
Stellar Consensus by Instantiation

Giuliano Losa∗

Galois, Inc.
giuliano@galois.com

Eli Gafni†

UCLA
eli@ucla.edu

David Mazières‡

Stanford
http://www.scs.stanford.edu/~dm/addr/

August 12, 2019

Abstract

Stellar introduced a new type of quorum system called a Federated
Byzantine Agreement System. A major difference between this novel type
of quorum system and a threshold quorum system is that each participant
has its own, personal notion of a quorum. Thus, unlike in a traditional
BFT system, designed for a uniform notion of quorum, even in a time of
synchrony one well-behaved participant may observe a quorum of well-
behaved participants, while others may not.

To tackle this new problem in a more general setting, we abstract
the Stellar Network as an instance of what we call Personal Byzantine
Quorum Systems. Using this notion, we streamline the theory behind the
Stellar Network, removing the clutter of unnecessary details, and refute
the conjecture that Stellar’s notion of intact set is optimally fault-tolerant.
Most importantly, we develop a new consensus algorithm for the new
setting.

∗Funding: BSF Grant 2014226, NSF Grant 1655166, a gift from the Stellar Development
Foundation, and Galois, Inc.
†Funding: BSF Grant 2014226, NSF Grant 1655166, and a gift from the Stellar Develop-

ment Foundation
‡Funding: Stanford Center for Blockchain Research

1

http://www.scs.stanford.edu/~dm/addr/


1 Introduction

We study the consensus problem in a new type of quorum system that we call a
Personal Byzantine Quorum System (abbreviated PBQS). In a PBQS, each node
has its own, personal notion of what a quorum is, subject to the requirement
that if Qp is a quorum of p and p′ ∈ Qp then there is a quorum Qp′ of p′ included
in Qp. Justifying this rather strong requirement on the intuitive level, p′ being
in a personal quorum of p has the connotation that p ‘trusts” p′. Hence, its
quorum should contain at at least one quorum of p′. The reverse is not required
since trust might not be reflexive, i.e. p′ might not trust p even though p trusts
p′.

In contrast to PBQSs, traditional Byzantine quorum systems are uniform,
in the sense that every participant has the same notion of a quorum. Under the
assumptions of quorum intersection (i.e., that every two quorums intersect at a
well-behaved participant) and quorum availability (i.e., that at least one quo-
rum is exclusively well-behaved), one can implement consensus under eventual
synchrony [6]. However, traditionally, the ability to implement consensus using
quorums is all or nothing; as soon as two quorums fail to intersect at a well-
behaved participant, or if no quorum is available, no subset of the participants
can solve consensus.

In a PBQS, it is possible that a subset S of the participants has intersecting
quorums, in which case we say S is intertwined, while the system as a whole does
not. Relying on quorum intersection to ensure safety to S is straightforward.
However, suppose S1 and S2 are each intertwined but S1 ∪ S2 is not. In this
case there is no way to keep S1 ∪ S2 in agreement, but we can still keep each
set internally in agreement. It is also possible that S1 ∪ S2 is not intertwined
even though S1 ∩ S2 6= ∅. In this case, can a consensus algorithm also ensure
liveness to S1 and S2? This seems impossible since, if S1 and S2 diverge, a
participant belonging to both S1 and S2 has to pick a side and violate safety on
the other side in order to make progress. Those observations raise the problem
of determining, given an instance of PBQS and a set B of malicious participants,
for which family of sets both safety and liveness are achievable, and whether
there is an optimal such family. In Section 2, we give necessary conditions for a
family of sets to enjoy consensus and we define the notion of a consensus cluster,
for which we show how to solve consensus in Section 3.

Another crucial technical difference between PBQSs and traditional Byzan-
tine quorum systems is that since members do not know what constitutes a
quorum for another participant, even in a synchronous period, we face the
asynchronous phenomenon that one well-behaved member observes a quorum of
well-behaved participants, while others do not. BFT algorithms for eventually
synchronous systems can experience this phenomenon only during the period of
asynchrony.

