
Addressing Covert Termination and
Timing Channels in Concurrent

Information Flow Systems
Deian Stefan, Alejandro Russo, Pablo Buiras,

Amit Levy, John Mitchell, and David Mazières

 Web framework for integrating 3rd party apps

Motivation

Mailer

Messenger

Grapher

User data

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

sendMessage user message = do
 messages <- getUserMessages user
 putUserMessages user (message:messages)

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

sendMessage user message = do
 messages <- getUserMessages user
 putUserMessages user (message:messages)

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

sendMessage user message = do
 messages <- getUserMessages user
 putUserMessages user (message:messages)

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

sendMessage user message = do
 messages <- getUserMessages user
 putUserMessages user (message:messages)

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

sendMessage user message = do
 messages <- getUserMessages user
 putUserMessages user (message:messages)

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

sendMessage user message = do
 messages <- getUserMessages user
 putUserMessages user (message:messages)

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

sendMessage user message = do
 messages <- getUserMessages user
 when (messages `hasRecipient` “Brad Pitt”)
 alertPaparazzi
 putUserMessages user (message:messages)

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

Current Approach
• Platforms restrict what data apps can see

• No guarantee what app can do with your data
✦Your messages

Fundamental Problem

• Problem:
➤ Read sensitive data with getUserMessages
➤ Wrote to remote host with alertPaparazzi

• Solution:
➤ Restrict who the app can communicate with
depending on what data it has read

• Label every object with a security level/policy
➤ Label protects data by specifying who can read/write

• Example security label lattice:

Alternative Approach
Information Flow Control with LIO

Policy: observable by EvePolicy: observable by Bob

Policy: public data

• Execute computations in LIO monad
➤ Records context “current” label
➤ I.e., tracks taint of computation
➤ Restricts side-effects an app can perform

• Example (sending Bob a message):

LIO Monad

• Execute computations in LIO monad
➤ Records context “current” label
➤ I.e., tracks taint of computation
➤ Restricts side-effects an app can perform

• Example (sending Bob a message):

LIO Monad
Effectively let’s us reprogram ‘;’

• Execute computations in LIO monad
➤ Records context “current” label
➤ I.e., tracks taint of computation
➤ Restricts side-effects an app can perform

• Example (sending Bob a message):

LIO Monad

Send app message

Effectively let’s us reprogram ‘;’

• Execute computations in LIO monad
➤ Records context “current” label
➤ I.e., tracks taint of computation
➤ Restricts side-effects an app can perform

• Example (sending Bob a message):

LIO Monad

Send app message

Effectively let’s us reprogram ‘;’

• Execute computations in LIO monad
➤ Records context “current” label
➤ I.e., tracks taint of computation
➤ Restricts side-effects an app can perform

• Example (sending Bob a message):

LIO Monad

Send app message Get existing messages

Effectively let’s us reprogram ‘;’

• Execute computations in LIO monad
➤ Records context “current” label
➤ I.e., tracks taint of computation
➤ Restricts side-effects an app can perform

• Example (sending Bob a message):

LIO Monad

Send app message

Effectively let’s us reprogram ‘;’

• Execute computations in LIO monad
➤ Records context “current” label
➤ I.e., tracks taint of computation
➤ Restricts side-effects an app can perform

• Example (sending Bob a message):

LIO Monad

Send app message Write all new messages

Effectively let’s us reprogram ‘;’

• Execute computations in LIO monad
➤ Records context “current” label
➤ I.e., tracks taint of computation
➤ Restricts side-effects an app can perform

• Example (sending Bob a message):

LIO Monad

Send app message

Effectively let’s us reprogram ‘;’

sendMessage user message = do
 messages <- getUserMessages user
 when (messages `hasRecipient` “Brad Pitt”)
 alertPaparazzi
 putUserMessages user (message:messages)

LIO Monad
Preventing unwanted leaks

Send app message

sendMessage user message = do
 messages <- getUserMessages user
 when (messages `hasRecipient` “Brad Pitt”)
 alertPaparazzi
 putUserMessages user (message:messages)

LIO Monad
Preventing unwanted leaks

Send app message

sendMessage user message = do
 messages <- getUserMessages user
 when (messages `hasRecipient` “Brad Pitt”)
 alertPaparazzi
 putUserMessages user (message:messages)

LIO Monad
Preventing unwanted leaks

 App receives exception:
 Trying to leak sensitive data.

