
Disjunction Category
Labels

Deian Stefan, Alejandro Russo, David Mazières, John Mitchell

NordSec 2011

Motivating Example

Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

Motivating Example

• Bob does not trust WebTax
➤ WebTax can exfiltrated his data

• WebTax author does not trust Bob
➤ Bob can learn proprietary
information by inspecting code

• WebTax author want to prevent
leaks due to bugs Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

Motivating Example

• Bob does not trust WebTax
➤ WebTax can exfiltrated his data

• WebTax author does not trust Bob
➤ Bob can learn proprietary
information by inspecting code

• WebTax author want to prevent
leaks due to bugs Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

Motivating Example

• Bob does not trust WebTax
➤ WebTax can exfiltrated his data

• WebTax author does not trust Bob
➤ Bob can learn proprietary
information by inspecting code

• WebTax author want to prevent
leaks due to bugs Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

Motivating Example

• Bob does not trust WebTax
➤ WebTax can exfiltrated his data

• WebTax author does not trust Bob
➤ Bob can learn proprietary
information by inspecting code

• WebTax author want to prevent
leaks due to bugs Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

Motivating Example

• Bob does not trust WebTax
➤ WebTax can exfiltrated his data

• WebTax author does not trust Bob
➤ Bob can learn proprietary
information by inspecting code

• WebTax author want to prevent
leaks due to bugs Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

How do we address security in the presence of mutual-distrust?

Information Flow Control

• Well-established approach to enforcing security
➤ Confidentiality: prevent unwanted leaks
➤ Integrity: prevent flows to critical operations

• Decentralized IFC addresses mutual distrust

• Suitable for executing untrustworthy code
➤ Policies specify where data can flow

Example with IFC

Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

Policy:
observable by Bob

Policy:
observable by
WebTax author

cannot be
exfiltrated to

network

• How are policies specified?
➤ Associating a label with every piece of data

• Labels form a lattice over can-flow-to relation ⊑
➤ E.g., Bob’s data cannot flow to network ⋢

• Policies are enforced at every possible flow

IFC Policies

WebTax

IFC Policies

WebTax
 ⊑ ?

• How are policies specified?
➤ Associating a label with every piece of data

• Labels form a lattice over can-flow-to relation ⊑
➤ E.g., Bob’s data cannot flow to network ⋢

• Policies are enforced at every possible flow

IFC Policies

WebTax
 ⋢

✗

• How are policies specified?
➤ Associating a label with every piece of data

• Labels form a lattice over can-flow-to relation ⊑
➤ E.g., Bob’s data cannot flow to network ⋢

• Policies are enforced at every possible flow

Motivation for DC Labels
• Existing DIFC systems use ad-hoc label formats

➤ DLM, Asbestos/HiStar, DStar, Flume, etc. all
present their own label format

• Most labels have not been formalized

• Some rely on centralized components

• Need simple, sound, expressive &
decentralized label format ➠ DC Labels

DC Labels

• Components S and I are formulas over principals
➤ Components impose restrictions on data flow

• Principal is a source of authority (e.g., Bob)

• Restrictions:
➤ S and I are minimal (sorted) formulas in CNF
➤ Neither S nor I contain negated terms

〈S, I〉

DC Labels

• Secrecy component S:
➤ Specifies principals allowed or whose consent
is necessary to observe the data

• Integrity component I:
➤ Specifies principals that created or are
allowed to modify the data

〈S, I〉

Example with DC Labels

Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

Policy:
observable by Bob

Policy:
observable by
WebTax author

Example with DC Labels

Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

Policy:
observable by Bob

Policy:
observable by
WebTax author

〈{Bob}, {Bob}〉

〈{Preparer}, {Preparer}〉

Example with DC Labels

Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

Policy:
observable by Bob

Policy:
observable by
WebTax author

〈{Bob}, {Bob}〉

〈{Preparer}, {Preparer}〉

Bob created &
vouches for data

Preparer created
& vouches for data

A more interesting label

〈{(Bob⋁Alice)⋀User}, {Bob⋁Alice}〉

A more interesting label

〈{(Bob⋁Alice)⋀User}, {Bob⋁Alice}〉

Policy:
created/modified
by Bob or Alice

A more interesting label

〈{(Bob⋁Alice)⋀User}, {Bob⋁Alice}〉
Policy I:
observable by Bob
or Alice

Policy II:
observable by
User (group)

Policy:
observable by Bob or Alice, given the
consent the User group (or vice versa)

➠

Policy:
created/modified
by Bob or Alice

A more interesting label

〈{(Bob⋁Alice)⋀User}, {Bob⋁Alice}〉
Policy I:
observable by Bob
or Alice

Policy II:
observable by
User (group)

Policy:
observable by Bob or Alice, given the
consent the User group (or vice versa)