Why is it important to study PBQSs? Beyond theoretical curiosity, PBQSs
successfully abstract a deployed, real-world system: the Stellar Network. We
found designing a BFT consensus algorithm which is both safe and live under
these condition to be challenging. Indeed, the Stellar Consensus Protocol [14]

2



(SCP) has only been proved non-blocking when there are Byzantine failures.
Here, we propose an algorithm which is safe and live, albeit impractical. Nev-
ertheless, it serves our purpose of showing that while the Stellar network is
optimally fault-tolerant for safety, the family of sets that enjoy both safety and
liveness is not optimal as previously conjectured. Furthermore, our algorithm
guarantees termination in the eventually synchronous model. Whether a prac-
tical protocol can achieve these properties is still an open question.

In addition to introducing the PBQS model, we make the following contri-
butions:

• We design an unauthenticated BFT consensus algorithm using idea from
Dwork et al.[6] to solve consensus for the Stellar Network’s consensus
clusters.

• We refute the conjecture made in the Sellar Whitepaper [14] that intact
sets are optimal for consensus. Indeed we suspect that our generalization
of intact sets called consensus clusters are optimal.

• We show that the Stellar Network may harbor several disjoint consensus
clusters which can nevertheless remain internally in agreement and live.
Past work on federated Byzantine agreement systems [14, 7] (FBAS) as-
sumes global quorum intersection and leaves the reader pondering whether
all guarantees collapse should this assumption be violated.

Finally, we formalize the static properties of PBQSs and Stellar’s federated
Byzantine agreement systems in Isabelle/HOL; the formal theory is available in
the Archive of Formal Proofs [12].

2 Personal Byzantine Quorum Systems

In this section we formalize the Personal Byzantine Quorum System Model (the
PBQS Model), we define what it means to solve consensus in this model, we
observe that global consensus is impossible even without faults, we give lower
bounds on what subsets of participants can possibly enjoy consensus, and we
define the notion of a consensus cluster. In a consensus algorithm, different
consensus clusters may diverge, but, as we show in the next section, consensus
is solvable under eventual synchrony within a consensus cluster. The main
technical result of this section is that maximal consensus clusters are disjoint,
as it is an obvious requirement for consensus.

Definition 1. A PBQS consists of a set of participants P , a set B ⊆ P of
Byzantine participants, a set W = P \ B of well-behaved participants, and a
function mapping a participant p to its non-empty set of quorums, which are
subsets of P . The participants’ quorums must be such that:

Property 1 (Quorum sharing). If Qp is a quorum of p and p′ ∈ Qp then there
exists a quorum Qp′ of p′ such that Qp′ ⊆ Qp.

3



In other words, property 1 states that a quorum Q of some participant p
must contain a quorum of every one of its members. As we show in Lemma 4,
this remarkably simple property is sufficient to give a mathematically pleas-
ing structure, obviously required if each consensus cluster is to be internally
consistent, to PBQSs: Maximal consensus clusters are disjoint.

2.1 Consensus Algorithms in PBQSs

We assume that the participants communicate via a fully-connected point-to-
point message-passing network. (In the Stellar network this is accomplished
using an overlay network and signatures.) This means that a participant always
knows the identity of the well-behaved sender of a message that it receives.
However, message content is not authenticated (in keeping with the current
Stellar Modus Operandi of not forwarding signatures) and therefore a partici-
pant cannot trust what a sender p says it heard from sender q. Well-behaved
participants take steps according to the algorithm they are given, while Byzan-
tine participants may take arbitrary steps. Each well-behaved participant is
scheduled infinitely often and a message sent from a well-behaved participant
to a well-behaved participant is eventually delivered.

A consensus algorithm consists of a non-terminating sequential program run
by each participant in the system. The program can send and receive messages
as well as take local computation steps. Initially, a participant starts with a
unique identifier, a set of quorums, the set of all participants (used for round-
robin leader election, which is replaced by a probabilistic election algorithm
in the Stellar Network), and an input value, all of which are accessible to its
program. Crucially, a participant does not know a priori the quorums of other
participants (it only knows its own set of quorums). In the Stellar Network,
a participant learns one of its own quorums only when it receives messages
from all members of that quorum, but this difference is not of consequence. A
participant also does not know which participants are Byzantine. At any point,
a participant’s program may produce a unique, irrevocable decision value.

