x40, 0x40, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

CubeHash-3/10

For ∆ = ∆0} � � � }∆4, 1/p∆ = 2478:

∆0 = 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x41, 0x40, 0x05, 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆3 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆4 = 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 192

CubeHash-4/10

For ∆ = ∆0}∆1}∆2, 1/p∆ = 2189:

∆0 = 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x01, 0x00, 0x01, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

CubeHash-6/10

For ∆ = ∆0}∆1}∆2, 1/p∆ = 2478:

∆0 = 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x41, 0x40, 0x05, 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

CubeHash-1/20

For ∆ = ∆0} � � � }∆4, 1/p∆ = 230:

∆0 = 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x00, 0x04, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,

0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆3 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆4 = 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 193

CubeHash-2/20

For ∆ = ∆0}∆1}∆2, 1/p∆ = 230:

∆0 = 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x04, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,

0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

CubeHash-3/20

For ∆ = ∆0} � � � }∆4, 1/p∆ = 2394:

∆0 = 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x41, 0x40, 0x05, 0x15, 0x00, 0x00, 0x00, 0x00, 0x41, 0x40,

0x05, 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆3 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆4 = 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 194

CubeHash-4/20

For ∆ = ∆0}∆1}∆2, 1/p∆ = 2156:

∆0 = 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x44, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x44,

0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

CubeHash-6/20

For ∆ = ∆0}∆1}∆2, 1/p∆ = 2394:

∆0 = 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x41, 0x40, 0x05, 0x15, 0x00, 0x00, 0x00, 0x00, 0x41, 0x40,

0x05, 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 195

CubeHash-1/24

For ∆ = ∆0} � � � }∆4, 1/p∆ = 230:

∆0 = 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x00, 0x04, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x10, 0x10,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆3 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆4 = 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

CubeHash-2/24

For ∆ = ∆0}∆1}∆2, 1/p∆ = 230:

∆0 = 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x04, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x10, 0x10,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 196

CubeHash-3/24

For ∆ = ∆0} � � � }∆4, 1/p∆ = 2394:

∆0 = 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x41, 0x40, 0x05, 0x15, 0x00, 0x00, 0x00, 0x00, 0x41, 0x40, 0x05, 0x15,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆3 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆4 = 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

CubeHash-4/24

For ∆ = ∆0}∆1}∆2, 1/p∆ = 2156:

∆0 = 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x44, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x44, 0x00, 0x40,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 197

CubeHash-6/24

For ∆ = ∆0}∆1}∆2, 1/p∆ = 2394:

∆0 = 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x41, 0x40, 0x05, 0x15, 0x00, 0x00, 0x00, 0x00, 0x41, 0x40, 0x05, 0x15,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

CubeHash-1/36

For ∆ = ∆0} � � � }∆3, 1/p∆ = 213:

∆0 = 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x04, 0x10, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x10, 0x00,

0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,

0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x08

∆2 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80,

0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00

∆3 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 198

CubeHash-2/36

For ∆ = ∆0}∆1}∆2, 1/p∆ = 228:

∆0 = 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01

∆1 = 0x80, 0x00, 0x20, 0x80, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x20, 0x80,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x40, 0x00, 0x10

∆2 = 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 199

CubeHash-3/36

For ∆ = ∆0} � � � }∆3, 1/p∆ = 2343:

∆0 = 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x40, 0x01, 0x11, 0x40, 0x00, 0x01, 0x01, 0x40, 0x00, 0x01, 0x01,

0x40, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x02, 0x08,

0x08, 0x00, 0x02, 0x08, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0xa0, 0x00

∆2 = 0x00, 0x04, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x11, 0x00, 0x10, 0x10, 0x80, 0x02, 0x02, 0x82, 0x00, 0x02, 0x22, 0x02,

0x00, 0x02, 0x22, 0x02, 0x00, 0x02, 0x22, 0x02, 0x00, 0x00, 0x00, 0x00

∆3 = 0x01, 0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00,

0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00,

0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 200

CubeHash-4/36

For ∆ = ∆0}∆1}∆2, 1/p∆ = 2130:

∆0 = 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00

∆1 = 0x00, 0x02, 0x20, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x20, 0x02,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x10

