
Building Secure Systems with LIO (Demo)

Deian Stefan1 Amit Levy1 Alejandro Russo2 David Mazières1

1 Stanford University 2 Chalmers University of Technology

{deian, alevy, ⊥}@cs.stanford.edu russo@chalmers.se

Abstract

LIO is a decentralized information flow control (DIFC) system, im-
plemented in Haskell. In this demo, we give an overview of the LIO
library and show how LIO can be used to build secure systems.
In particular, we show how to specify high-level security policies
in the context of web applications, and describe how LIO auto-
matically enforces these policies even in the presence of untrusted
code.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features

Keywords Security; LIO; DCLabels; Hails; Decentralized infor-
mation flow control; Web application

1. Introduction

Haskell provides many language features that can be used to reduce
the damage caused by any particular piece of code. Notable among
these are the strong static type system and module system. The type
system, in addition to reducing undefined behavior, can be used
to distinguish between pure and side-effecting computations, i.e.,
computations that respectively can and cannot affect the “external
world,” while the module system can be used to enforce abstraction
(e.g., by restricting access to constructors).1 Unfortunately, even in
such a high-level, type-safe language, building software systems is
an error-prone task and only a few programmers are equipped to
write secure code.

Consider, for instance, a conference review system where re-
viewers are expected to be anonymous and users in conflict with
a paper are prohibited from reading specific committee comments.
When building such a system, if we import a library function that
performs IO, we risk violating these guarantees—if the code is ma-
licious, it may, for instance, read reviews from the database and
leak them to a public server. Worse yet, such code may be leaking
information through more subtle means, e.g., by encoding data in
the number of reviews. How, then, can we restrict the effects of a
computation, without imposing that it not perform any side-effects?

One approach is to restrict computations to a particular monad—
one other than IO—for which we can control effects. In this demon-
stration, we describe the LIO library which implements one such

1 Here, we refer to the safe subset of the Haskell language—without
unsafePerformIO, etc.—as enforced by the Safe Haskell extension [9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Haskell ’14, September 4–5 2014, Gothenburg, Sweden.
Copyright c© 2014 ACM 978-1-4503-3041-1/14/09. . . $15.00.
http://dx.doi.org/10.1145/2633357.2633371

monad, called LIO (Labeled IO) [6, 7]. Effects in the LIO monad
are mediated according to decentralized information flow control
(DIFC) policies [3, 4]. In particular, this means that computations
can perform arbitrary effects, as long as they do not violate the
confidentiality or integrity of data. (Indeed, LIO automatically dis-
allows effects that would violate confidentiality or integrity.)

2. Overview

DIFC systems such as LIO track and control the propagation of in-
formation by associating a label with every piece of data. (While
LIO is polymorphic in the label model, we focus on LIO with
DCLabels [5], henceforth just labels.) A label encodes a security
policy as a pair of positive boolean formulas over principals spec-
ifying who may read or write data. For example, a review labeled
"alice" \/ "bob" %% "bob" specifies that the review can be
read by user "alice" or "bob", but may only be modified by
"bob". Indeed, such a label may be associated with "bob"’s re-
view, for a paper that both "bob" and "alice" are reviewing.

Our LIO library associates labels with various Haskell con-
structs. For example, we provide labeled alternatives of IORef,
MVar, and Chan, called LIORef, LMVar, and LChan, respectively.
Moreover, we provide an implementation of a filesystem that asso-
ciates persistent labels with files and a type, Labeled, that is used
to associate a label with individual Haskell terms. The latter, for
example, is used to associate labels with reviews (e.g., as given by
the type Labeled DCLabel Review).

Labels on objects are partially ordered according to a can flow
to relation ⊑: for any labels LA and LB , if LA ⊑ LB then the
policy encoded by LA is upheld by that of LB . For example, data
labeled LA = "alice" \/ "bob" %% "bob" can be written to
a file labeled LB = "bob" %% "bob" since LB preserves the se-
crecy of LA. In fact, LB is more restrictive, as only "bob"—not
both "alice" and "bob"—can read the file, and, indeed, until
"alice" submits her review we may wish to associate this label
with "bob"’s review as to ensure that she cannot read it. Con-
versely, LB 6⊑ LA, and thus data labeled LB cannot be written
to an object labeled LA (data secret to "bob" cannot be leaked to a
file that "alice" can also read).

It is precisely this relation that is used by LIO when restricting
the effects performed by a computation in the LIO monad. In fact,
the LIO monad solely encapsulates the underlying IO computation
and a label, called the current label, that tracks the sensitivity of the
data that the computation has observed. To illustrate the role of the
current label, consider the code below that reads "bob"’s private
review and tries to leak it into a reference that "alice" can read.

-- Current label: public == True %% True
bobReview <- readFile "/reviews/bob/5.txt"
-- Current label: "bob" %% True
-- labelOf aliceRef == "alice" %% "alice"
writeLIORef aliceRef $ show bobReview
-- Fail: "bob" %% True 6⊑ "alice" %% "alice"

Here, the current label is first raised by readFile to reflect the fact
that information sensitive to "bob" was incorporated into the con-
text. Importantly, however, this label is also used to subsequently
restrict the effects performed by the computation; in this case, the
writeLIORef action raises an exception to reflect that the compu-
tation tried to write to a reference whose label does not protect the
review content.