Definition 2 (Intertwined). We say that a set S of well-behaved participants is
intertwined when for every two sets Q and Q′ which are both quorums of some
(possibly different) members of S, we have Q ∩Q′ ∩W 6= ∅.

Note that, by definition, two intertwined participants cannot have empty
quorums.

Definition 3 (Quorum-based algorithm). We say that a consensus algorithm
is quorum-based when:

1. If a well-behaved participant p decides, then there must be a quorum Q
of p such that p received at least one message from each member of Q.

2. If Q is a quorum of a participant p, p ∈ W , and v is a possible input
value, then there exists an execution in which only p and members of Q
take steps, and p eventually outputs v.

4



As we have already noted, a PBQS may, for example, harbor two intertwined
sets S1 and S2 such that S1∪S2 is not intertwined. As implied by the following
lemma, in this case no quorum-based algorithm can solve consensus for S1∪S2.

Lemma 1. Consider two participants p and p′, p 6= p′, and two quorums Q,Q′

such that Q is a quorum of p and Q′ is a quorum of p′ and (Q ∩Q′) \ B = ∅.
Then no quorum-based algorithm can guarantee agreement between p and p′.

Proof. By definition of quorum-based algorithm, there are two executions e and
e′ such that (a) only p and members of Q take steps in e and p decides value
v in e, and (b) only p′ and members of Q′ take steps in e′ and p′ decides value
v′ 6= v in e′. Because Q and Q′ are disjoint, the execution e · e′ consisting of the
concatenation of e and e′ is also an execution. Moreover, agreement is violated
in e · e′.

Lemma 1 shows that, in general, consensus in a PBQS is not solvable globally.
Instead, we reformulate the consensus problem such that, given a PBQS U and
a family of sets of participants depending on U (and thus on the quorum slices
and on W ), the traditional properties of consensus have to be guaranteed only
to each set in the family.

Definition 4 (The PBQS Consensus Problem). In the PBQS consensus prob-
lem for a PBQS U and a family of sets of participants {Si} (depending on U),
we require that for every set Si in the family:

• Agreement: no two members of Si decide different values.

• Liveness: every member of Si eventually decides some value.

• Non-triviality: if only well-behaved participants take steps and a mem-
ber of Si decides, then it decides the input value of some well-behaved
participant.

Note that the definition above does not preclude any participant from taking
steps in the algorithm; instead, the definition gives guarantees only to sets in
the family.

In Section 2.3, we define the family of consensus clusters, and we show
in Section 3 that PBQS consensus is solvable for consensus clusters. Another,
more restrictive, family for which PBQS consensus is solvable is the family of
intact sets, as defined in the Stellar Whitepaper. In Section 5, we show that
every intact set is a consensus cluster but that the reverse is not true. In
this sense, it shows that intact sets cannot be optimal for PBQS consensus.
Definition 4 also raises the question of whether there exists an optimal family
(in the sense of inclusion) for which PBQS consensus is solvable. We leave
this question open, although we conjecture that the consensus clusters family is
optimal.

5



2.2 A Necessary Condition for Liveness

Next we observe that if every quorum Q of a participant p contains a Byzantine
node, then it is impossible to guarantee liveness for p because malicious partic-
ipants can always remain silent. This is formalized using the notion of blocking
set:

Definition 5 (Blocking). If R is a set of participants, we say that p is blocked
by R, or equivalently that R blocks p, when every quorum of p intersects R.
We denote the set of participants blocked by R by BlockedBy(R), and the set
of sets that each blocks p, called p’s blocking sets, by Blocking(p).

Lemma 2. If p is blocked by B then no quorum-based algorithm can ensure
liveness to p.

Proof. If all malicious participants remain silent, then there is no quorum Q
such that p eventually receives a message from every member of Q. Therefore,
by requirement 1, p never decides.

An interesting question is whether q who is blocked by BlockedBy(B) shares
the same fate as p who is blocked by B. The answer is positive and a consequence
of the quorum sharing property, as implied by the following lemma.

Lemma 3. In a personal quorum system, for every set of participants R, we
have

BlockedBy(BlockedBy(R)) = BlockedBy(R).

