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 Web framework for integrating 3rd party apps

Motivation

Mailer

Messenger

Grapher

User data



Current Approach
•  Platforms restrict what data apps can see

•  No guarantee what app can do with your data
✦Your messages

sendMessage user message = do
  messages <- getUserMessages user
  putUserMessages user (message:messages)
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        alertPaparazzi
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Fundamental Problem

•  Problem:
➤  Read sensitive data with getUserMessages
➤  Wrote to remote host with alertPaparazzi

•  Solution:
➤  Restrict who the app can communicate with 
depending on what data it has read



•  Label every object with a security level/policy
➤ Label protects data by specifying who can read/write

•  Example security label lattice:

Alternative Approach
Information Flow Control with LIO

Policy:  observable by EvePolicy:  observable by Bob

Policy:  public data



•  Execute computations in LIO monad
➤ Records context “current” label
➤ I.e., tracks taint of computation
➤ Restricts side-effects an app can perform

•  Example (sending Bob a message):

LIO Monad
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sendMessage user message = do
  messages <- getUserMessages user
  when (messages `hasRecipient` “Brad Pitt”)
        alertPaparazzi
  putUserMessages user (message:messages)

LIO Monad
Preventing unwanted leaks

        App receives exception:
        Trying to leak sensitive data.

✗Send app message



•  Messenger app wishes to send broadcast message

 

LIO Monad

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message =  do
   forM_ users $ λuser -> sendMessage user message
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Send app message



•  Messenger app wishes to send broadcast message

 

LIO Monad

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message =  do
   forM_ users $ λuser -> sendMessage user message

Overly restrictive

Send app message



•  Messenger app wishes to send broadcast message

 

LIO Monad

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message =  do
   forM_ users $ λuser -> sendMessage user message

Overly restrictive

Send app message



•  Messenger app wishes to send broadcast message

 

LIO Monad

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message =  do
   forM_ users $ λuser -> sendMessage user message

Overly restrictive

Send app message



•  Messenger app wishes to send broadcast message

 

LIO Monad

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message =  do
   forM_ users $ λuser -> sendMessage user message

        App receives exception:
        May be leaking Bob’s data.

✗

Overly restrictive

Send app message



•  Strawman: use discard to execute sensitive actions
➤  Do not observe result ➠ no leak!

 

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message =  do
   forM_ users $ λuser -> discard $
                          sendMessage user message
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… discard covertly leaks termination information.



•  Leak secret bit through non-termination

➤ If user matches: diverge in discard block
     Else: write  “boring” to public channel

isOfInterest :: User -> Int -> LIO ()
isOfInterest victim n = do
discard $ do 
  messages <- getUserMessages victim

    let user = recipient (message!!n) 
    when (user == “Brad Pitt”) ⊥
  writeToPublicChannel “boring”

Termination Attack



•  Address at the framework/system level

•  Use different attacker model
➤ Termination-insensitive non-interference: if a 
program terminates, then confidentiality and integrity 
of data is preserved

•  Don’t address: very low bandwidth channel
➤ Leaks 1 bit per run

Termination Attack



•  Threads are crucial to modern web frameworks
➤ Need to concurrently serve requests

•  Viability of covert channel attacks
➤ Termination attack leaks 1 bit per thread
➤ Can leak data within same program
➤ Permits attacks relying on internal timing

Adding Fire



•  Leak secret bit by affecting output ordering

➤ If user matches: write “y” first, then “es”
     Else: write “es” then “y”

isOfInterest :: User -> Int -> LIO ()
isOfInterest victim n = do
  fork $ do delay 100
            writeToPublicChannel “y”
fork $ do 
  discard $ do
    messages <- getUserMessages victim

      let user = msgDestination (message!!n) 
      when (user == “Brad Pitt”)$ delay 500
    writeToPublicChannel “es”
 

Internal Timing Attack

•  Analyze output: “yes” ➠ contact with Brad Pitt

Write race to 
public channel



Fighting fire with fire
Solution: Threads

•   Decoupling discard computations
➤ Spawn new thread to execute sub-computation
➤ Immediately return a labeled future to thread 

•  Making LIO safe:
− discard
+ lFork: spawn new, labeled threads
+ lWait: force thread evaluation, first  “raising” 
context label to read result and termination



•  Cannot leak bits through non-termination

➤ If user matches: diverge in discard block
➤ Always write  “clean” to public channel

isOfInterest :: User -> Int -> LIO ()
isOfInterest victim n = do
discard lFork $ do 
  messages <- getUserMessages victim

    let user = recipient (message!!n) 
    when (user == “Brad Pitt”) ⊥
  writeToPublicChannel “clean”

Termination Attack



•  Cannot affect output ordering

➤ Always write “es” first, then “y”

isOfInterest :: User -> Int -> LIO ()
isOfInterest victim n = do
  discard lFork $ do delay 100
                     writeToPublicChannel “y”
discard lFork $ do 
  lFork $ do
    messages <- getUserMessages victim

      let user = msgDestination (message!!n) 
      when (user == “Brad Pitt”)$ delay 500
    writeToPublicChannel “es”
 

Internal Timing Attack
NO race to 

public channel



Status of LIO
•  Used in production system

•  Formalized as call-by-name !-calculus
➤ Support for thread spawning and joining
   with lFork and lWait
➤ Support for mutable single-place channels

•  Theorem: Termination-sensitive non-interference
➤  Informally: Confidentiality and integrity of data is 
     preserved even if threads diverge.



•  Covert channels closed by LIO
➤ Termination
➤ Internal timing

•  What about external timing channel?
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•  Covert channels closed by LIO
➤ Termination
➤ Internal timing

•  What about external timing channel?

A Practical Perspective

0 1 2 0 3 3 0

➠ Mitigation



Thank you

http://gitstar.com/scs/lio

cabal install lio

http://gitstar.com/scs/lio
http://gitstar.com/scs/lio
http://gitstar.com/scs/lio
http://gitstar.com/scs/lio


•  Predicative mitigation (Zhang, Askarov, Myers)
➤ Black-box approach ➠ monad transformers!
➤ Predict output schedule for app
➤ Misprediction leaks 1 bit, total bounded in log-time
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