✗Send app message

• Messenger app wishes to send broadcast message

LIO Monad

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> sendMessage user message

Overly restrictive

Send app message

• Messenger app wishes to send broadcast message

LIO Monad

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> sendMessage user message

Overly restrictive

Send app message

• Messenger app wishes to send broadcast message

LIO Monad

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> sendMessage user message

Overly restrictive

Send app message

• Messenger app wishes to send broadcast message

LIO Monad

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> sendMessage user message

Overly restrictive

Send app message

• Messenger app wishes to send broadcast message

LIO Monad

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> sendMessage user message

 App receives exception:
 May be leaking Bob’s data.

✗

Overly restrictive

Send app message

• Strawman: use discard to execute sensitive actions
➤ Do not observe result ➠ no leak!

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> discard $
 sendMessage user message

Practical Concerns

• Strawman: use discard to execute sensitive actions
➤ Do not observe result ➠ no leak!

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> discard $
 sendMessage user message

Practical Concerns

• Strawman: use discard to execute sensitive actions
➤ Do not observe result ➠ no leak!

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> discard $
 sendMessage user message

Practical Concerns

• Strawman: use discard to execute sensitive actions
➤ Do not observe result ➠ no leak!

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> discard $
 sendMessage user message

Practical Concerns

• Strawman: use discard to execute sensitive actions
➤ Do not observe result ➠ no leak!

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> discard $
 sendMessage user message

Practical Concerns

• Strawman: use discard to execute sensitive actions
➤ Do not observe result ➠ no leak!

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> discard $
 sendMessage user message

Practical Concerns

• Strawman: use discard to execute sensitive actions
➤ Do not observe result ➠ no leak!

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> discard $
 sendMessage user message

Practical Concerns

• Strawman: use discard to execute sensitive actions
➤ Do not observe result ➠ no leak!

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do
 forM_ users $ λuser -> discard $
 sendMessage user message

Practical Concerns

… discard covertly leaks termination information.

• Leak secret bit through non-termination

➤ If user matches: diverge in discard block
 Else: write “boring” to public channel

isOfInterest :: User -> Int -> LIO ()
isOfInterest victim n = do
discard $ do
 messages <- getUserMessages victim

 let user = recipient (message!!n)
 when (user == “Brad Pitt”) ⊥
 writeToPublicChannel “boring”

Termination Attack

• Address at the framework/system level

• Use different attacker model
➤ Termination-insensitive non-interference: if a
program terminates, then confidentiality and integrity
of data is preserved

• Don’t address: very low bandwidth channel
➤ Leaks 1 bit per run

Termination Attack

• Threads are crucial to modern web frameworks
➤ Need to concurrently serve requests

• Viability of covert channel attacks
➤ Termination attack leaks 1 bit per thread
➤ Can leak data within same program
➤ Permits attacks relying on internal timing

Adding Fire

• Leak secret bit by affecting output ordering

➤ If user matches: write “y” first, then “es”
 Else: write “es” then “y”

isOfInterest :: User -> Int -> LIO ()
isOfInterest victim n = do
 fork $ do delay 100
 writeToPublicChannel “y”
fork $ do
 discard $ do
 messages <- getUserMessages victim

 let user = msgDestination (message!!n)
 when (user == “Brad Pitt”)$ delay 500
 writeToPublicChannel “es”

Internal Timing Attack

• Analyze output: “yes” ➠ contact with Brad Pitt

Write race to
public channel

Fighting fire with fire
Solution: Threads

• Decoupling discard computations
➤ Spawn new thread to execute sub-computation
➤ Immediately return a labeled future to thread

