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Abstract

Object Capability (OCap) patterns can be used to enforce the

principle of least authority. However, despite the popularity

and promise of OCap patterns, these patterns have not been

sufficiently analyzed or verified. We analyze several OCap

patterns using the Murϕ verification tool and confirm the

utility of our model by finding previously known vulnera-

bilities. Because these vulnerabilities were not repaired in

previous studies, we provide new patterns and verify their

correctness, within the accuracy of our model. Considering

both distributed system and language-based settings that are

designed to support the OCap model, we show that some pat-

terns that are secure in a language context are vulnerable in a

distributed systems context. We further demonstrate imple-

mentable attacks on the revocable forwarder and sealer/un-

sealer patterns, using a (distributed) subset of E and provide

code illustrating and implementing repairs.

Keywords Language–based security, Object Capability,

Model-checking, E

1. Introduction

Although considerable effort is devoted to producing secure

software systems, a significant number of system vulner-

abilities and exploits are discovered each year [18]. One

continuing problem is that many abstractions we are ac-

customed to using are inherently flawed. Consider, for ex-

ample, the widely used POSIX API. A simple POSIX-

based logging application, aLogger, when running on be-

half of user alice, though only requiring write access to

/var/log/alice.log, is given the full authority of user

alice. This ambient authority is assumed by many POSIX

system calls; for example, the system call

open(const char *pathname, int flags);

[Copyright notice will appear here once ’preprint’ option is removed.]

can be used by an application to open any file the invoking

user may access. Even if aLogger is honest in only opening

the log file, an exploit modifying the path name can result

in aLogger overwriting sensitive files. This is possible

because aLogger is executed with ambient authority and can

overwrite whatever file alice has write-permission to.

The widely accepted Principle of Least Authority (POLA)

dictates that system components should be given only the

minimal authority needed to achieve their intended purpose,

and no more. This principle can be applied to run aLogger

by first opening /var/log/alice.log and only providing

aLogger the file descriptor. Although the modified aLogger

will, in actuality, be running with ambient authority, if all

open system calls are disallowed, a POLA-like setting can

be created and aLogger will not have the authority write to

any file other than the that corresponding to the provided file

descriptor. Of course, many applications using POSIX (and

many other APIs) rely on ambient authority, a side effect of

insecure APIs and widely accepted but security-unconscious

programming patterns.

One general approach for developing secure software

uses the Object Capability (OCap) model [10, 13, 14]. The

OCap model refines the conventional object model by disal-

lowing ambient authority and implicit transfers of authority,

with example OCap programming languages such as E [28],

JoeE [8], Emily [27], and W7 [23] often obtained by pro-

hibiting features such as mutable static state, forged point-

ers and the ability of an object to access another’s private

state [13]. While the OCap model appears to be gaining pop-

ularity, comparatively little effort beyond the work of a few

authors [7, 19–21, 26] has been devoted to analyzing OCap

programming patterns that are designed to achieve specific

security goals. In an interesting line of work, Murray [19]

has analyzed several OCap patterns and discovered vulner-

abilities in them. Since Murray did not develop repairs for

some critical problems, or relate his model to implemented

systems based on OCap concepts, we therefore his study by

developing another model using Murϕ [3, 15], confirm the

adequacy of our model by comparison with his, present new

patterns that address the limitations of the analyzed patterns,

and show how the vulnerabilities and repairs can be achieved

in implemented systems.

The main contributions of this work are:
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• Murϕ OCap model. While our model is similar to the one

developed by Murray [19], there are some differences.

For example, our model forces strict call-return seman-

tics, our treatment of sealer/unseal distinguishes between

slot reads and writes (and the slot does not return the

value to the writer), and for the membrane pattern we

distinguish between wrapped and unwrapped messages

instead of aggregating objects.

• Confirm previous vulnerabilities found by Murray. The

correspondence between our model-checking results and

the set of vulnerabilities found in the previous study [19]

confirms the repeatability and robustness of these results.

Further, this gives us more confidence when we check our

repairs and do not find additional vulnerabilities, since

other studies do not find more vulnerabilities than ours.

• Develop and verify repairs. We propose modified patters

that repair the vulnerabilities found by model-checking,

and use model-checking to confirm the security of the

improved patterns. (This is new, relative to previous stud-

ies.)

• Study vulnerabilities and repairs in OCap languages and

distributed systems. We explore the correspondence be-

tween the OCap model, as we understand it and as for-

mulated in Murϕ, and contemporary programming lan-

guages and distributed/operating systems where devel-

opers may attempt to use OCap patterns for security. In

particular, we demonstrate by executable implementation

vulnerabilities and repairs of OCap patterns in a subset of

E and explain ways that TahoeLAFS falls short of enforc-

ing OCap properties needed to support its claimed secu-

rity guarantees.

This paper is organized as follows. Section 2 reviews

object capabilities and related concepts. Section 3 describes

our Murϕ model of Ocap features and patterns, while section

4 presents our model-checking results. Section 5 describes

applications of our analysis to languages implementing this

model (such as Joule, Erlang, and E), provides attacks and

repairs on E-implemented OCap patterns, and demonstrates

an attack on TahoeLAFS. Section 6 concludes.

2. Background

In this section we present some of the background on which

the present work builds. We first detail the OCap model and

OCap patterns used for safe collaboration, followed by a

short introduction to Murϕ model-checker.

2.1 The OCap model

In the OCap model there is no distinction between a subject

(e.g. Alice) and an object (e.g. a file, or class instance).

Rather, both are considered objects and all communication

between objects is accomplished by sending messages on

references. Following [13], an object can be a primitive, such

as the literal 2, or an instance that is a combination of code

foo
( )

Figure 1. Connectivity by introduction:A sends B message

foo with capability to C.

and state; we consider a process an instance of a program, in

the same way that an object may be an instance of a class.

