
Flexible Dynamic Information Flow Control in Haskell

Flexible Dynamic Information
Flow Control in Haskell

Deian Stefan1 Alejandro Russo2

John C. Mitchell1 David Mazières1

1 2

Haskell’11
www.scs.stanford.edu/∼deian/lio

http://www.stanford.edu
http://www.chalmers.se
http://www.scs.stanford.edu/~deian/lio/

Flexible Dynamic Information Flow Control in Haskell

Introduction

Motivation

Motivation

Complex systems are composed
of many different modules

Generally, difficult to asses
quality of modules⇒ bugs and
malware are pervasive

Current approaches to execute
untrusted code are very limited

Flexible Dynamic Information Flow Control in Haskell

Introduction

Motivation

Motivation: A paper review system
Integrating untrusted plugins

Administrator functionality

Add papers and users

Assign reviewers

Specify conflict of interest relationships

User functionality

Read papers and read/write reviews

Provide and execute (untrusted) plugins

Security Policy: User in conflict with a paper
should not be able to read the corresponding review.

Flexible Dynamic Information Flow Control in Haskell

Introduction

Motivation

Motivation: A paper review system
Integrating untrusted plugins

Administrator functionality

Add papers and users

Assign reviewers

Specify conflict of interest relationships

User functionality

Read papers and read/write reviews

Provide and execute (untrusted) plugins

Security Policy: User in conflict with a paper
should not be able to read the corresponding review.

Flexible Dynamic Information Flow Control in Haskell

Introduction

Motivation

Motivation: A paper review system
Integrating untrusted plugins

Example third-party plugins

1 Online chat for discussing common reviews

2 Alternative user interface

3 PDF viewer with review annotations

4 . . .

Flexible Dynamic Information Flow Control in Haskell

Introduction

Motivation

Motivation: A paper review system
Integrating untrusted plugins

Challenge: How do we safely integrate plugins?

1 Limit plugins to pure computations

✗ Inflexible: may want to use references,
file-system, etc.

2 Allow plugins to use IO library

✗ Insecure: can easily violate security policies

Flexible Dynamic Information Flow Control in Haskell

Introduction

Motivation

Motivation: A paper review system
Integrating untrusted plugins

Challenge: How do we safely integrate plugins?
Solution: New Labeled IO (LIO) library

✓ Secure: security policies enforced in
end-to-end fashion

✓ Flexible: can access references, file-system,
etc., using policy-enforcing API

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Enforcing Security Policies
Common approach: policy specifies what code
can be executed

✗ Requires reasoning about every line of code

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Enforcing Security Policies
Common approach: policy specifies what code
can be executed

✗ Requires reasoning about every line of code

Information flow control approach: policy
specifies where data can flow

✓ No reasoning about plugin code necessary
➥ Well- suited for executing untrusted code

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Enforcing Security Policies
Common approach: policy specifies what code
can be executed

✗ Requires reasoning about every line of code

Information flow control approach: policy
specifies where data can flow

✓ No reasoning about plugin code necessary
➥ Well- suited for executing untrusted code

✓ Natural way to specify policies
⊲ e.g., if Bob is in conflict with review R:

policy ≡ information from R cannot flow to Bob

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Enforcing Security Policies
Common approach: policy specifies what code
can be executed

✗ Requires reasoning about every line of code

Information flow control approach: policy
specifies where data can flow

✓ No reasoning about plugin code necessary
➥ Well- suited for executing untrusted code

✓ Natural way to specify policies
⊲ e.g., if Bob is in conflict with review R:

policy ≡ information from R cannot flow to Bob

➠ LIO is an IFC library!

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

DIFC Model

Enforcing IFC With Labels
How do we track and control the flow of information?

R

Every piece of data in the system has a label
⊲ e.g., review has label LR

Every computation has a labels ∼ behavior
⊲ e.g., plugin has label LP

Labels are partially ordered by ⊑ (can flow
to) relation⇒ determines allowable flows

E.g., Plugin accesses a review.

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

DIFC Model

Enforcing IFC With Labels
How do we track and control the flow of information?