Proof. Suppose that p ∈ BlockedBy(BlockedBy(R)) but p /∈ BlockedBy(R).
Hence, there is a quorum Q of p that does not intersect R. However, since
p ∈ BlockedBy(BlockedBy(R)), Q must contain p′ which is BlockedBy(R). By
the quorum sharing property, Q containts a quorum Q′ of p′, and by the virtue
of p′ being blocked by R, Q′ contains a member of R. Since Q′ ⊆ Q, we conclude
that Q contains a member of R, and this is a contradiction.

Corollary 1. If p is well-behaved and is not blocked by B, then p has a quorum
consisting exclusively of well-behaved participants that are not blocked by B.

2.3 Consensus Clusters

In this section we define consensus clusters and we show that maximal consensus
clusters are disjoint. Consensus clusters can be thought of as disjoint islands
which can be kept internally consistent and live by a consensus algorithm, but
which may diverge from each other.

Definition 6 (Consensus cluster). A subset S ⊆ W of the well-behaved par-
ticipants is a consensus cluster when:

• Quorum Intersection: S is intertwined.

6



• Quorum Availability: If p ∈ S then there is a quorum Qp of p such that
Qp ⊆ S.

Note that, by quorum availability, a member of a consensus cluster must have
a quorum, and, by quorum intersection, all its quorums must be non-empty.

We now show that maximal consensus clusters are disjoint. This depends
crucially on the quorum sharing property (Property 1) of quorums (i.e., if Q is
a quorum of p and p′ ∈ Q then Q contains a quorum of p′).

Definition 7. A consensus cluster C is maximal when no strict superset of C
is a consensus cluster.

Lemma 4. Consider a personal quorum system. If C1 and C2 are two consensus
clusters and C1 ∩ C2 6= ∅, then C1 ∪ C2 is a consensus cluster.

Proof. Consider p ∈ C1 and q ∈ C2. It suffices to show that p and q are
intertwined (quorum availability is immediate). Consider two quorums Qp and
Qq of p and q, and a quorum Qm of a participant m ∈ C1 ∩ C2 such that
Qm ⊆ C1. Since m and q are intertwined by virtue of belonging to C2, it follows
that Qq and Qm have non-empty intersection in C1. Let n ∈ C1 be a member
of this intersection. By the quorum sharing property, Qq contains a quorum Qn

of n. Since both n and p belong to C1 they are intertwined. Consequently Qp

and Qn intersect at a well-behaved participant. Since Qn ⊆ Qq, we get that Qp

and Qq intersect at a well-behaved participant, and we are done.

Corollary 2. Maximal consensus clusters are disjoint.

Finally, we present the two properties, Properties 2 and 3, that, as shown in
the next section, are sufficient to solve PBQS consensus for consensus clusters.

Property 2 (quorum of member of C, blocks all members of C). If C is a
consensus cluster and Q is a quorum of a member of C, then Q ∩ W blocks
every member of C.

Proof of Property 2. Consider p ∈ C. By the quorum-intersection property of
consensus clusters, all quorums of p intersect Q at a well-behaved participant.
Thus Q ∩W intersects all quorums of p, and we conclude that Q ∩W blocks
p.

Property 3 (blocking set of member of C contains a member of C). If C is a
consensus cluster, p ∈ C, and R blocks p, then R ∩ C 6= ∅.

Proof of Property 3. By definition of blocking sets, R intersects all quorums of
p. Moreover, by the quorum-availability property of consensus clusters, p has a
quorum Qp ⊆ C. Thus, R intersects C.

7



3 Solving Consensus under Eventual Synchrony
in a PBQS

3.1 The Key Insight

Most eventually-synchronous BFT consensus algorithms [6, 3, 11, 5, 1, 8], whether
they use authenticated messages or not, rely for liveness on the fact that if two
participants p, p′ receive the same messages then p observes a quorum (or block-
ing set) if and only if p′ does. For example, this is used by PBFT’s leader to
convince other participants to prepare its value by attaching signed messages
that prove that the value cannot contradict a past decision. In the unauthenti-
cated BFT algorithm of Dwork et al. [6] (Algorithm 3), liveness is ensured by
the fact that, during synchrony, a participant that locks a value at the highest
round causes all other locks to be released because, thanks to reliable broadcast,
the corresponding quorum is observed by all in a timely manner.