∆2 = 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 201

CubeHash-5/36

For ∆ = ∆0} � � � }∆4, 1/p∆ = 2965, but c∆ 2512:

∆0 = 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00

∆1 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆2 = 0x28, 0xa0, 0x02, 0x88, 0x00, 0x00, 0x00, 0x00, 0x28, 0xa0, 0x02, 0x88,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x44, 0x14, 0x50, 0x01

∆3 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆4 = 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 202

CubeHash-6/36

For ∆ = ∆0}∆1}∆2, 1/p∆ = 2309:

∆0 = 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00

∆1 = 0x80, 0x0a, 0x2a, 0x82, 0x00, 0x00, 0x00, 0x00, 0x80, 0x0a, 0x2a, 0x82,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x41, 0x40, 0x05, 0x15

∆2 = 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10

CubeHash-8/36

For ∆ = ∆0}∆1}∆2, 1/p∆ = 2637, but c∆ 2512:

∆0 = 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00

∆1 = 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10

∆2 = 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 203

CubeHash-1/96

For ∆ = ∆0, 1/p∆ = 20:

∆0 = 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x20, 0x01,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,

0x08, 0x00, 0x20, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 204

CubeHash-2/96

For ∆ = ∆0, 1/p∆ = 218:

∆0 = 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x04, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x80,

0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,

0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 205

CubeHash-3/96

For ∆ = ∆0}∆1, 1/p∆ = 254:

∆0 = 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00,

0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x04, 0x04, 0x00, 0x01, 0x04, 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x88, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x80, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x10,

0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x04, 0x00, 0x01,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x80,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 206

CubeHash-4/96

For ∆ = ∆0}∆1, 1/p∆ = 240:

∆0 = 0x40, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,

0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x10, 0x00, 0x40, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x80, 0x00, 0x00, 0x00, 0x00

∆1 = 0x04, 0x00, 0x00, 0x01, 0x04, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x08, 0x20, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,

0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x01,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 207

CubeHash-5/96

For ∆ = ∆0}∆1, 1/p∆ = 2127:

∆0 = 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00,

0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x01, 0x00, 0x01, 0x11, 0x01, 0x00, 0x01, 0x11, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x80, 0x08, 0x00, 0x2a, 0x00, 0x00, 0x00, 0x00,

0x08, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x04, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x01, 0x01, 0x01, 0x00, 0x01, 0x11,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x22, 0x08,

0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 208

CubeHash-6/96

For ∆ = ∆0}∆1, 1/p∆ = 293:

∆0 = 0x40, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,

0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x10, 0x00, 0x40, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x80, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x40, 0x01, 0x10, 0x00, 0x40, 0x01, 0x10, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x88, 0x08, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00,

0x08, 0x08, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x04, 0x04, 0x00,

0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x01, 0x00, 0x00, 0x40, 0x01, 0x10,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x02, 0x08,

0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 209

CubeHash-7/96

For ∆ = ∆0}∆1, 1/p∆ = 2251:

∆0 = 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00,

0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x51, 0x44, 0x54, 0x40, 0x51, 0x44, 0x54, 0x40, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x28, 0x82, 0x00, 0x00, 0x00, 0x00,

0x02, 0x80, 0x0a, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x01, 0x40, 0x05,

0x00, 0x00, 0x00, 0x00, 0x40, 0x44, 0x00, 0x40, 0x51, 0x44, 0x54, 0x40,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x0a, 0x20, 0x02,

0x00, 0x00, 0x00, 0x00, 0x80, 0x08, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 210

CubeHash-8/96

For ∆ = ∆0}∆1, 1/p∆ = 2191:

∆0 = 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x02, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x01, 0x04, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00

∆1 = 0x04, 0x44, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x45, 0x44, 0x05, 0x14,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x20, 0x80, 0x22, 0x08, 0x20, 0x80, 0x22, 0x08, 0x00, 0x02, 0x22, 0x02,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,

0x44, 0x04, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0xa0, 0x00, 0x08, 0x20, 0x80, 0x22, 0x08

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 211

CubeHash-9/96

For ∆ = ∆0}∆1, 1/p∆ = 2428:

∆0 = 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00,

0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

∆1 = 0x00, 0x00, 0x08, 0x88, 0x00, 0x00, 0x08, 0x88, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x41, 0x41, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,

0x01, 0x45, 0x10, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xa0, 0x80, 0x22, 0x08,

0x00, 0x00, 0x00, 0x00, 0x0a, 0x28, 0x8a, 0x88, 0x00, 0x00, 0x08, 0x88,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x45, 0x10, 0x40, 0x01,

0x00, 0x00, 0x00, 0x00, 0x01, 0x44, 0x00, 0x50, 0x00, 0x00, 0x00, 0x00

F.2 CubeHash-�/t10, 20, 24, 36, 96u differential trails 212

CubeHash-10/96

For ∆ = ∆0}∆1, 1/p∆ = 2360:

∆0 = 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x02, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x01, 0x04, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00

∆1 = 0x51, 0x01, 0x45, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x11,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x80, 0x08, 0x20, 0x2a, 0x80, 0x08, 0x20, 0x2a, 0x88, 0xa8, 0x80, 0xa2,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x11, 0x00, 0x00, 0x00, 0x00,

0x01, 0x45, 0x11, 0x51, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x08, 0x02, 0x08, 0xa0, 0x80, 0x08, 0x20, 0x2a

Bibliography

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques and Tools. Addison Wesley, 2nd edition, 2006.

[2] AMD. ATI CTM Reference Guide. Technical Reference Manual, 2006.

[3] J. Aumasson, I. Dinur, W. Meier, and A. Shamir. Cube testers and key recov-

ery attacks on reduced-round MD6 and Trivium. In Fast Software Encryption,

pages 1–22. Springer, 2009.

[4] J. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. New

features of Latin dances: analysis of Salsa, ChaCha, and Rumba. In Fast

Software Encryption, pages 470–488. Springer, 2008.

[5] J. Aumasson, J. Guo, S. Knellwolf, K. Matusiewicz, and W. Meier. Differen-

tial and invertibility properties of BLAKE. In Fast Software Encryption, pages

318–332. Springer, 2010.

[6] J. Aumasson, W. Meier, and R. Phan. The hash function family LAKE. In

Fast Software Encryption, pages 36–53. Springer, 2008.

[7] J. Aumasson, W. Meier, and R. Phan. Toy versions of BLAKE. See http:

//www.131002.net/blake/toyblake.pdf, 2008.

213

http://www.131002.net/blake/toyblake.pdf
http://www.131002.net/blake/toyblake.pdf

BIBLIOGRAPHY 214

[8] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. SHA-3 proposal

BLAKE, 2008.

[9] S. Babbage, C. De Cannière, A. Canteaut, C. Cid, H. Gilbert, T. Johansson,

M. Parker, B. Preneel, V. Rijmen, and M. Robshaw. The eSTREAM portfolio.

eSTREAM, ECRYPT Stream Cipher Project, 2008.

[10] S. Babbage, C. De Cannière, A. Canteaut, C. Cid, H. Gilbert, T. Johansson,

M. Parker, B. Preneel, V. Rijmen, and M. Robshaw. The eSTREAM Portfolio

(rev. 1), 2008.

[11] S. Babbage and M. Dodd. The stream cipher MICKEY-128 2.0. ECRYPT

Stream Cipher Project, 2006.

[12] M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi, and M. Sudan. Linearity

testing in characteristic two. IEEE Transactions on Information Theory, 42(6

Part 1):1781–1795, 1996.

[13] R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw,

and Y. Seurin. SHA-3 Proposal: ECHO, 2009.

[14] R. Benadjila, O. Billet, S. Gueron, and M. J. B. Robshaw. The Intel AES

instructions set and the SHA-3 candidates. In Asiacrypt 2009, volume 5912

of LNCS, pages 162–178, 2009.

[15] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin,

A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, et al. Sosemanuk,

a fast software-oriented stream cipher. New Stream Cipher Designs, pages

98–118, 2008.

BIBLIOGRAPHY 215

[16] D. Bernstein. The Salsa20 family of stream ciphers. New Stream Cipher

Designs, pages 84–97, 2008.