RREAD

Every piece of data in the system has a label
⊲ e.g., review has label LR

Every computation has a labels ∼ behavior
⊲ e.g., plugin has label LP

Labels are partially ordered by ⊑ (can flow
to) relation⇒ determines allowable flows

E.g., READ is a flow from review to plugin.

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

DIFC Model

Enforcing IFC With Labels
How do we track and control the flow of information?

RWRITE

Every piece of data in the system has a label
⊲ e.g., review has label LR

Every computation has a labels ∼ behavior
⊲ e.g., plugin has label LP

Labels are partially ordered by ⊑ (can flow
to) relation⇒ determines allowable flows

E.g., WRITE is a flow from plugin to review.

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

DIFC Model

Reasoning About Policy Enforcement
Transitivity of ⊑ relation

How do labels help enforce security policies?

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

DIFC Model

Reasoning About Policy Enforcement
Transitivity of ⊑ relation

How do labels help enforce security policies?
➥ Labels impose restrictions on flow of data.

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

DIFC Model

Reasoning About Policy Enforcement
Transitivity of ⊑ relation

X

E.g., Label review so it cannot flow to Bob
➥ Label policy enforced end-to-end

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

DIFC Model

Reasoning About Policy Enforcement
Transitivity of ⊑ relation

E.g., Even if there are many paths from R to Bob
➥ There is no label LP such that LR ⊑ LP ⊑ LBob

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

DIFC Model

Reasoning About Policy Enforcement
Transitivity of ⊑ relation

X

E.g., Even if there are many paths from R to Bob
➥ There is no label LP such that LR ⊑ LP ⊑ LBob

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

DIFC Model

Reasoning About Policy Enforcement
Transitivity of ⊑ relation

X

E.g., Even if there are many paths from R to Bob
➥ There is no label LP such that LR ⊑ LP ⊑ LBob

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

DIFC Model

Decentralized IFC
E.g., Suppose program chair wants to send
results, once the review process is over
➥ He cannot send result to Bob: ⊑ is too strict

X

A computation may employ privileges (⋆)
to bypass certain flow restrictions with ⊑⋆

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

DIFC Model

Decentralized IFC
E.g., Suppose program chair wants to send
results, once the review process is over
➥ He cannot send result to Bob: ⊑ is too strict

A computation may employ privileges (⋆)
to bypass certain flow restrictions with ⊑⋆

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

DIFC Model

Decentralized IFC
E.g., Suppose program chair wants to send
results, once the review process is over
➥ He cannot send result to Bob: ⊑ is too strict

A computation may employ privileges (⋆)
to bypass certain flow restrictions with ⊑⋆

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

The Right Language for DIFC

Difficult to do DIFC as a library
➥ Usually requires modifying language

Haskell is a natural fit for IFC
Type-level distinction between pure and
side-effecting code⇒ can control side-effects
Monad transformers⇒ can associate labels
with computations

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

The Right Language for DIFC

Difficult to do DIFC as a library
➥ Usually requires modifying language

Haskell is a natural fit for IFC
Type-level distinction between pure and
side-effecting code⇒ can control side-effects
Monad transformers⇒ can associate labels
with computations

Haskell is almost perfect
✗ Issue: unsafe∗ to break type system

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

The Right Language for DIFC

Difficult to do DIFC as a library
➥ Usually requires modifying language

Haskell is a natural fit for IFC
Type-level distinction between pure and
side-effecting code⇒ can control side-effects
Monad transformers⇒ can associate labels
with computations

Haskell is almost perfect
✗ Issue: unsafe∗ to break type system
✓ Addressed by SafeHaskell (see D. Terei’s talk)

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
How do we implement an IFC library in Haskell?

Idea: Taint computation when reading sensitive
data, and prevent it writing to public channels

LIO monad used in enforcing IFC:
newtype LIO l a = LIO (StateT l IO a)

Monad keeps track of a floating label Lcur

➠ can read object O if LO ⊑ Lcur

➠ can raise Lcur to join Lcur ⊔ LO if LO 6⊑ Lcur

➠ can write/create object O if Lcur ⊑ LO

Primitives enforce IFC & adjust Lcur

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: plugin reading reviews

RA ← newLIORef LA ". . ."