• Making LIO safe:
− discard
+ lFork: spawn new, labeled threads
+ lWait: force thread evaluation, first “raising”
context label to read result and termination

• Cannot leak bits through non-termination

➤ If user matches: diverge in discard block
➤ Always write “clean” to public channel

isOfInterest :: User -> Int -> LIO ()
isOfInterest victim n = do
discard lFork $ do
 messages <- getUserMessages victim

 let user = recipient (message!!n)
 when (user == “Brad Pitt”) ⊥
 writeToPublicChannel “clean”

Termination Attack

• Cannot affect output ordering

➤ Always write “es” first, then “y”

isOfInterest :: User -> Int -> LIO ()
isOfInterest victim n = do
 discard lFork $ do delay 100
 writeToPublicChannel “y”
discard lFork $ do
 lFork $ do
 messages <- getUserMessages victim

 let user = msgDestination (message!!n)
 when (user == “Brad Pitt”)$ delay 500
 writeToPublicChannel “es”

Internal Timing Attack
NO race to

public channel

Status of LIO
• Used in production system

• Formalized as call-by-name !-calculus
➤ Support for thread spawning and joining
 with lFork and lWait
➤ Support for mutable single-place channels

• Theorem: Termination-sensitive non-interference
➤ Informally: Confidentiality and integrity of data is
 preserved even if threads diverge.

• Covert channels closed by LIO
➤ Termination
➤ Internal timing

• What about external timing channel?

A Practical Perspective

• Covert channels closed by LIO
➤ Termination
➤ Internal timing

• What about external timing channel?

A Practical Perspective

• Covert channels closed by LIO
➤ Termination
➤ Internal timing

• What about external timing channel?

A Practical Perspective

0

• Covert channels closed by LIO
➤ Termination
➤ Internal timing

• What about external timing channel?

A Practical Perspective

0 1

• Covert channels closed by LIO
➤ Termination
➤ Internal timing

• What about external timing channel?

A Practical Perspective

0 1 2

• Covert channels closed by LIO
➤ Termination
➤ Internal timing

• What about external timing channel?

A Practical Perspective

0 1 2 0 3 3 0

• Covert channels closed by LIO
➤ Termination
➤ Internal timing

• What about external timing channel?

A Practical Perspective

0 1 2 0 3 3 0

➠ Mitigation

Thank you

http://gitstar.com/scs/lio

cabal install lio

http://gitstar.com/scs/lio
http://gitstar.com/scs/lio
http://gitstar.com/scs/lio
http://gitstar.com/scs/lio

• Predicative mitigation (Zhang, Askarov, Myers)
➤ Black-box approach ➠ monad transformers!
➤ Predict output schedule for app
➤ Misprediction leaks 1 bit, total bounded in log-time

Mitigation

• Predicative mitigation (Zhang, Askarov, Myers)
➤ Black-box approach ➠ monad transformers!
➤ Predict output schedule for app
➤ Misprediction leaks 1 bit, total bounded in log-time

Mitigation

• Predicative mitigation (Zhang, Askarov, Myers)
➤ Black-box approach ➠ monad transformers!
➤ Predict output schedule for app
➤ Misprediction leaks 1 bit, total bounded in log-time

Mitigation

misprediction

• Predicative mitigation (Zhang, Askarov, Myers)
➤ Black-box approach ➠ monad transformers!
➤ Predict output schedule for app
➤ Misprediction leaks 1 bit, total bounded in log-time

Mitigation

misprediction

• Predicative mitigation (Zhang, Askarov, Myers)
➤ Black-box approach ➠ monad transformers!
➤ Predict output schedule for app
➤ Misprediction leaks 1 bit, total bounded in log-time

Mitigation

misprediction misprediction

• Predicative mitigation (Zhang, Askarov, Myers)
➤ Black-box approach ➠ monad transformers!
➤ Predict output schedule for app
➤ Misprediction leaks 1 bit, total bounded in log-time

Mitigation

misprediction misprediction