In general, DIFC enforcement in LIO follows this approach of
exposing functions (e.g., writeLIORef), which inspect the current
label and the label of object they are about to read/write as to up-
hold the can flow to relation. Our definition for bind and return
are trivial; we solely rely on Haskell’s monad support as a way to
define a sublanguage that enforces DIFC. By ensuring (with Safe
Haskell) that untrusted code is written in this sublanguage, i.e., it
cannot lift arbitrary IO actions into LIO, we can incorporate ar-
bitrary (untrusted) code to compute on sensitive data. For exam-
ple, our conference review system can incorporate code provided
by users of the system without fear of leaking reviews or reviewer
identities, all while allowing the code to interact with the external
world.

A further important consequence of this approach to DIFC is
that once we have a sound core language, which, in the case of
LIO, is both concurrent and supports exceptions, 2 we can introduce
many features by simply wrapping existing IO code. As mentioned,
LIO supports labeled alternatives to mutable references, mutable
variables, channels, files, databases, HTTP clients, etc. Some of
these features (e.g., the database) are crucial for implementation
applications such as the conference review system.

3. Automatic data labeling for Web applications

LIO guarantees that code executing in the LIO monad cannot vi-
olate the confidentiality and integrity restrictions imposed by la-
bels. Unfortunately, assigning appropriate labels to data is chal-
lenging and setting overly-permissive labels can amount to unex-
pected “leaks.” While using a simple label model such as DCLabels
may help avoid certain pitfalls, an alternative approach is clearly
desirable.

In the context of web applications, we present an advancement
towards making DIFC policy-specification a mortal task.3 Specif-
ically, we demonstrate the declarative policy language, previously
developed for the Hails web framework [1]. In web applications, it
is common for developers to specify the application data model in
a declarative fashion. Hails leverages this design parading and the
observation that, in many web applications, the authoritative source
for who should access data resides in the data itself to provide de-
velopers with a means for specifying the policy alongside the data
model.

Consider the definition of the Review data type used in our
conference review system:

data Review = Review { reviewId :: ReviewId
, reviewPaper :: PaperId
, reviewOwner :: UserName
, reviewBody :: Text }

To associate a label with a review we can leverage the information
present in the record type. Specifically, we can specify that the only
user allowed to modify such a review is the owner of the review

2 The presence of exceptions in the core calculus is very important, since it
allows code to recover from DIFC violation attempts [2, 8]. For example,
the failure of the above code to write to a reference is not fatal—the
untrusted code can recover and continue executing.
3 We considered the alternative approach, cloning MIT Prof. N. Zeldovich.

herself; and, we can specify that the only users allowed to read
such a review are the owner and other reviewers of the same paper.
The latter declaration requires that we perform a lookup, using the
paper id of the current review, to find the other reviewers. The code
implementing this policy is given below.

policy :: HailsDB m => Review -> m DCLabel
policy rev = do
let author = reviewOwner rev
reviewers <- findReviewersOf $ reviewPaper rev
makePolicy $ do

readers ==> author \/ reviewers
writers ==> author

The function is self-explanatory; we only remark that the function
takes a Review and returns a DCLabel in a monad m that allows
code to perform database actions (in this case the findReviewersOf
action), a change from the original pure policies of Hails.

We remark, that while, some care must be taken to ensure that
the specified policy is correct, the extend to understanding a secu-
rity policy in such LIO/Hails applications is limited to such func-
tions. It is these policy functions that the database system uses to la-
bel reviews when a fetch, insert, or update is performed. Indeed, the
core of the conference review system does not manipulate labels—
high-level APIs make most of the DIFC details transparent.

4. Demonstration

The demonstration will explain the basics of DIFC and how LIO
can be used to enforce information flow security on untrusted code.
In particular, we will show how the core of a simple, web-based
conference review system is implemented in LIO. Part of this in-
cludes the specification of high-level policies, which is facilitated
by the use of the simple DCLabels model and our automatic la-
belling paradigm. To demonstrate the flexibility of our automatic
labeling we will show how arbitrary untrusted code can be used to
replace the core busy-logic of the application.

Acknowledgements This work was funded by DARPA CRASH
under contract #N66001-10-2-4088. Deian Stefan is supported by
the DoD through the NDSEG Fellowship Program.

References

[1] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. Mitchell, and
A. Russo. Hails: Protecting data privacy in untrusted web applications.
In Proc. of the 10th OSDI, pages 47–60. USENIX, 2012.

[2] C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett. All
your ifcexception are belong to us. In Proc. of the IEEE Symp. on

Security and Privacy, 2013.

[3] A. C. Myers and B. Liskov. A decentralized model for information flow
control. In Proc. of the 16th SOSP, pages 129–142, 1997.

[4] A. Sabelfeld and A. C. Myers. Language-based information-flow secu-
rity. IEEE Journal on Selected Areas in Communications, 21(1), 2003.

[5] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. Disjunction
category labels. In NordSec 2011, LNCS. Springer, 2011.

[6] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic
information flow control in Haskell. In Haskell Symposium, pages 95–
106. ACM SIGPLAN, 2011.

[7] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazières.
Addressing covert termination and timing channels in concurrent infor-
mation flow systems. In Proc. of the 17th ICFP, 2012.

[8] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic
information flow control in the presence of exceptions. Arxiv preprint

arXiv:1207.1457, 2012.

[9] D. Terei, S. Marlow, S. Peyton Jones, and D. Mazières. Safe haskell. In
ACM SIGPLAN Notices, volume 47, pages 137–148. ACM, 2012.