[17] D. Bernstein. ChaCha, a variant of Salsa20. See http://cr.yp.to/chacha.

html, 2009.

[18] D. J. Bernstein. Cubehash. Submission to NIST, 2008.

[19] D. J. Bernstein. Cubehash. Submission to NIST (Round 2), 2009.

[20] D. J. Bernstein. CubeHash specification (2.B.1), 2009.

[21] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak specifications,

2009.

[22] M. Bevand. MD5 Chosen-Prefix Collisions on GPUs. Black Hat, 2009.

Whitepaper.

[23] E. Biham and R. Chen. Near-Collisions of SHA-0. In Advances in Cryptology

– CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages

290–305. Springer, 2004.

[24] E. Biham and O. Dunkelman. A framework for iterative hash functions–

HAIFA. In Second NIST Cryptographic Hash Workshop. Citeseer, 2006.

[25] E. Biham and O. Dunkelman. The SHAvite-3 Hash Function, 2009.

[26] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosys-

tems. Journal of CRYPTOLOGY, 4(1):3–72, 1991.

[27] A. Biryukov, A. Shamir, and D. Wagner. Real Time Cryptanalysis of A5/1

on a PC. In Fast Software Encryption, pages 37–44. Springer, 2000.

http://cr.yp.to/chacha.html
http://cr.yp.to/chacha.html

BIBLIOGRAPHY 216

[28] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applica-

tions to numerical problems. In Proceedings of the twenty-second annual ACM

symposium on Theory of computing, pages 73–83. ACM, 1990.

[29] D. Blythe. The Direct3D 10 system. ACM Trans. Graph., 25(3):724–734, 2006.

[30] O. A. R. Board. OpenMP Application Program Interface: Version 3.0. The

OpenMP API Specification for Parallel Programming, May 2008. http://

www.openmp.org/mp-documents/spec30.pdf.

[31] M. Boesgaard, M. Vesterager, T. Christensen, and E. Zenner. The Stream

Cipher Rabbit. ECRYPT Stream Cipher Project Report, 6, 2005.

[32] J. W. Bos and D. Stefan. Performance analysis of the SHA-3 candidates on

exotic multi-core architectures. In Workshop on Cryptographic Hardware and

Embedded Systems, CHES, volume 6225 of LNCS, pages 279–293. Springer,

August 2010.

[33] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr,

A. Gouget, T. Icart, J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin,

J.-R. Reinhard, C. Thuillet, and M. Videau. The Hash Function Shabal, 2008.

[34] E. Brier, S. Khazaei, W. Meier, and T. Peyrin. Linearization Framework

for Collision Attacks: Application to CubeHash and MD6. In Advances in

Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer

Science, pages 560–577. Springer, 2009.

[35] E. Brier, S. Khazaei, W. Meier, and T. Peyrin. Linearization Framework for

Collision Attacks: Application to CubeHash and MD6 (extended version).

Cryptology ePrint Archive, Report 2009/382, 2009. http://eprint.iacr.org.

http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://eprint.iacr.org

BIBLIOGRAPHY 217

[36] C. D. Cannière and C. Rechberger. Finding SHA-1 Characteristics: General

Results and Applications. In Advances in Cryptology – ASIACRYPT 2006,

volume 4284 of Lecture Notes in Computer Science, pages 1–20. Springer, 2006.

[37] C. D. Canniere, H. Sato, and D. Watanabe. Hash Function Luffa, 2009.

[38] F. Chabaud and A. Joux. Differential collisions in SHA-0. In Advances in

Cryptology – CRYPTO 98, volume 1462 of Lecture Notes in Computer Science,

pages 56–71. Springer, 1998.

[39] B. Chapman, G. Jost, R. Van der Pas, and D. Kuck. Using OpenMP: portable

shared memory parallel programming. The MIT Press, 2007.

[40] J. Daemen and V. Rijmen. The design of Rijndael. Springer-Verlag New York,

Inc. Secaucus, NJ, USA, 2002.

[41] C. De Cannière. Trivium: A stream cipher construction inspired by block

cipher design principles. Information Security, pages 171–186, 2006.