An object’s state may include references to primitive ob-

jects or other instances. A reference to an instance is called

a capability. The state of a system is often visualized using a

reference graph whose nodes are objects and whose directed

edges show references from one object to another. Because

all communication in an OCap system is accomplished by

sending messages on references, the only way for an object

to send a message to another is if there is an edge in the ref-

erence graph. This limitation on communication is the fun-

damental source of isolation, confinement, and security in

OCap systems. Because messages may include capabilities,

the reference graph may change as capabilities are acquired

and dropped.

In an OCap system an object may come to posses a

capability only through the following methods:

• Initial conditions.

• Parenthood. When object A creates another object B, it

is the only object in the system with the capability to B.

• Endowment. If object A has a capability to object C,

then it can create another object B such that B is already

‘endowed’ with a capability to C.

• Introduction. If object A has capability to objects B and

C, then A can give B (resp C) capability to C (resp B)

by sending it a message containing the capability.

A direct consequence of these rules is that “only connectiv-

ity begets connectivity” – no message may occur between

disjoint subgraphs of the reference graph. This is particu-

larly important in building secure systems because at each

‘snapshot’ of the dynamic graph, it is directly clear who has

access to what and the connectivity rules state how the graph

may change.

Consider, for example, the graph where A has capabil-

ity to B and C. The latter, C, has a read/write capability

to file /etc/passwd. The only way B can gain any access

to /etc/passwd is through A introducing C (or some for-

warder) to B, as shown in Figure 1.

2 2011/4/5



foo
( )

/etc/passwd

Figure 2. Revocable forwarder: A sends B message foo

with capability to F , and, indirectly, revocable access to C.

We use circular rectangles to denote mutable slots.

2.2 OCap patterns

OCap system designers and programmers have developed

software patterns to solve standard recurring problems. We

summarize three in this subsection.

2.2.1 Revocable forwarder pattern

Because a capability is simply a reference to an object, it is

not clear how to revoke a capability, once granted. While a

capability cannot be simply revoked, a revocation pattern al-

lows an object to revoke the access granted by a capability.

Though other patterns are conceivable, a common revocation

pattern is Redell’s caretaker pattern [13, 22]. Using the care-

taker pattern A can give B revocable access to C as follows.

First, A creates three objects:

• An enable slot object E with a mutable boolean slot.

• A gate G, with capability to E. Upon receiving message

toggle, G toggles E’s slot value.

• A forwarder F , with capability to E and C. Upon receiv-

ing message m, F checks the value of E’s slot and only

if it is true, it proceeds to forward m to C.

Now, instead of givingB capability to C, A gives B capabil-

ity to F , as shown in Figure 2. While E’s slot remains true B

can send any messages to C, as if F is not in the reference

path. However, A can revoke B’s access to C at any time,

simply by sending G the message toggle.

2.2.2 Attenuated and membrane forwarders

Suppose A wants to give B a capability to C, while atten-

uating (restricting) B’s privilege to a certain message, e.g.,

read. As in the caretaker pattern, A creates a forwarder, F .

In this case, F only accepts the message read, as shown

in Figure 3. Of course, this read-only forwarder pattern can

be combined with the caretaker pattern to grant a revocable,

read-only capability.

Note that this pattern only restricts B’s privilege to C

through F . If C responds to B’s read message with a ca-

pability to itself then B’s authority will entail write access

to /etc/passwd as well. Thus, if C cannot be trusted to re-

foo
( )

/etc/passwd

{read}

{read,write}

Figure 3. Attenuated forwarder: A sends B message foo

with capability to F , and, indirectly, read-only access to C.

spect the read-only capability, A must use a membrane for-

warder, instead of a read-only forwarder. A membrane for-

warder [13], wraps every capability in either direction and

thus if C returns B a raw capability to itself, the membrane

will wrap it, effectively making it read-only. As in the case of

the read-only forwarder, the membrane pattern can be com-

bined with the caretaker pattern to grant a revocable, transi-

tive read-only capability. This is pattern is commonly called

the revocable membrane forwarder pattern.

2.2.3 Right amplification pattern

The final pattern we consider provides right amplification

using sealer/unsealer pairs [10, 29]. The basic premise of

sealer/unsealer pairs is similar to public-/private-key pairs:

A may use a sealer to “seal” another object $ which C can

unseal only if it has the corresponding unsealer. Though

some OCap systems, such as E, support sealer/unsealer pairs

as a primitive, others implement it using a pattern. Follow-

ing [29], the sealer/unsealer pattern consists of

• A slot object S with a mutable value.

• A sealer with capability to S, that, upon receiving the

message seal with argument $, creates and returns a box

B (with endowed capability to S). Box B, when invoked,

writes $ into S’s slot.

• An unsealer U with capability to S, that, upon receiving

the message unseal with argument B′, clears S’s slot,

and invokes B′. After invoking B′ it reads and returns

the slot contents, if any.

Note that for the unsealer to return $, it must invoke box B′

such that B = B′. As an example use, consider Figure 4. In

this case object A can send C a capability to $ through the

curious object D.

2.3 Introduction to Murϕ

The Murϕ model checker provides an input language that

is used to define a nondeterministic finite-state system. The
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foo
( )

Figure 4. Sealer/unsealer pattern: A sends C a capability

to $ through D. Using a sealer, A sends D a capability to

box B. Upon receipt of B, C can use unsealer U and box B

(which writes $ to S’s slot) to retrieve $
.

tool then enumerates all reachable states of the nondetermin-

istic system and checks whether any specified invariants fail

in any state. If a desired property fails, then Murϕ produces

the system trace, or sequence of actions from the initial state,

leading to the error state. If no errors are found, then Murϕ

will explore all reachable states of the finite system and ver-

ify that none of them are erroneous. The main limit on the

size of the checkable system arises from the space needed

to store a hash table of all to the system states that have

already been reached. If this table exceeds the capacity of

main memory, then the state enumeration procedure slows

substantially so that it becomes infeasible to complete the

process. However, all of the models we formulated in this

study were well within the memory bounds of the comput-

ers we used.

