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Flexible Dynamic Information Flow Control in Haskell

Introduction

Motivation

Motivation

Complex systems are composed
of many different modules

Generally, difficult to asses
quality of modules⇒ bugs and
malware are pervasive

Current approaches to execute
untrusted code are very limited
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Introduction

Motivation

Motivation: A paper review system
Integrating untrusted plugins

Administrator functionality

Add papers and users

Assign reviewers

Specify conflict of interest relationships

User functionality

Read papers and read/write reviews

Provide and execute (untrusted) plugins

Security Policy: User in conflict with a paper
should not be able to read the corresponding review.
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Introduction

Motivation

Motivation: A paper review system
Integrating untrusted plugins

Example third-party plugins

1 Online chat for discussing common reviews

2 Alternative user interface

3 PDF viewer with review annotations

4 . . .
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Introduction

Motivation

Motivation: A paper review system
Integrating untrusted plugins

Challenge: How do we safely integrate plugins?

1 Limit plugins to pure computations

✗ Inflexible: may want to use references,
file-system, etc.

2 Allow plugins to use IO library

✗ Insecure: can easily violate security policies
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Introduction

Motivation

Motivation: A paper review system
Integrating untrusted plugins

Challenge: How do we safely integrate plugins?
Solution: New Labeled IO (LIO) library

✓ Secure: security policies enforced in
end-to-end fashion

✓ Flexible: can access references, file-system,
etc., using policy-enforcing API
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✗ Requires reasoning about every line of code
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Information Flow Control Library

Enforcing Security Policies
Common approach: policy specifies what code
can be executed

✗ Requires reasoning about every line of code

Information flow control approach: policy
specifies where data can flow

✓ No reasoning about plugin code necessary
➥ Well- suited for executing untrusted code

✓ Natural way to specify policies
⊲ e.g., if Bob is in conflict with review R:

policy ≡ information from R cannot flow to Bob

➠ LIO is an IFC library!
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Information Flow Control Library

DIFC Model

Enforcing IFC With Labels
How do we track and control the flow of information?

R

Every piece of data in the system has a label
⊲ e.g., review has label LR

Every computation has a labels ∼ behavior
⊲ e.g., plugin has label LP

Labels are partially ordered by ⊑ (can flow
to) relation⇒ determines allowable flows

E.g., Plugin accesses a review.
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Information Flow Control Library

DIFC Model

Enforcing IFC With Labels
How do we track and control the flow of information?

RREAD

Every piece of data in the system has a label
⊲ e.g., review has label LR

Every computation has a labels ∼ behavior
⊲ e.g., plugin has label LP

Labels are partially ordered by ⊑ (can flow
to) relation⇒ determines allowable flows

E.g., READ is a flow from review to plugin.
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Information Flow Control Library

DIFC Model

Enforcing IFC With Labels
How do we track and control the flow of information?

RWRITE

Every piece of data in the system has a label
⊲ e.g., review has label LR

Every computation has a labels ∼ behavior
⊲ e.g., plugin has label LP

Labels are partially ordered by ⊑ (can flow
to) relation⇒ determines allowable flows

E.g., WRITE is a flow from plugin to review.
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Reasoning About Policy Enforcement
Transitivity of ⊑ relation

How do labels help enforce security policies?
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Information Flow Control Library

DIFC Model

Reasoning About Policy Enforcement
Transitivity of ⊑ relation

How do labels help enforce security policies?
➥ Labels impose restrictions on flow of data.
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Information Flow Control Library

DIFC Model

Reasoning About Policy Enforcement
Transitivity of ⊑ relation

X

E.g., Label review so it cannot flow to Bob
➥ Label policy enforced end-to-end
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E.g., Even if there are many paths from R to Bob
➥ There is no label LP such that LR ⊑ LP ⊑ LBob
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Information Flow Control Library

DIFC Model

Decentralized IFC
E.g., Suppose program chair wants to send
results, once the review process is over
➥ He cannot send result to Bob: ⊑ is too strict

X

A computation may employ privileges (⋆)
to bypass certain flow restrictions with ⊑⋆
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Core Library

The Right Language for DIFC

Difficult to do DIFC as a library
➥ Usually requires modifying language

Haskell is a natural fit for IFC
Type-level distinction between pure and
side-effecting code⇒ can control side-effects
Monad transformers⇒ can associate labels
with computations
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Information Flow Control Library

Core Library

The Right Language for DIFC

Difficult to do DIFC as a library
➥ Usually requires modifying language

Haskell is a natural fit for IFC
Type-level distinction between pure and
side-effecting code⇒ can control side-effects
Monad transformers⇒ can associate labels
with computations

Haskell is almost perfect
✗ Issue: unsafe∗ to break type system
✓ Addressed by SafeHaskell (see D. Terei’s talk)
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Information Flow Control Library

Core Library

LIO Overview
How do we implement an IFC library in Haskell?