[42] C. De Cannière and B. Preneel. Trivium specifications. eSTREAM, ECRYPT

Stream Cipher Project, 2006.

[43] C. De Cannière and B. Preneel. Trivium. New Stream Cipher Designs, pages

244–266, 2008.

[44] C. De Cannière and C. Rechberger. Finding SHA-1 characteristics: General

results and applications. Advances in Cryptology–ASIACRYPT 2006, pages

1–20, 2006.

[45] I. Dinur and A. Shamir. Cube attacks on tweakable black box polynomials.

Cryptology ePrint Archive, Report 2008/385, 2008. http://eprint.iacr.org/.

http://eprint.iacr.org/

BIBLIOGRAPHY 218

[46] I. Dinur and A. Shamir. Cube attacks on tweakable black box polynomials.

Advances in Cryptology–EUROCRYPT 2009, pages 278–299, 2009.

[47] ECRYPT. The eSTREAM Project. http://www.ecrypt.eu.org/stream/, 2008.

[48] H. Englund, T. Johansson, and M. Sönmez Turan. A framework for chosen

IV statistical analysis of stream ciphers. Progress in Cryptology–INDOCRYPT

2007, pages 268–281, 2007.

[49] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,

J. Callas, and J. Walker. The Skein Hash Function Family, 2009.

[50] E. Ferro and F. Potorti. Bluetooth and Wi-Fi wireless protocols: a survey

and a comparison. IEEE Wireless Communications, 12(1):12–26, 2005.

[51] E. Filiol. A new statistical testing for symmetric ciphers and hash functions.

Information and Communications Security, pages 342–353, 2002.

[52] S. Fischer, S. Khazaei, and W. Meier. Chosen IV statistical analysis for key

recovery attacks on stream ciphers. Progress in Cryptology–AFRICACRYPT

2008, pages 236–245, 2008.

[53] M. P. I. Forum. MPI: A Message-Passing Interface Standard, Version

2.2. MPI Documents, September 2009. http://www.mpi-forum.org/docs/

mpi-2.2/mpi22-report.pdf.

[54] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,

M. Schläffer, and S. S. Thomsen. Grøstl – a SHA-3 candidate, 2008.

[55] D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, J. Amundsen, and

S. F. Mjolsnes. Cryptographic Hash Function BLUE MIDNIGHT WISH,

2009.

http://www.ecrypt.eu.org/stream/
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

BIBLIOGRAPHY 219

[56] S. Halevi, W. E. Hall, and C. S. Jutla. The Hash Function Fugue, 2009.

[57] S. Harbison and G. Steele. C, a reference manual. Prentice Hall, 2002.

[58] O. Harrison and J. Waldron. Practical Symmetric Key Cryptography on

Modern Graphics Hardware. In USENIX Security Symposium, pages 195–

210, 2008.

[59] M. Hell, T. Johansson, and W. Meier. Grain - a stream cipher for con-

strained environments. eSTREAM, ECRYPT Stream Cipher Project, Report

2005/010, 2005. http://www.ecrypt.eu.org/stream.

[60] M. Hell, T. Johansson, and W. Meier. Grain: a stream cipher for constrained

environments. International Journal of Wireless and Mobile Computing, 2(1):86–

93, 2007.

[61] J. Hennessy, D. Patterson, D. Goldberg, and K. Asanovic. Computer architec-

ture: a quantitative approach. Morgan Kaufmann, 2003.

[62] J. Hoeflinger. Extending OpenMP to clusters. White Paper, Intel Corporation,

2006.

[63] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenk-

ins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada,

S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege,

J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl,

S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson. A 48-Core IA-

32 Message-Passing Processor with DVFS in 45nm CMOS. In Proceedings of

the 2010 IEEE International Solid-State Circuits Conference. IEEE, 2010.

http://www.ecrypt.eu.org/stream

BIBLIOGRAPHY 220

[64] S. Indesteege and B. Preneel. Practical Collisions for EnRUPT. In FSE 2009,

volume 5665 of Lecture Notes in Computer Science, pages 246–259. Springer,

2009.

[65] A. Kaminsky. Parallel Cube Tester Analysis of the CubeHash One-Way

Hash Function. In 4th SIAM Conference on Parallel Processing for Scientific

Computing (PP10), 2010.