Finite-state verification tools such as Murϕ have proven

useful in the analysis of security protocols. For example,

Murϕ was successfully used in [16] to verify small proto-

cols such as the Needham-Schroeder public key protocol, the

Kerberos protocol, and the TMN cellular telephone protocol.

In [17] Murϕ was also successfully applied to the analysis

of the SSL 3.0 handshake protocol using a “rational recon-

struction” methodology which was adopted in [5] to analyze

the 802.11i 4-Way Handshake. A more recent analysis [2]

used Murϕ to analyze DNSSEC.

3. Modeling OCap patterns in Murϕ

We model several aspects of the OCap model using the

Murϕ verification tool. As in [19], we are interested in ver-

ifying OCap pattern properties in the context of sequential

programming languages (PL) and distributed/operating sys-

tems (D/OS). As a number of capability systems in these

domains already exist [4, 6, 8, 12, 25, 27, 28], we believe

that our analysis is useful towards understanding the security

properties of OCap patterns when used in complex systems.

We note that our D/OS model reflects access in concurrent

shared memory systems and therefore also appears applica-

ble to programming languages based on the (fine-grained)

actor model, including Joule [30], Erlang [1], and (a subset

of) E [28].

3.1 Objects

We model objects in Murϕ using a type Object, which is a

record consisting of:

⊲ object state: indicates if the object is idle or blocking.

⊲ c-list: represents capabilities to objects in the graph. The

c-list index designates the object, while the value indi-

cates if the capability is raw, wrapped, i.e. attenuated, or

null, i.e. no capability. Without loss of generality, in us-

ing the term c-list we refer to the non-null elements of the

array.

⊲ u-list, µ: boolean array of all system objects indicat-

ing possible unattenuated communication path with the

current object. Communication from a membrane object

should always be attenuated, hence we can use this list in

verifying the pattern.

⊲ behavior description: indicates how the object should

behave, i.e. if is a forwarder, a gate, a membrane, an

unsealer, etc.

⊲ behavior-related state: state corresponding to the object’s

behavior, e.g. if the object is a revocable forwarder it

must differentiate between the slot object and object it

forwards to.

Our object model parallels the definition of an instance,

which consists of state, including a list of capabilities (c-

list), and code (behavior).

In modeling patterns and object communication, multiple

objects are necessary. Hence, all the objects in our model

are placed in a global array. This simplifies our invariant

descriptions and moreover closely resembles a finite-length

heap. We additionally note the object model can easily be

extended, e.g. to support forwarding gates, see Section 4.2,

or even object allocation/creation.

3.2 Object connectivity

In our model, object communicate using a shared network

buffer. In the case of PL, only a single message can be placed

on the network. Conversely, in the D/OS setting, multiple

messages can be exchanged, in parallel; in our experiments,

we varied the network size to buffers of length 2–4.

Objects exchange inter-object-communication messages

(IOCMs). An IOCM is a ‘network-layer’ message, com-

posed of several fields:

⊲ source, S(m): object initiating the communication.

⊲ destination, D(m): object intended to receive the mes-

sage. Note that objects can only send messages to object’s

in their c-list.

⊲ message type, m: indicates the transmitted object-layer

message. Specifically, call, return, grant, revoke

or unseal.
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⊲ message arguments, a: certain message types, e.g. grant,

require arguments. Though extensible, in our model, a

message argument can be a capability or boolean value

(used in the revocable forwarder pattern when sending

forwarder status).

⊲ wrapped flag: boolean flag used to distinguish between

raw and wrapped messages. A message is wrapped if it

is sent from a membrane object, or from an object, e.g.

forwarder, reacting to a received, wrapped message.

⊲ time stamp, τm: integral value indicating the time the

message was sent.

⊲ path, πm: boolean mask indicating the intermediate ob-

jects the message ‘passed through’.

We use standard call-return semantics in modeling message

exchanges. Specifically, an object in an idle state may in-

voke a capability from its c-list, i.e. send an IOCM (call,

grant, etc.) to the corresponding object. Thereafter the ob-

ject transitions into a blocking state, awaiting a returnmes-

sage.

3.3 OCap patterns

Given an overview of our object and communication model

we now detail the specific patterns me modeled, their se-

curity properties, and our approach to verifying the invari-

ance of these properties. We use S(m)
m(a)
−−−→ D(m) to de-

note a (object-layer) message m with argument a being sent

from source object S(m) to destination object D(m). We

use
m(a)
−−−→ + to indicate a series of message being sent, the

last of which is m, i.e. transitive (but not reflexive) relation.

3.3.1 Membrane forwarder pattern

The property we expect the membrane forwarder pattern to

uphold is transitive attenuation. In other words, any mes-

sage whose path contains a membrane forwarder should be

wrapped.

To describe the invariant, consider an object Oi sending

a message m over path πm to object Ok. Recall that each

IOCM contains the full message path πm and a flag indicat-

ing if the message is wrapped, while every object Ok con-

tains a u-list, µk. If Ok receives a raw message, we say the

path from Oj to Ok for j ∈ πm is unattenuated, and update

the Ok’s u-list by setting the jth element, i.e. µk[j] := true.

Letting M(Oi) hold true if Oi is a membrane object and

false otherwise. We express the property of the membrane

forwarder pattern as invariant:

∀Oi, Ok.M(Oi) ∧ ¬µk[i].

That is, for every membrane object Oi, the path from the

membrane object to every other object Ok is attenuated (not

unattenuated).

3.3.2 Revocable (membrane) forwarder pattern

Our model is used to verify both the revocable forwarder pat-

tern, and the revocable membrane forwarder pattern. How-

ever, since verifying the latter simply requires the additional

verification of the membrane forwarder pattern we focus on

the revocable forwarder pattern.

We expect the revocable forwarder pattern to have the

property of no-forwarding post revocation. Specifically, we

expect the forwarder to not send any messages if the cor-

responding enable flag is false. To verify this property we,

however, require a notion global time. Compared to the

implicit time of [19], we explicitly model time as a sim-

ple shared counter that is incremented whenever a message

is placed on the network. Because our model is relatively

small, this does not result in any overflows or other model-

ing anomalies.