...

myPlugin = do
a← readLIORef RA

b← readLIORef RB

return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: plugin reading reviews

RA ← newLIORef LA ". . ."

...

myPlugin = do
a← readLIORef RA

b← readLIORef RB

return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: plugin reading reviews

RA ← newLIORef LA ". . ."

...

myPlugin = do
a← readLIORef RA

b← readLIORef RB

return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: plugin reading reviews

RA ← newLIORef LA ". . ."

...

myPlugin = do
a← readLIORef RA

b← readLIORef RB

return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: plugin reading reviews

RA ← newLIORef LA ". . ."

...

myPlugin = do
a← readLIORef RA

b← readLIORef RB

return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: plugin reading reviews

RA ← newLIORef LA ". . ."

...

myPlugin = do
a← readLIORef RA

b← readLIORef RB

return (a,b)

A B

How does LIO differ from other language-level systems?

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: malicious plugin leaking review information

E.g., Suppose want to prevent
plugins from accessing RB

evilPlugin = do
a← readLIORef RA

b← readLIORef RB

if b == ". . ."

then forever $ return (a,b)

else return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: malicious plugin leaking review information

E.g., Suppose want to prevent
plugins from accessing RB

evilPlugin = do
a← readLIORef RA

b← readLIORef RB

if b == ". . ."

then forever $ return (a,b)

else return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: malicious plugin leaking review information

E.g., Suppose want to prevent
plugins from accessing RB

evilPlugin = do
a← readLIORef RA

b← readLIORef RB

if b == ". . ."

then forever $ return (a,b)

else return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: malicious plugin leaking review information

E.g., Suppose want to prevent
plugins from accessing RB

evilPlugin = do
a← readLIORef RA

b← readLIORef RB

if b == ". . ."

then forever $ return (a,b)

else return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: malicious plugin leaking review information

E.g., Suppose want to prevent
plugins from accessing RB

evilPlugin = do
a← readLIORef RA

b← readLIORef RB

if b == ". . ."

then forever $ return (a,b)

else return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: malicious plugin leaking review information

E.g., Suppose want to prevent
plugins from accessing RB

➥ limit Lcur with clearance Ccur

evilPlugin = do
a← readLIORef RA

b← readLIORef RB

if b == ". . ."

then forever $ return (a,b)

else return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: malicious plugin leaking review information

E.g., Suppose want to prevent
plugins from accessing RB

➥ limit Lcur with clearance Ccur

evilPlugin = do
a← readLIORef RA

b← readLIORef RB

if b == ". . ."

then forever $ return (a,b)

else return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: malicious plugin leaking review information

E.g., Suppose want to prevent
plugins from accessing RB

➥ limit Lcur with clearance Ccur

evilPlugin = do
a← readLIORef RA

b← readLIORef RB

if b == ". . ."

then forever $ return (a,b)

else return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

LIO Overview
An example: malicious plugin leaking review information

E.g., Suppose want to prevent
plugins from accessing RB

➥ limit Lcur with clearance Ccur

evilPlugin = do
a← readLIORef RA

✗b← readLIORef RB

if b == ". . ."

then forever $ return (a,b)

else return (a,b)

A B

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

What constructs does LIO provide?

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

Overview of LIO Primitives

Pure labeled values: Labeled l a

Create labeled values:
label :: Label l ⇒

l → a → LIO l (Labeled l a)

Inspect labeled values, affecting Lcur:

unlabel :: Label l ⇒
Labeled l a → LIO l a

Flexible Dynamic Information Flow Control in Haskell

Information Flow Control Library

Core Library

Overview of LIO Primitives

Primitives for computing on secret data

Privilege-exercising constructs

Labeled references
Labeled file-system support

➥ Like references, but write also implies read

Labeled exceptions

Flexible Dynamic Information Flow Control in Haskell

Formal Semantics & Security Proofs

Why trust the LIO approach?