[66] S. Khazaei. Neutrality-Based Symmetric Cryptanalysis. PhD thesis, École Poly-

technique Fédérale de Lausanne, 2010.

[67] S. Khazaei, S. Knellwolf, W. Meier, and D. Stefan. Improved linear differ-

ential attacks on CubeHash. In Africacrypt 2010, LNCS. Springer, 2010. To

appear.

[68] D. B. Kirk and W. W. Hwu. Programming Massively Parallel Processors: A

Hands-on Approach. Morgan Kaufmann, 2010.

[69] V. Klima. Tunnels in hash functions: Md5 collisions within a minute. Cryp-

tology ePrint Archive, Report 2006/105, 2006. http://eprint.iacr.org/.

[70] O. Küçük. The Hash Function Hamsi, 2009.

[71] J. Lathrop. Cube attacks on cryptographic hash functions, 2009.

[72] A. Lenstra, X. Wang, and B. de Weger. Colliding X. 509 Certificates. In

Proceedings of ACISP, 2005.

[73] G. Leurent, C. Bouillaguet, and P.-A. Fouque. SIMD Is a Message Digest,

2009.

http://eprint.iacr.org/

BIBLIOGRAPHY 221

[74] H. Lipmaa and S. Moriai. Efficient algorithms for computing differential

properties of addition. In Fast Software Encryption, pages 35–45. Springer,

2001.

[75] S. A. Manavski. CUDA Compatible GPU as an Efficient Hardware Acceler-

ator for AES Cryptography. In ICSPC 2007, pages 65–68. IEEE, November

2007.

[76] S. Marechal. Advances in password cracking. Journal in Computer Virology,

4(1):73–81, 2008.

[77] G. Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8:1–6, 2003.

[78] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator. ACM Transac-

tions on Modeling and Computer Simulation (TOMACS), 8(1):3–30, 1998.

[79] A. Maximov and A. Biryukov. Two trivial attacks on trivium. In Selected

Areas in Cryptography, pages 36–55. Springer, 2007.

[80] G. Moore et al. Cramming more components onto integrated circuits. Pro-

ceedings of the IEEE, 86(1):82–85, 1998.

[81] G. E. Moore. Cramming more components onto integrated circuits,

reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.

Solid-State Circuits Newsletter, IEEE, 20(3):33 –35, September 2006.

[82] P. Mroczkowski and J. Szmidt. The Cube Attack on Stream Cipher Trivium

and Quadraticity Tests. Rump Session. CRYPTO, 2010.

[83] S. Muchnick. Advanced compiler design and implementation. Morgan Kauf-

mann, 1997.

BIBLIOGRAPHY 222

[84] A. Munshi. The OpenCL Specification. Khronos OpenCL Working Group,

2009.

[85] Y. Naito, Y. Sasaki, T. Shimoyama, J. Yajima, N. Kunihiro, and K. Ohta.

Improved Collision Search for SHA-0. In Advances in Cryptology – ASI-

ACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages 21–

36. Springer, 2006.

[86] National Institute of Standards and Technology. Secure hash standard. FIPS

180-1, NIST, http://www.itl.nist.gov/fipspubs/fip180-1.htm, April 1995.

[87] National Institute of Standards and Technology. Secure hash standard. FIPS

180-2, NIST, http://www.itl.nist.gov/fipspubs/fip180-2.htm, August 2002.

[88] National Institute of Standards and Technology. Announcing request

for candidate algorithm nominations for a new cryptographic hash algo-

rithm (SHA-3) family. Technical report, Department of Commerce, http://

csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf, Novem-

ber 2007.

[89] National Institute of Standards and Technology. Cryptographic hash al-

gorithm competition. http://csrc.nist.gov/groups/ST/hash/sha-3/index.

html, 2008.

[90] National Institute of Standards and Technology (NIST). FIPS-197: Advanced

Encryption Standard (AES), 2001. http://www.csrc.nist.gov/publications/

fips/fips197/fips-197.pdf.

[91] NVIDIA. NVIDIA Compute. PTX: Parallel Thread Execution, March 2009.