Idea: Taint computation when reading sensitive
data, and prevent it writing to public channels

LIO monad used in enforcing IFC:
newtype LIO l a = LIO (StateT l IO a)

Monad keeps track of a floating label Lcur

➠ can read object O if LO ⊑ Lcur

➠ can raise Lcur to join Lcur ⊔ LO if LO 6⊑ Lcur

➠ can write/create object O if Lcur ⊑ LO

Primitives enforce IFC & adjust Lcur
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Information Flow Control Library

Core Library

LIO Overview
An example: plugin reading reviews

RA ← newLIORef LA ". . ."

...

myPlugin = do
a← readLIORef RA

b← readLIORef RB

return (a,b)

A B
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Information Flow Control Library

Core Library

LIO Overview
An example: plugin reading reviews

RA ← newLIORef LA ". . ."

...

myPlugin = do
a← readLIORef RA

b← readLIORef RB

return (a,b)

A B

How does LIO differ from other language-level systems?
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Information Flow Control Library

Core Library

LIO Overview
An example: malicious plugin leaking review information

E.g., Suppose want to prevent
plugins from accessing RB

evilPlugin = do
a← readLIORef RA

b← readLIORef RB

if b == ". . ."

then forever $ return (a,b)

else return (a,b)

A B
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Information Flow Control Library

Core Library

LIO Overview
An example: malicious plugin leaking review information

E.g., Suppose want to prevent
plugins from accessing RB

➥ limit Lcur with clearance Ccur

evilPlugin = do
a← readLIORef RA

✗b← readLIORef RB

if b == ". . ."

then forever $ return (a,b)

else return (a,b)

A B
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Information Flow Control Library

Core Library

What constructs does LIO provide?
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Information Flow Control Library

Core Library

Overview of LIO Primitives

Pure labeled values: Labeled l a

Create labeled values:
label :: Label l ⇒

l → a → LIO l (Labeled l a)

Inspect labeled values, affecting Lcur:

unlabel :: Label l ⇒
Labeled l a → LIO l a
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Information Flow Control Library

Core Library

Overview of LIO Primitives

Primitives for computing on secret data

Privilege-exercising constructs

Labeled references
Labeled file-system support

➥ Like references, but write also implies read

Labeled exceptions
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Formal Semantics & Security Proofs

Why trust the LIO approach?
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Formal Semantics & Security Proofs

Security Guarantees

Security Guarantees

Non-interference

Publicly observable results are not affected by
secret values in a program, through data or
control flow.

Confinement

Program bounded by Lcur and Ccur cannot:

Create/write values below Lcur

Create/write/read values above Ccur
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Formal Semantics & Security Proofs

Semantics of Core LIO + References

Semantics of Core LIO + References
A short overview

Extended λ→ calculus
➥ Bool, Labeled, LIORef, etc.

Dynamics: small step SOS
using evaluation contexts
Runtime environment Σ:

⊲ Σ.lbl: current label
⊲ Σ.clr: current clearance
⊲ Σ.φ: memory store

Step: 〈Σ, e〉 −→ 〈Σ′, e′〉

v ::= · · · | l | a | (e)LIO

| Lb v e | •

e ::= · · · | label l e

| unlabel e

| toLabeled l e

| newRef l e

| readRef a

| writeRef a e
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Formal Semantics & Security Proofs

Semantics of Core LIO + References

Semantics of Core LIO + References
A short overview

Example (Evaluation rule for newRef)

Σ.φ(a) = Lb l e l′ = Σ.lbl ⊔ l

l′ ⊑ Σ.clr Σ′ = Σ[lbl 7→ l′]

〈Σ, E[readRef a]〉 −→ 〈Σ′, E[return e]〉
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Formal Semantics & Security Proofs

Non-Interference: Proof Idea

Non-Interference: Proof Idea
Idea: No observable difference between

1 Normal program

2 Program with all secret values erased to •

Approach: Simulation with erasure function εL

〈Σ, e〉 −−→ 〈Σ′, e′〉




y

εL





y

εL

εL(〈Σ, e〉) −−→ L εL(〈Σ
′, e′〉)
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Non-Interference: Proof Idea
Idea: No observable difference between

1 Normal program

2 Program with all secret values erased to •

Approach: Simulation with erasure function εL

〈Σ, e〉 −−→ 〈Σ′, e′〉




y

εL





y

εL

εL(〈Σ, e〉) −−→ L εL(〈Σ
′, e′〉)

Details available in paper.
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Related Work

Related Work

Much existing work on static IFC
➥ DCC1, DLM28, FlowCaml30, SecIO31, etc.

Pro: Little/no runtime overhead

Con: Not very permissive or flexible
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Related Work

Related Work

Existing work on dynamic IFC in Haskell
➥ Li and Zdancewic25, Tsai et. al.7, Devriese

and Piessens12

Pro: Flexible, support multi-threading

Con: Little means for declassification or
mitigation covert channels
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Summary & Future Work

Labeled IO library approach to IFC
➠ Flexible and permissive dynamic system
➠ Addresses covert channels (with clearance)

Formal security proofs
➠ Non-interference property
➠ Containment property

Ongoing work
➠ Improve analysis of extensions (files, etc.)
➠ Distributed systems support (DStar, etc.)
➠ Termination-sensitive non-interference
➠ Web framework for executing untrusted code
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Thank you!

cabal install dclabel lio
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