Recall that each IOCM contains a time stamp τm corre-

sponding to the (time) counter value when message m was

sent. Additionally, each enable slot E has a time stamp τE ,

stored in the object’s behavior-related state. Specifically, τE
is set to the time counter value at the slot modification time,

i.e. when the flag is toggled.

Generalizing Figure 2, a revocable forwarder pattern con-

tains a tuple 〈G,E, F 〉 consisting of a gate, an enable slot,

and a forwarder. Letting ν(E) correspond to the slot value,

we can express the property of the revocable forwarder pat-

tern in terms of the invariant:

∀〈G,E, F 〉. 6 ∃m.S(m) = F ∧ ¬ν(E) ∧ τE < τm.

In other words, for every tuple with the slot value unset,

there is no message placed on the network, by the forwarder,

after the slot value was modified.

3.3.3 Right amplification pattern

For the sealer/unsealer pair pattern we expect the unsealer to

not be able to gain access to the slot contents, unless it has

the (correct) box returned by the corresponding sealer.

Following Figure 4, the modeled right amplification pat-

tern contains a tuple 〈B,U〉, consisting of a sealer-returned

box and a corresponding unsealer. Letting ν(B) correspond

to the box slot value, we can express the right amplification

pattern using invariant:

∀〈B,U〉. 6 ∃O,B′.B′ 6= B

∧O
unseal(B′)
−−−−−−−→ U

return(ν(B))
−−−−−−−−→ +O

The invariant simply states that for every tuple 〈B,U〉
there is no object O, and fake box B′, such that O’s invoca-

tion of the unsealer with the ‘fake’ box returns the value store

in the actual box slot B. Although the property can be fur-

ther generalized to multiple sealer-returned boxes, we limit

our specification for clarity and without loss of generality.

3.4 Model limitations

As in [19], our model is limited in several ways. First, we

do not model object creation. This has the implication that
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the dynamics of the access graph only changes based on

the rule of introduction. As noted in [19, 26], this is not a

severe limitation since an object’s behavior can be defined to

aggregate the behavior of the objects it creates. Nevertheless,

we designed our model to allow for the addition of object

creation. Specifically, since every object in our model resides

in a global array (akin to the program heap), the Object

type can be extended to add a flag, allocated, that is

used to indicate whether the object has already been created.

To model object creation, then, an object takes possession

of a free object (one whose allocated flag is not set) in

the array, sets the allocated flag and any other flags and

capabilities (in its c-list) to define its behavior. This approach

directly extends to creation of multiple objects that can be

used in patterns such as revocation.

Second, for each pattern we verify, we initialize our sys-

tem with a small access graph consisting of some already-

interconnected objects. Specifically, the objects required to

realize the pattern, e.g. gates and forwarders used in the se-

lective revocation pattern, are part of the initial access graph

having ‘acquired’ their capabilities by initial conditions. For

example, in modeling the selective revocable pattern our ini-

tial system consists of the access graph of Figure 2, in addi-

tion to A and B having capabilities to other arbitrary objects.

This limitation is a direct consequence of the previous, no

object creation, limitation. Extending the model to support

object creation further removes this limitation.

4. Verification results

We used the Murϕ verification tool to check the OCap model

and patterns detailed in Section 3. Additionally, addressing

the found vulnerabilities, detailed in this section, we model

and verify several new patterns (that address found vulner-

abilities) in the same manner. For every pattern, we ran the

verifier in the PL and D/OS setup, modifying the network

size, and varying initial access graphs.

4.1 Original OCap patterns

Our Murϕ verification results confirm the previously found

vulnerabilities of [19], in addition to revealing a denial-

of-service (DOS) vulnerability in the revocable forwarder

pattern. Our model checking results are detailed below.

4.1.1 Membrane forwarder pattern

As expected, Murϕ did not find any trace that violated the

membrane forwarder pattern in either the PL or D/OS set-

ting. Although we found no vulnerabilities for this pattern,

we stress that this pattern holds (up to our model) for OCap

systems; implementing membrane-like patterns in other ca-

pability system does not guarantee transitive attenuation. In

Section 5.2 we show a violation of a transitive read-only

property for the file system TahoeLAFS [31].

/etc/passwd

Figure 5. Revocable (membrane) forwarder: F is a (mem-

brane) forwarder to C, G is a gate, and E is the enable slot

object used by the two.

4.1.2 Revocable (membrane) forwarder pattern

In the context of sequential programming languages (PL),

Murϕ did not produce any traces that violate the revocable

forwarder pattern, or revocable membrane forwarder pattern.

However, in the context of concurrent shared memory sys-

tems (D/OS) we found that the revocable membrane pattern

has a time-of-check-to-time-of-use (TOCTTOU) vulnerabil-

ity.

Murϕ found a violating trace for the access graph1 of

Figure 5. We use the message type isEnabled to denote

a call message sent by forwarder F to the enable slot

object E, to read its value. Using this simplification, and

starting with the enable-slot’s value set to true, the sequence

of message calls violating the invariant, as found by Murϕ,

are:

1.B
call(·)
−−−−→ F

2.F
isEnabled()
−−−−−−−→ E

3.E
return(true)
−−−−−−−−→ F

4. A
toggle()
−−−−−→ G→ E

5. E → G
return()
−−−−−→ A

6.F
call(·)
−−−−→ C

In this trace, forwarder F received the enabled-status in

step 3, but did not use the value (returned by E) until step

6. At the time of use, the F ’s copy of the value was stale,

since the slot object was toggled in the steps following the

check. This TOCTTOU vulnerability is equivalent to the

vulnerability found in [19] using FDR.