Unfortunately, those techniques fail in a PBQS because the notion of quo-
rum is not shared by the participants: even if all participants receive the same
messages, one may observe a quorum while the other does not.

The key observation that we make to solve this problem is the following.
Consider a consensus cluster C. If, instead of just observing a quorum, a member
p of C observes a quorum Q that unanimously states having observed a quorum
making statement s, then all members of C that receive the same messages as
p can derive that there is a unanimous quorum of some member of C making
statement s. This is because, by Property 2, Q ∩W blocks all members of C
and, by Property 3, a blocking set contains a member of C, which can be trusted
when it reports that a quorum of C unanimously makes statement s.

3.2 The Consensus Algorithm

We assume eventual synchrony, i.e., that there is a time GST after which (a)
the messages between well-behaved participants are reliably delivered within a
time bound ∆ and (b) the relative rate of the clocks of any two well-behaved
participants is bounded by a constant ρ. GST, ∆, and ρ are fixed but unknown
to the participants.

The consensus algorithm is described in pseudocode in Figure 1. It con-
sists of an unbounded sequence of rounds, where each participant progresses
from round to round as instructed by a clock-synchronization protocol described
in Section 3.3. The clock-synchronization protocol guarantees that there is a
round GSR happening after GST such that for the round GSR and every round
after GSR, members of a consensus cluster proceed from round to round syn-
chronously, always receiving each other’s messages.

Each four consecutive rounds form an epoch. Each epoch has a unique
leader chosen round-robin. We refer to the individual rounds within an epoch
as phases. Nodes broadcast their state at each phase. The algorithm uses a few
key concepts:

8



• A participant locks a value v with an associated epoch e when it suspects
that v might become decided at epoch e; if it later observes that the value
was in fact not decided, then it unlocks it. Locks ensure that, within a
consensus cluster, a value locked by a quorum can never be unlocked.

• A participant p considers a value final when it observes that no member
of its consensus cluster, should p belong to a consensus cluster, can decide
something different.

• A participant p decides a value when it observes that no participant that
is intertwined with p may make a conflicting decision.

• Participants maintain a candidate value and keep track of the progress-
round of their candidate; a participant assigns progress-round r to its
candidate when it adopts it from the leader in round r or when it observes
a unanimous quorum with the same candidate and progress round r − 1
(we sometimes refer to progress phase when the epoch is clear from the
context).

With those concepts in mind, the phases proceed as follows:

• In phase 1, a leader proposes a candidate value on which to try to agree.
A node adopts the leader’s value unless it suspects that a different value
was decided. A node that adopts the leader’s value updates its progress
round to the current round.

• In phases 2 to 4, a participant p sends a candidate value to all and expects
a quorum that agrees with that candidate. At each of those phases, if the
expected quorum materializes, the participant updates the progress round
of the candidate to the current round. The crucial property of the scheme
is that, after GST, if the candidate of a member of consensus cluster C
successfully progresses to phase i > 1, then all members of C will infer
that v has progressed to phase i− 1; this is because if Q is a quorum of a
member of C, then Q ∩W is a blocking set for all members of C, and a
blocking sets contains a member of C and thus can be trusted.

• A processor unlocks its candidate if it gets a “proof” that, after its locking
epoch, there was a quorum for another candidate. This is accomplished
by observing a unanimous blocking set for a value that progressed to at
least phase 2 in a higher epoch.

• A participant whose candidate progresses to phase 3 considers its candi-
date value locked (because it suspects that it may become final in phase 4),
and a participant whose candidate progresses to phase 4 considers its can-
didate final. A final value is not revocable; in contrast “locking” is. At any
time, if a participant observes a quorum unanimously declaring the same
value v as final, then it decides v. While intertwined participants that are
not part of a consensus cluster may disagree on final values (because those

9



participants may be convinced to unlock arbitrarily by Byzantine partici-
pants), they cannot disagree on decisions because final is irrevocable; this
is the purpose of the concept of final value.

• A participant that unlocks a value keeps a record that this value was
previously locked and at what epoch, and it includes all those records in
its messages. Other participants can then check that the unlock steps
are valid, by making sure they can derive first-hand that a quorum jus-
tifies each unlock step; this prevents a well-behaved participants outside
a consensus cluster from “contaminating” the consensus cluster because
of a bogus unlock step. This is essential because members of a consensus
cluster might depend on a well-behaved outsider for quorum intersection.