[92] NVIDIA. NVIDIA CUDA Programming Guide 2.3, 2009.

http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.itl.nist.gov/fipspubs/fip180-2.htm
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

BIBLIOGRAPHY 223

[93] G. L. Osa. Fast Implementation of Two Hash Algorithms on nVidia CUDA

GPU. Master’s thesis, Norwegian University of Science and Technology,

Norway, 2009.

[94] D. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures:

the case of AES. Topics in Cryptology–CT-RSA 2006, pages 1–20, 2006.

[95] D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright. Fast software AES

encryption. In FSE 2010, volume 6147 of LNCS, pages 75–93, 2010.

[96] J. Owens. GPU architecture overview. In SIGGRAPH 2007, page 2. ACM,

2007.

[97] J. Parkhurst, J. Darringer, and B. Grundmann. From single core to multi-

core: preparing for a new exponential. In Proceedings of the 2006 IEEE/ACM

international conference on Computer-aided design, page 72. ACM, 2006.

[98] V. Podlozhnyuk. Parallel mersenne twister. NVIDIA white paper, 2007.

[99] N. Pramstaller, C. Rechberger, and V. Rijmen. Exploiting coding theory for

collision attacks on SHA-1. In Cryptography and Coding, IMA Int. Conf. 2005,

volume 3796 of Lecture Notes in Computer Science, pages 78–95. Springer,

2005.

[100] B. Preneel, A. Biryukov, C. De Cannière, S. B. Örs, E. Oswald,

B. Van Rompay, L. Granboulan, E. Dottax, G. Martinet, S. Murphy, A. Dent,

R. Shipsey, C. Swart, J. White, M. Dichtl, S. Pyka, M. Schafheutle, P. Serf,

E. Biham, E. Barkan, Y. Braziler, O. Dunkelman, V. Furman, D. Kenigsberg,

J. Stolin, J.-J. Quisquater, M. Ciet, F. Sica, H. Raddum, L. Knudsen, and

M. Parker. Final report of European project IST-1999-12324:New European

Schemes for Signatures, Integrity, and Encryption, 2004.

BIBLIOGRAPHY 224

[101] V. Rijmen and E. Oswald. Update on SHA-1. In Topics in Cryptology – CT-

RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 58–71.

Springer, 2005.

[102] R. Rivest. The MD5 message-digest algorithm. RFC 1321, IETF, http://

www.ietf.org/rfc/rfc1321.txt, April 1992.

[103] M. Saarinen. Chosen-IV statistical attacks on eStream ciphers. SECRYPT,

pages 7–10, 2006.

[104] M. Segal and K. Akeley. The OpenGL graphics system: A specification

(version 2.0). Silicon Graphics, Mountain View, CA, 2004.

[105] V. Shoup. NTL: A Library for doing Number Theory. Version 5.5.2. http:

//www.shoup.net/ntl.

[106] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra, D. Molnar, D. Osvik, and

B. de Weger. MD5 considered harmful today. In Announced at the 25th

Chaos Communication Congress. URL: http://www. win. tue. nl/hashclash/rogue-

ca, 2008.

[107] T. O. G. T. S. B. Specifications. Ieee std 1003.1c-1995. amendment 2: Threads.

Technical report, IEEE, http://www.unix.org/version3/, 1995.

[108] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik,

and B. de Weger. Short chosen-prefix collisions for MD5 and the creation of

a rogue CA certificate. In Crypto 2009, volume 5677 of LNCS, pages 55–69,

2009.

http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
http://www.shoup.net/ntl
http://www.shoup.net/ntl
http://www.unix.org/version3/

BIBLIOGRAPHY 225

[109] R. Szerwinski and T. Güneysu. Exploiting the power of GPUs for asym-

metric cryptography. In CHES 2008, volume 5154 of LNCS, pages 79–99,

2008.

[110] I. UEA2&UIA. Specification of the 3GPP Confidentiality and Integrity Algo-

rithms UEA2& UIA2. Document 2: SNOW 3G Specifications. Version: 1.1.

ETSI/SAGE Specification, 2006.

[111] M. Vielhaber. Breaking one.fivium by aida an algebraic iv differential attack.