We also modified the invariant of the revocable (mem-

brane) forwarder pattern, as given in Section 3.3.2, to re-

1 We note that in the initial access graph of our actual model, B did not

have a capability to F . However, since the first steps of the violating trace

consisted of A granting B capability to F , we omit this step for simplicity

and focus on the subsequent access graph graph (in which B already has a

capability to F ).
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Figure 6. Sealer/unsealer pattern initial dynamic graph. A

has a capability to box B which has capabity to $ and slot

object S, that is common to the unsealer U . C has capability

to box B′.

move the notion of time. This alternative invariant

∀〈G,E, F 〉. 6 ∃m.S(m) = F ∧ ¬ν(E)

has no notion of message send time. Hence, even if the

forwarder sends a message before the enable slot is modified,

if the message is received after the slot has been toggled the

invariant is violated. The following Murϕ trace

1.A
toggle()
−−−−−→ G→ E

2. B
call(·)
−−−−→ F

3. F
isEnabled()
−−−−−−−→ E

4. E
return(true)
−−−−−−−−→ F

5.E → G
return()
−−−−−→ A F

call(·)
−−−−→ C

highlights the revocable (membrane) forwarder pattern’s

susceptibility to DOS attacks. In this case, the toggle mes-

sage is sent by A in the first step, but not handled until the

last step. Assuming the slot handles messages in a first-in-

first-out fashion, this vulnerability is realizable if B is able

to delay the delivery of A’s messages, e.g. by flooding the

network in a distributed system, or meddling with the op-

erating system scheduler. This vulnerability was not found

in [19].

4.1.3 Right amplification pattern

As for the revocable (membrane) forwarder pattern, Murϕ

found a violating trace only in the D/OS context for the

sealer/unsealer pair pattern. Specifically, in a D/OS setting

an unsealer is able to retrieve the slot contents without using,

but colluding with, the corresponding box.

Murϕ found a violating trace for dynamic access graph

shown in Figure 6, where B′ is a box object that C creates

by sealing an arbitrary object; note that B and B′ are created

by different sealers. The violating trace, which is equivalent

to the attack found in [19], is:

1.C
unseal(B′)
−−−−−−−→ U

2.U
clear()
−−−−→ S

3.S
return()
−−−−−→ U

4.U
call()
−−−−→ B′

5.B′
return()
−−−−−→ U

6. A
call()
−−−−→ B

7. B
return()
−−−−−→ A

8.U
read()
−−−−→ S

9.S
return($)
−−−−−−→ U

10.U
return($)
−−−−−−→ C

We observe that the premise for the found vulnerability

is that C can invoke the unsealer with any box, e.g. B′, and

after the unsealer has cleared the slot, if the correct box B is

invoked, the slot is filled with $. The unsealer then proceeds

to read the box contents and return it to the original caller

(having assumed it was B′ that filled the slot). We note that

our model does not explicitly model the interaction with the

slot as we shown; specifically, clear and read are inline

calls modifying a shared variable, and not messages sent

to an object. Nevertheless, this is only an implementation

simplification that does not alter the modeling semantics.

4.2 Proposed OCap patterns

Having found previously detailed vulnerabilities, we believe

that our model checking is sound and suitable for verifying

other patterns. Hence, we address the vulnerabilities detailed

in Section 4.1 by proposing and verifying alternative, but

behaviorally equivalent, patterns.

4.2.1 Revocable (membrane) forwarder pattern

Addressing the TOCTTOU vulnerability of the revocable

(membrane) forwarder pattern (see Section 4.1.2) we pro-

pose the slightly modified pattern shown in Figure 7. This

pattern consists of a ‘special’ forwarder F , which takes

any message m with argument a and sends the forwarding

gate FG a forward message with m(a) as the argument. A

forwarding gate, in this case FG, reacts to two messages:

toggle, which is used to revoke access by toggling a local

enable flag, and forward which is used to conditionally for-

ward the received arguments. Continuing with Figure 7, FG

forwards m(a) to object C, if the local enable flag is set.

Exploring 13,720,000 states of the proposed pattern, Murϕ

found no trace violating the pattern invariant.

Note, however, that the proposed pattern, like the original,

is susceptible to DOS attacks. To make the pattern DOS-
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forward(          )

toggle

Figure 7. Proposed revocable forwarder: FG is a forwarder

gate to C, with a local enable slot. F is a special forwarder

that ‘lifts’ messages into the forward function.

invulnerable, our proposed pattern need only be modified to

combine A’s behavior with that of the forwarding gate FG

into a single object.

4.2.2 Right amplification pattern

As in the case of the revocable forwarder, we propose a

modification to the sealer/unsealer pair pattern. Following

Figure 4, the modified sealer/unsealer pattern consists of

• A slot object S.

• A sealer with capability to S, that, upon receiving the

message seal with argument $, creates and returns a box

B (with endowed capability to S). Box B, when invoked,

writes $ and capability to itself into S’s slot.

• An unsealer U with capability to S, that, upon receiving

the message unseal with argument B′, clears S, and

invokes B′. After invoking B′, if the slot is not empty,

the unsealer verifies that the capability read from the slot

is that of the invoked box, i.e. B = B′. If the check

succeeds, the unsealer returns the slot contents, otherwise

fails, e.g by throwing an exception.

As for the original pattern, we used the Murϕ model checker

to verify the pattern; we found no trace violating invariant.

5. Model application

In this section, we relate our Murϕ model to implemented

systems; specifically, we detail attacks on OCap patterns

implemented using the asynchronous subset of E, and an

attack on TahoeLAFS’s transitive read-only system property.

For the former, we also present E code implementing of our

alternative robust patterns.

Although concurrency model of many OCap languages

and systems, e.g. Joe-E and Waterken [8], do not correspond

to the verified concurrent shared memory model (D/OS),

the vulnerabilities found in [19] (and confirmed by our

Murϕ model) are applicable to systems following the (fine-

grained) actor model. As previously mentioned, languages

implementing this model includes Joule, Erlang, and a sub-

set of E. Our attacks do not extend to the full E.