Flexible Dynamic Information Flow Control in Haskell

Formal Semantics & Security Proofs

Security Guarantees

Security Guarantees

Non-interference

Publicly observable results are not affected by
secret values in a program, through data or
control flow.

Confinement

Program bounded by Lcur and Ccur cannot:

Create/write values below Lcur

Create/write/read values above Ccur

Flexible Dynamic Information Flow Control in Haskell

Formal Semantics & Security Proofs

Semantics of Core LIO + References

Semantics of Core LIO + References
A short overview

Extended λ→ calculus
➥ Bool, Labeled, LIORef, etc.

Dynamics: small step SOS
using evaluation contexts
Runtime environment Σ:

⊲ Σ.lbl: current label
⊲ Σ.clr: current clearance
⊲ Σ.φ: memory store

Step: 〈Σ, e〉 −→ 〈Σ′, e′〉

v ::= · · · | l | a | (e)LIO

| Lb v e | •

e ::= · · · | label l e

| unlabel e

| toLabeled l e

| newRef l e

| readRef a

| writeRef a e

Flexible Dynamic Information Flow Control in Haskell

Formal Semantics & Security Proofs

Semantics of Core LIO + References

Semantics of Core LIO + References
A short overview

Example (Evaluation rule for newRef)

Σ.φ(a) = Lb l e l′ = Σ.lbl ⊔ l

l′ ⊑ Σ.clr Σ′ = Σ[lbl 7→ l′]

〈Σ, E[readRef a]〉 −→ 〈Σ′, E[return e]〉

Flexible Dynamic Information Flow Control in Haskell

Formal Semantics & Security Proofs

Non-Interference: Proof Idea

Non-Interference: Proof Idea
Idea: No observable difference between

1 Normal program

2 Program with all secret values erased to •

Approach: Simulation with erasure function εL

〈Σ, e〉 −−→ 〈Σ′, e′〉

y

εL

y

εL

εL(〈Σ, e〉) −−→ L εL(〈Σ
′, e′〉)

Flexible Dynamic Information Flow Control in Haskell

Formal Semantics & Security Proofs

Non-Interference: Proof Idea

Non-Interference: Proof Idea
Idea: No observable difference between

1 Normal program

2 Program with all secret values erased to •

Approach: Simulation with erasure function εL

〈Σ, e〉 −−→ 〈Σ′, e′〉

y

εL

y

εL

εL(〈Σ, e〉) −−→ L εL(〈Σ
′, e′〉)

Details available in paper.

Flexible Dynamic Information Flow Control in Haskell

Conclusions

Related Work

Related Work

Much existing work on static IFC
➥ DCC1, DLM28, FlowCaml30, SecIO31, etc.

Pro: Little/no runtime overhead

Con: Not very permissive or flexible

Flexible Dynamic Information Flow Control in Haskell

Conclusions

Related Work

Related Work

Existing work on dynamic IFC in Haskell
➥ Li and Zdancewic25, Tsai et. al.7, Devriese

and Piessens12

Pro: Flexible, support multi-threading

Con: Little means for declassification or
mitigation covert channels

Flexible Dynamic Information Flow Control in Haskell

Conclusions

Summary & Future Work

Summary & Future Work

Labeled IO library approach to IFC
➠ Flexible and permissive dynamic system
➠ Addresses covert channels (with clearance)

Formal security proofs
➠ Non-interference property
➠ Containment property

Ongoing work
➠ Improve analysis of extensions (files, etc.)
➠ Distributed systems support (DStar, etc.)
➠ Termination-sensitive non-interference
➠ Web framework for executing untrusted code

Flexible Dynamic Information Flow Control in Haskell

Thank you!

cabal install dclabel lio

	Introduction
	Motivation

	Information Flow Control Library
	DIFC Model
	Core Library

	Formal Semantics & Security Proofs
	Semantics of Core LIO + References
	Non-Interference: Proof Idea

	Conclusions
	Related Work
	Summary & Future Work