Cryptology ePrint Archive, Report 2007/413, 2007. http://eprint.iacr.org/.

[112] M. Vielhaber. AIDA Breaks BIVIUM (A&B) in 1 Minute Dual Core CPU

Time. Cryptology ePrint Archive, Report 2009/402, 2009. http://eprint.

iacr.org/.

[113] M. Vielhaber. Speeding up AIDA, the Algebraic IV Differential Attack, by

the Fast Reed-Muller Transform. In International Conference on Intelligent

Systems and Knowledge Engineering, ISKE 2009, 2009.

[114] X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions md4,

md5, haval-128 and ripemd. Cryptology ePrint Archive, Report 2004/199,

2004. http://eprint.iacr.org/.

[115] X. Wang, Y. Yin, and H. Yu. Finding collisions in the full SHA-1. In Advances

in Cryptology–CRYPTO 2005, pages 17–36. Springer, 2005.

[116] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In

Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in

Computer Science, pages 19–35. Springer, 2005.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

BIBLIOGRAPHY 226

[117] H. Wu. The stream cipher HC-128. New Stream Cipher Designs, pages 39–47,

2008.

[118] H. Wu. The Hash Function JH, 2009.

[119] J. Yang and J. Goodman. Symmetric Key Cryptography on Modern Graph-

ics Hardware. In Asiacrypt 2007, volume 4833 of LNCS, pages 249–264, 2007.

	Title Page
	Approval
	Abstract
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Stream Ciphers
	1.2 Hash Functions
	1.3 High-Performance Cryptologic Computing
	1.4 Related Work
	1.5 Contributions
	1.5.1 Implementation Contributions
	1.5.2 Analysis Contributions

	1.6 Thesis Outline

	2 Target primitives
	2.1 eSTREAM Stream Ciphers
	2.1.1 Trivium
	2.1.2 MICKEY v2

	2.2 SHA-3 Candidates
	2.2.1 BLAKE
	2.2.2 CubeHash

	3 SMP and GPU Parallel Programming
	3.1 OpenMP and SMPs
	3.1.1 SMP Architectures
	3.1.2 OpenMP Programming

	3.2 CUDA and GPUs
	3.2.1 GPU Architectures
	3.2.2 CUDA Programming

	4 Cube Attack
	4.1 Preliminaries
	4.2 Preprocessing
	4.2.1 Finding Maxterms
	4.2.2 Superpoly Reconstruction

	4.3 Online Attack

	5 Linear Differential Cryptanalysis
	5.1 Constructing Differential Trails
	5.1.1 Notation
	5.1.2 Raw Probability
	5.1.3 Forward Differential Trails
	5.1.4 Reverse Differential Trails
	5.1.5 Randomized Differential Trails

	5.2 Finding Collisions Using Condition Functions
	5.3 Freedom Degrees Use: Dependency Table

	6 Cryptography and Cryptanalysis on GPUs
	6.1 GPU Implementation of eSTREAM Ciphers
	6.1.1 gSTREAM Framework
	6.1.2 Implementation of eSTEAM Ciphers

	6.2 GPU Implementation of SHA-3 Candidates
	6.2.1 AES-Inspired SHA-3 Candidates
	6.2.2 Other SHA-3 Candidates

	6.3 Multi-GPU Implementation of the Cube Attack
	6.3.1 Finding Maxterms
	6.3.2 Superpoly Reconstruction
	6.3.3 Performance Measurements

	7 Cryptanalysis Results
	7.1 Applying the Cube Attack
	7.1.1 Trivium
	7.1.2 MICKEY

	7.2 Applying Linear Differential Cryptanalysis
	7.2.1 BLAKE
	7.2.2 CubeHash

	8 Conclusion
	A BLAKE Constants
	B MICKEY v2 Constants
	C Software Implementation of Grain
	D gSTREAM API and Implementations
	D.1 gSTREAM API
	D.2 MICKEY v2 Example Implementation
	D.3 Trivium Example Implementation

	E XOR-Shift RNG Implementation
	F Differential Trails
	F.1 BLAKE differential trails
	F.2 CubeHash-*/{10,20,24,36,96} differential trails

	Bibliography