5.1 E

E is a dynamically typed object capability language. E’s se-

mantics closely resemble those of Scheme, with the added

notion of message sending and method dispatch commonly

found in object oriented languages, such as Smalltalk. Un-

like other languages, using a cryptographic capability proto-

col [9, 10], E can extend the object reference graph beyond

a single machine, securely and transparently. We describe E

using examples that explore the concepts necessary to un-

derstand our implementations of the OCap patterns; the in-

terested reader is referred to [28] for additional details.

For simplicity, consider the implementation of an up/-

down counter. Such a simple counter can be defined in E

as follow:

def counterMaker ( i n i t i a l V a l u e ) {
var coun te rVa l : = i n i t i a l V a l u e
def coun te r {

to i n c ( ) { coun te rVa l : = coun te rVa l + 1 }
to dec ( ) { coun te rVa l : = coun te rVa l − 1 }
to getVa l ( ) { r e tu r n coun te rVa l }

}
r e tu r n coun te r

}

Both counterMaker and counter define objects, the former

returning a closure containing a new counter with an initial

value. The counter’s methods increment, decrement and re-

turn the value of the mutable variable, counterVal, when the

counter object receives the inc, dec, and getVal messages,

respectively. For example, the following E program creates

a counter object with an initial value of 3, increments the

object twice and prints its value:

def c t r : = counterMaker (3 )
c t r . i n c ( )
c t r . i n c ( )
def cu rVa l : = c t r . g e tVa l ( )
p r i n t l n ( ‘ Counter i s $curVa l ‘ )

Similar to Java’s Proxy [24], E allows objects to receive

messages that do not match the object’s static API using a

match clauses. For example, the above counter can alterna-

tively be defined as follows:

def counterMaker ( i n i t i a l V a l u e ) {
var coun te rVa l : = i n i t i a l V a l u e
def coun te r {

match [ verb , a r g s ] {
i f ( ve rb = = ” i n c ” ) {

coun te rVa l : = coun te rVa l + 1
} e l s e i f ( ve rb = = ”dec ” ) {

coun te rVa l : = coun te rVa l − 1
} e l s e i f ( ve rb = = ” getVa l ” ) {

coun te rVa l
}

}
}
r e tu r n coun te r

}

Note that in the match clause, the verb corresponds to the

matched message name, while args contains the message

arguments. Given an object the E.call method can be used

to send messages matched by the match clause. In this

example, we further highlight that return is often implicit
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(return is a form of Ejector, the details of which can be

found in [28]).

Finally, to use E in a distributed setting it is necessary

to extend local, live, references to network-meaningful (and

reliable) references. For example, to make the previous ctr
reference usable by other E processes, we convert it to a

“sturdy reference”:

def c t rSRe f : = makeSturdyRef . temp ( c t r )

Sturdy references can then be converted to URI’s that are

shared among E processes. Similarly, URI’s can be con-

verted to sturdy references which can be further converted

back to live references:

def c t r L i v e : = c t rSRe f . getRcvr ( )

Sending messages to remote objects is, however, imple-

mented differently. Specifically, E implements a promise-

pipeline for sending asynchronous messages to remote ob-

jects. Hence, to increment the remote counter corresponding

to ctrLive it is necessary to use the ‘eventually’ operator←
as follows:

c t r L i v e ← i n c ( )

Conversely, to get the value of the remote counter we wrap

the message call in a when−catch clause:

def newVal : = c t r L i v e ← getVa l ( )
when ( newVal ) → {

p r i n t l n ( ‘ Counter i s $curVa l ‘ )
} catch e r r {

p r i n t l n ( ‘ F a i l e d wi th $e r r ‘ )
}

As newVal is only a promise (that the value will eventually

arrive) we cannot use it until it is resolved, or alternatively

is broken. Similar to a try−catch blocks, a when−catch
block is used to handle the success/failure of an event (in

the latter case, promise resolution). As we are interested in

applying our model to concurrent systems, we focus only

on the asynchronous and distributed subset of E; in the

remaining sections “E” refers to this particular subset.

5.1.1 Revocable forwarder pattern

We implemented the revocable forwarder pattern using E,

based on the original revocation implementations of [9, 13].

The implementation is shown in Listing 1. In this listing,

EnableSlotObj returns an enable slot object with which the

remaining code interacts as if the slot is a remote object.

The makeCaretaker creates a revocable forwarder to target
and a gate that can be used to change the slot value. Note

that both the forwarder and gate use the eventually operator

← when sending messages (asynchronously) to the slot.

Additionally, the forwarder only forwards (using E.call )
the received message (verg with arguments args) to target
when the promise (of the slot enable value) is resolved and

is true.

An example using the pattern, similar to the scenario

of Figure 1, is shown in Listing 2. In the example bob
is given a capability to a clarice -forwarder, after which

def Enab l eS l o tOb j ( ) {
var enab l ed : = t r ue

def makeSlot {
to t o g g l e ( ) { enab l ed : = ! enab l ed }
to i s En a b l e d ( ) { r e tu r n enab l ed }

}
r e tu r n makeSturdyRef . temp ( makeSlot ) . getRcvr ( )

}

def makeCaretaker ( t a r g e t ) {
def s l o t : = Enab l eS l o tOb j ( )
def f o rwa r d e r {

match [ verb , a r g s ] {
def doFwd : = s l o t ← i s En a b l e d ( )
when ( doFwd ) → {

i f ( doFwd ) {
E . c a l l ( t a r g e t , verb , a r g s )

} e l s e {
throw ( ” Forward ing d i s a b l e d ” )

}
} catch e {

p r i n t l n ( ‘ Could not ge t s l o t v a l u e : $e ‘ )
}

}
}
def ga te {

to t o g g l e ( ) { s l o t ← t o g g l e ( ) }
}
r e tu r n [ f o rwa rde r , ga te ]

}

Listing 1. E implementation of the revocable forwarder

pattern.

def c l a r i c e C r e a t o r ( x ) {
var cn t r : = x
def c l a r i c e {

to pr intMe ( ) {
cn t r : = cn t r+1
p r i n t l n ( ‘ C l a r i c e coun te r : $cntr ‘ )

}
}
r e tu r n c l a r i c e

}

def bobCrea to r ( ) {
var c l a r i c e : = n u l l

de f bob {
to f oo ( a ) { c l a r i c e : = a }
to bar ( ) { c l a r i c e . p r intMe ( ) }

}
r e tu r n bob

}

def bob : = bobCrea to r ( )
def c l a r i c e : = c l a r i c e C r e a t o r (41 )
def [ f , g ] : = makeCaretaker ( c l a r i c e )

bob . f oo ( f )
bob . bar ( )
g . t o g g l e ( )
bob . bar ( )

Listing 2. An example use the revocable forwarder pattern.