➠

Policy:
created/modified
by Bob or Alice

“categories”

General observations

• Secrecy: {(A⋁B)⋀C⋀ }
➤ Disjunction ➠ allows more readers
➤ Conjunction ➠ more restrictions ∴ more secret

• Integrity: {(A⋁B)⋀C⋀ }
➤ Disjunction ➠ allows more writers
➤ Conjunction ➠ more restrictions ∴ trustworthy

…

…

Enforcing IFC
• Data may flow from one entity to another iff

➤ it accumulates more secrecy restrictions
➤ it losses integrity restrictions

S2 ⟹ S1 I1 ⟹ I2

〈S1, I1〉 ⊑ 〈S2, I2〉

Enforcing IFC
• Data may flow from one entity to another iff

➤ it accumulates more secrecy restrictions
➤ it losses integrity restrictions

S2 ⟹ S1 I1 ⟹ I2

〈S1, I1〉 ⊑ 〈S2, I2〉

Principal’s whose
consent is needed
to observe S2
must include
those of S1

Enforcing IFC
• Data may flow from one entity to another iff

➤ it accumulates more secrecy restrictions
➤ it losses integrity restrictions

S2 ⟹ S1 I1 ⟹ I2

〈S1, I1〉 ⊑ 〈S2, I2〉

Principal’s whose
consent is needed
to observe S2
must include
those of S1

Dual of secrecy.
I2 must be less
restricting than I1

Example of label relations
Secrecy

〈{Alice⋁Bob}, True〉 〈{Alice⋁Bob⋁Charlie}, True〉

〈{Alice⋀Bob}, True〉 〈{Alice}, True〉

〈{Alice⋁Bob}, True〉 〈{Alice⋀Dan}, True〉

Example of label relations
Secrecy

〈{Alice⋁Bob}, True〉 〈{Alice⋁Bob⋁Charlie}, True〉✗

〈{Alice⋀Bob}, True〉 〈{Alice}, True〉

〈{Alice⋁Bob}, True〉 〈{Alice⋀Dan}, True〉

Example of label relations
Secrecy

〈{Alice⋁Bob}, True〉 〈{Alice⋁Bob⋁Charlie}, True〉✗

〈{Alice⋀Bob}, True〉 〈{Alice}, True〉

〈{Alice⋁Bob}, True〉 〈{Alice⋀Dan}, True〉✓

Example of label relations
Secrecy

〈{Alice⋁Bob}, True〉 〈{Alice⋁Bob⋁Charlie}, True〉✗

〈{Alice⋀Bob}, True〉 〈{Alice}, True〉✗

〈{Alice⋁Bob}, True〉 〈{Alice⋀Dan}, True〉✓

Example of label relations
Integrity

〈True, {Alice}〉 〈True, {Alice⋀Bob}〉

〈 True, {Alice}〉 〈True, {Alice⋁Bob}〉

〈True, {Alice⋁Bob}〉 〈True, {Alice⋁Bob⋁Charlie}〉

Example of label relations
Integrity

〈True, {Alice}〉 〈True, {Alice⋀Bob}〉

〈 True, {Alice}〉 〈True, {Alice⋁Bob}〉

〈True, {Alice⋁Bob}〉 〈True, {Alice⋁Bob⋁Charlie}〉✓

Example of label relations
Integrity

〈True, {Alice}〉 〈True, {Alice⋀Bob}〉

〈 True, {Alice}〉 〈True, {Alice⋁Bob}〉✓
〈True, {Alice⋁Bob}〉 〈True, {Alice⋁Bob⋁Charlie}〉✓

Example of label relations
Integrity

〈True, {Alice}〉 〈True, {Alice⋀Bob}〉✗

〈 True, {Alice}〉 〈True, {Alice⋁Bob}〉✓
〈True, {Alice⋁Bob}〉 〈True, {Alice⋁Bob⋁Charlie}〉✓

DC Labels form a lattice

• Combining differently labeled data ➠ join ⊔

• Writing to differently labeled entities ➠ meet ⊓
➤ Dual of join: 〈S1, I1〉 ⊓ 〈S2, I2〉 = 〈S1⋁S2, I1⋀I2〉

〈S1, I1〉 ⊔ 〈S2, I2〉 = 〈S1⋀S2, I1⋁I2〉

DC Labels form a lattice

• Combining differently labeled data ➠ join ⊔

• Writing to differently labeled entities ➠ meet ⊓
➤ Dual of join: 〈S1, I1〉 ⊓ 〈S2, I2〉 = 〈S1⋁S2, I1⋀I2〉