When executed the program prints “Clarice counter: 42” and

then throw an exception.
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def f o rwa rd i ngGa te ( t a r g e t ) {
var enab l ed : = t r ue

def f g a t e {
to t o g g l e ( ) { enab l ed : = ! enab l ed }
to f o rwa rd ( verb , a r g s ) {

i f ( enab l ed ) {
E . c a l l ( t a r g e t , verb , a r g s )

} e l s e {
throw ( ” Forward ing d i s a b l e d ” )

}
}

}
r e tu r n makeSturdyRef . temp ( f g a t e ) . getRcvr ( )

}

def makeCaretaker ( t a r g e t ) {
def f g a t e : = f o rwa rd i ngGa te ( t a r g e t )
def f o rwa r d e r {

match [ verb , a r g s ] {
f g a t e ← f o rwa rd ( verb , a r g s )

}
}
r e tu r n [ f o rwa rde r , f g a t e ]

}

Listing 3. E implementation of the proposed revocable

forwarder pattern.

the object invokes the capability (by sending the printMe
message); once the capability is revoked (g. toggle ()), the

following attempt to invoke the capability fails. Similar to

this example, but using three distributed processes for the

target object, gate, and forwarder we were able to reproduce

the Murϕ violation trace (see Section 4) in which the slot is

disabled, but the forwarder still sends messages. Listing 3

shows our alternative pattern, corresponding to the Murϕ

model in Figure 7 which addresses the original vulnerability.

Implementing this pattern in full E can be accomplished

by simply modifying the forwarding gate to return fgate
directly, and modifying the forwarder to use the local method

invocation operator, instead of the eventually operator.

5.1.2 Right amplification pattern

Listing 4 shows the implementation of the sealer/unsealer

pair pattern described in Section 2. We base our implemen-

tation on the full E implementation of [29]. We note that al-

though the implementation seems quite complex, the nested

when-catch blocks are only used to sequence the slot clear-

ing, box invocation, and slot read. Additionally, in the un-

sealer implementation, we use Ref.promise() to create a

promise value which the unsealer resolves if the slot is read,

or ‘smashes’ in case of failure.

An example using the right amplification pattern is shown

in Listing 5. This example also includes an attempt to cir-

cumvent the pattern property by invoking unseal with a box

created by a sealer that does not directly correspond to the

unsealer. Using two processes we were able to reproduce the

attack of Section 4, as found by Murϕ. In this attack, a pro-

cess is used to create two sealer/unsealer pairs, after which

the sealers are used to seal distinct objects, effectively creat-

ing a ‘real’ and ‘fake’ box (with respect to one of the pairs).

def S lo tOb j ( d e f a u l t V a l ) {
var con ten t : = d e f a u l t V a l
def makeSlot {

to c l e a r S l o t ( ) { con ten t : = d e f a u l t V a l }
to r e a dS l o t ( ) { r e tu r n con ten t }
to w r i t e S l o t ( cont ) { con ten t : = cont }

}
r e tu r n makeSturdyRef . temp ( makeSlot ) . getRcvr ( )

}

def makeBrandPair ( ) {
def noObject{}
def s l o t : = S lo tOb j ( noObject )
def makeSealedBox ( ob j ) {

def box {
to s ha r eCon ten t ( ) {

s l o t ← w r i t e S l o t ( ob j )
}

}
r e tu r n box

}
def s e a l e r {

to s e a l ( ob j ) {
r e tu r n makeSealedBox ( ob j )

}
}
def u n s e a l e r {

to un s ea l ( box ) {
def [ pVal , r e s o l vV a l ] : = Ref . promise ( )
when ( s l o t ← c l e a r S l o t ( ) ) → {

when ( box ← s ha r eCon ten t ( ) ) → {
def v a l : = s l o t ← r e a dS l o t ( )
when ( v a l ) → {

i f ( v a l = = noObject ) {
throw ( ” I n v a l i d box” )

}
r e s o l v V a l . r e s o l v e ( v a l )

} catch r E r r {
r e s o l v V a l . smash ( ‘ Did not r ead : $ rE r r ‘ )

}
} catch s E r r {

r e s o l v V a l . smash ( ‘ Did not s h a r e : $sErr ‘ )
}

} catch cEr r {
r e s o l v V a l . smash ( ‘ Did not c l e a r : $cErr ‘ )

}
r e tu r n pVal

}
}
r e tu r n [ s e a l e r , u n s e a l e r ]

}

Listing 4. E implementation of the right amplification

pattern.

A separate process is then used to remotely invoke the real

box, while the unsealer is remotely invoked with the fake

box. In negligible time, the unsealer returned the slot con-

tents.

As in the revocable forwarder pattern case, we imple-

mented our proposed pattern, shown in Listing 6. The new

pattern differs from the original only minimally: we write to

the slot a Pair object that holds the box capability and orig-

inal box content, and add the additional check to unseal, as

discussed in Section 4.

5.2 TahoeLAFS

The Tahoe Least Authority File System (TahoeLAFS) [31] is

a file system that uses capabilities for access control. Specif-
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def [ s , u ] : = makeBrandPair ( )
def box : = s . s e a l ( ” s e c r e t ” )

def v a l : = u . u n s e a l ( box )
when ( v a l ) → {

p r i n t l n ( ‘ F i r s t u n s e a l e d to : $va l ‘ )
} catch e {

p r i n t l n ( ” F i r s t f a i l e d to un s e a l ” )
}

def [ s2 , u2 ] : = makeBrandPair ( )
def fakeBox : = s2 . s e a l ( ” f ake ” )

def va l 2 : = u . u n s e a l ( fakeBox )
when ( v a l 2 ) → {

p r i n t l n ( ‘ Second un s ea l e d to : $va l2 ‘ )
} catch e {

p r i n t l n ( ”Second f a i l e d to un s e a l ” )
}

Listing 5. An example use the right amplification pattern.

When executed the program prints “First unsealed to:

secret”, followed by “Second failed to unseal”.

ically, TahoeLAFS uses a URI consisting of random (cryp-

tographically generated) string as a capability that uniquely

identifies and designates a file/directory; following the ca-

pability model, a capability does not separate authority and

designation, nor is it forgeable. However, the TahoeLAFS

model is not an OCap model. Hence, properties such as the

membrane forwarder that we verified to hold for OCap sys-

tems (up to our model) do not necessarily hold for other ca-

pability models; an observation also made in [11].

Furthermore, TahoeLAFS claims to have

. . . the property of transitive read-only – users who

have read-write access to the directory can get a read-

write-cap to a child, but users who have read-only

access to the directory can get only a read-only-cap to

a child. It is [their] intuition that this property would

be a good primitive for users to build on, and patterns

like this are common in the capabilities community

. . . [31]

The membrane pattern can be used to enforce the property

of transitive read-only, however (non-membrane) attenuated

forwarders cannot. Consider the simple setup in which A has

a read-write capability to directory D, and B has a read-only

capability to the directory. If the system property holds, B

should only have transitive read-only access for files stored

in D. However, an attack is directly apparent given that

TahoeLAFS does not have a method of distinguishing be-

tween data and capabilities (and thus cannot implement the

membrane pattern). Specifically, A can create a file F in di-

rectory D consisting of the read-write capability to D (or

any subdirectory). B, invoking the read-only capability can

read file F at which point it acquires a read-write capability

to D—highlighting a system-property violation, which we

confirmed on TahoeLAFS public test grid.

def Pa i r ( a I , b I ) {
var a : = a I
var b : = b I
def mkPair {

to f s t ( ) { r e tu r n a }
to snd ( ) { r e tu r n b }

}
r e tu r n mkPair

}
def S lo tOb j ( d e f a u l t V a l ) {

var con ten t : = d e f a u l t V a l
def makeSlot {

to c l e a r S l o t ( ) { con ten t : = d e f a u l t V a l }
to r e a dS l o t ( ) { r e tu r n con ten t }
to w r i t e S l o t ( cont ) { con ten t : = cont }

}
r e tu r n makeSturdyRef . temp ( makeSlot ) . getRcvr ( )

}

def makeBrandPair ( ) {
def noObject{}
def s l o t : = S lo tOb j ( noObject )
def makeSealedBox ( ob j ) {

def box {
to s ha r eCon ten t ( ) {

s l o t ← w r i t e S l o t ( Pa i r ( obj , box ) )
}

}
r e tu r n box

}
def s e a l e r {

to s e a l ( ob j ) {
r e tu r n makeSealedBox ( ob j )

}
}
def u n s e a l e r {

to un s ea l ( box ) {
def [ pVal , r e s o l vV a l ] : = Ref . promise ( )
when ( s l o t ← c l e a r S l o t ( ) ) → {

when ( box ← s ha r eCon ten t ( ) ) → {
def v a l : = s l o t ← r e a dS l o t ( )
when ( v a l ) → {

i f ( ( v a l = = noObject ) | |
( box ! = v a l . snd ( ) ) ) {

throw ( ” I n v a l i d box” )
}
r e s o l v V a l . r e s o l v e ( v a l . f s t ( ) )

} catch r E r r {
r e s o l v V a l . smash ( ‘ Did not r ead : $ rE r r ‘ )

}
} catch s E r r {

r e s o l v V a l . smash ( ‘ Did not s h a r e : $sErr ‘ )
}

} catch cEr r {
r e s o l v V a l . smash ( ‘ Did not c l e a r : $cErr ‘ )

}
r e tu r n pVal

}
}
r e tu r n [ s e a l e r , u n s e a l e r ]

}

Listing 6. E implementation of the proposed right

amplification pattern.
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6. Conclusions

We modeled several Object Capability patterns using the

Murϕ verification tool. Our results confirm Murray’s pre-

vious work in finding a vulnerability in the revocable for-

warder pattern and sealer/unsealer pattern when used in a

concurrent shared memory systems. We further implement

attacks exploiting the vulnerabilities in E using fine grained

distributed objects. Addressing the patterns’ vulnerabilities,

we propose alternative patterns for which we did not find any

system-property violations.
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Université catholique de Louvain, February 2007.

[27] M. Stiegler. Emily: A high performance language for enabling

secure cooperation. In Creating, Connecting and Collaborat-

ing through Computing, 2007. C5’07. The Fifth International

Conference on, pages 163–169. IEEE. ISBN 0769528066.

[28] M. Stiegler. The E language in a walnut.

http://www.skyhunter.com/marcs/ewalnut.html, 2000.

[29] M. Stiegler. A picturebook of se-

cure cooperation. Presentation, 2004.

http://erights.org/talks/efun/SecurityPictureBook.pdf.

[30] E. Tribble, M. Miller, N. Hardy, and D. Krieger. Joule: Dis-

tributed application foundations. Technical report, Agorics

Inc., Los Altos, 1995.

[31] Z. Wilcox-O’Hearn and B. Warner. Tahoe: the least-authority

filesystem. In Proceedings of the 4th ACM international

workshop on Storage security and survivability, pages 21–26.

ACM, 2008.

12 2011/4/5