〈S1, I1〉 ⊔ 〈S2, I2〉 = 〈S1⋀S2, I1⋁I2〉

Need consent of principals in
S1 and S2 to observe data

DC Labels form a lattice

• Combining differently labeled data ➠ join ⊔

• Writing to differently labeled entities ➠ meet ⊓
➤ Dual of join: 〈S1, I1〉 ⊓ 〈S2, I2〉 = 〈S1⋁S2, I1⋀I2〉

〈S1, I1〉 ⊔ 〈S2, I2〉 = 〈S1⋀S2, I1⋁I2〉

Need consent of principals in
S1 and S2 to observe data

Principals of I1 or I2 could
have created the data

DC Labels form a lattice
• DC Labels are partially

ordered by ⊑ relation

• Have a well-defined join ⊔

• Have a well-defined meet ⊓

• We define top & bottom
elements:
➤ ⊤ = 〈False, True〉
➤ ⊥ = 〈True, False〉

⊤

⊥

〈True, True〉

⊑

⊑

Example with DC Labels

Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

〈{Preparer}, {Preparer}〉

〈{Bob}, {Bob}〉

〈True, True〉

〈{Preparer⋀Bob}, {Preparer⋁Bob}〉

Example with DC Labels

Public Network

WebTax

Bob

〈{Bob}, {Bob}〉

〈True, True〉

〈{Preparer⋀Bob}, {Preparer⋁Bob}〉

Example with DC Labels

Public Network

WebTax

Bob

✗

〈{Bob}, {Bob}〉

〈True, True〉

〈{Preparer⋀Bob}, {Preparer⋁Bob}〉

No leak!

Example with DC Labels

Public Network

WebTax

Bob
〈{Preparer⋀Bob}, {Preparer⋁Bob}〉

✗

✗

〈{Bob}, {Bob}〉

〈True, True〉

No leak!

Overly restrictive!

Privileges

• In any practical system need to have method of
releasing information

• Mutual-distrustful systems require declassification
➤ E.g., WebTax needs to declassify data for Bob

• Code running on behalf of principals can exercise
privileges corresponding to the principals
➤ Can declassify & endorse data using ⊑P relation

“can-flow-to given privileges p”

Privileges
• Privileges P are conjunctions of principals

• Code can use privileges P to
➤ remove a principal in P from the secrecy
component of a label ➠ declassification
➤ add a principal in P to an integrity
component of a label ➠ endorsement

P⋀S2 ⟹ S1 P⋀I1 ⟹ I2

〈S1, I1〉 ⊑P 〈S2, I2〉

Example with Privileges

Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

〈{Bob}, {Bob}〉

〈{Preparer}, {Preparer}〉〈True, True〉

〈{Preparer⋀Bob}, {Preparer⋁Bob}〉

{Bob} {Preparer}

Example with Privileges

Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

〈{Bob}, {Bob}〉

〈{Preparer}, {Preparer}〉〈True, True〉

Privilege to
declassify Bob’s
data & endorse
data on his behalf

Privilege to declassify
Preparer’s data

〈{Preparer⋀Bob}, {Preparer⋁Bob}〉

{Bob} {Preparer}

Example with Privileges

Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

〈{Bob}, {Bob}〉

〈{Preparer}, {Preparer}〉〈True, True〉

Privilege to
declassify Bob’s
data & endorse
data on his behalf

Privilege to declassify
Preparer’s data

〈{Preparer⋀Bob}, {Preparer⋁Bob}〉

{Bob} {Preparer}

Example with Privileges

Proprietary DBPublic Network

WebTaxSpeadsheet

Bob

〈{Bob}, {Bob}〉

〈{Preparer}, {Preparer}〉〈True, True〉

Privilege to
declassify Bob’s
data & endorse
data on his behalf

Privilege to declassify
Preparer’s data

〈{Preparer⋀Bob}, {Preparer⋁Bob}〉

{Bob} {Preparer}

Example with Privileges

Public Network

WebTax

Bob

〈{Bob}, {Bob}〉

〈True, True〉

✗ No leak!
⋣

⊒ 〈{Preparer⋀Bob}, {Preparer⋁Bob}〉

{Preparer}

Haskell Implementations
• Labels for dynamic IFC systems

➤ Principals are strings
➤ Categories are sets of principals
➤ Components are sets categories

• Labels for static IFC systems
➤ Prototype implementation that enforces IFC
for secrecy-only DC Labels (a la Curry-
Howard) with no compiler modifications!

Conclusions
• Presented new label format: DC Labels

➤ Formalized using propositional logic
➤ Proved several security properties
➤ Showed their use in common design patterns
➤ Presented two Haskell implementations

• Strength of DC Labels:
➤ Model is simple & sound
➤ Allows for specifying complex policies
➤ Decentralized

Thank you!

$> cabal install dclabel

www.scs.stanford.edu/~deian/dclabels

http://www.scs.stanford.edu/~deian/dclabels/
http://www.scs.stanford.edu/~deian/dclabels/