The fact that final values are irrevocable guarantees that two intertwined
participants never disagree. The crux of the algorithm’s liveness is that a quo-
rum with progress phase 2 suffices to unlock a value, while it takes a quorum
with progress phase 3 to lock a value; this ensures that, after GST, the high-
est lock causes all other locks among a consensus cluster to become unlocked
and the leader to adopt the corresponding value. A decision is then necessarily
reached in the next epoch.

3.3 Clock Synchronization

We now describe a clock-synchronization algorithm adapted from the Stellar
Consensus Protocol [14], which is simpler than the algorithm of Dwork et al. A
participant p running the clock-synchronization protocol continuously advertises
its current round r[p] to all other participants, and it updates its round according
to the following rules:

1. If p hears from a quorum whose members all advertise a round greater or
equal to r[p], then p arms a timer of duration r[p] · T0, where T0 is some
base timeout (e.g., 1 second).

2. If p’s timer fires, p increments its current round.

3. If there is a round r′ > r[p] such that p hears from a blocking set whose
members all advertise a round greater or equal to r′, then p cancels any
pending timeout and advances r[p] to r′.

Now consider a consensus cluster C. By Property 2, rule 3 ensures that, after
GST, any members of C that straggle in lower rounds catch up in constant time
d1 to the highest round that is advertised unanimously by the well-behaved
portion of a quorum Q of C (because Q ∩W is a blocking set for members of
C). Since a blocking set must contain a member of C, rule 3 cannot be used
by Byzantine participants to bring well-behaved participants to a round that
was not already started by a member of C. Finally, rules 1 and 2 ensure that,
despite Byzantine behavior, the first member of C to enter round r stays in
round r for a duration proportional to r. Thus, round progression slows down

10



struct NodeState {
round round, progress . initially 1, 0
value val . initial input
bool locked, final . initially false, false
epoch lockEpoch
set〈messages〉 received . all received messages with valid unlockHistory
set〈pair〈epoch, value〉〉 unlockHistory . all values ever unlocked

}
define epoch(r) = dr/4e
define leader(e) = participant (e mod N) . N is the number of participants
define phase(r) = r − 4 · phase(r) + 1
define valid(h) = ∀(e, v) ∈ h, a quorum sent messages w. epoch(progress) > e and
val 6= v.

method NodeState::BeginRound()
broadcast(this) . send (round, progress, val, final, lockHistory) to all nodes

method NodeState::EndRound()
let F ← {m | m ∈ received and m.val = val and m.final}
if final and {m.sender | m ∈ F} is a quorum then

decide(val)
end if
if phase(round) = 1 then

let leaderState← m | m ∈ received and m.round = round
and m.sender = leader(epoch(round)))

if !locked or leaderState.val = val then
val ← leaderState.val
progress ← round

end if
else . phases 2–4

let R← {m | m ∈ received and m.val = val and m.progress = round− 1}
if {m.sender | m ∈ R} contains a quorum then

progress ← round
if phase(round) = 3 then

locked ← true
lockEpoch ← epoch(round)

else if phase(round) = 4 then
locked ← true
final ← true . can no longer unlock

end if
end if
if phase(round)= 4 then

let B ← highest-round unanimous-val blocking set w. phase(progress) = 2
w ← unanimous value in B
e ← epoch(round) in B
if !locked or (locked and !final and e > lockEpoch and w 6= val) then

locked ← false
unlockHistory.insert((epoch(round),val))
val ← w . only matters if we are next leader

end if
progress ← round . sets phase(progress)= 4, not checked in phase 1

end if
end if

Figure 1: Algorithm pseudocode

11



linearly with time, and there eventually comes a round GSR after which rounds
are long enough for all members of C to receive each other’s messages. Note the
timer duration in Rule 1 can be change, e.g., to obtain an exponential increase
in round duration.

4 Consensus in Federated Byzantine Agreement
Systems

In this section we show that, despite their seemingly unrealistic features, PBQSs
are a useful model of Stellar’s federated Byzantine agreement systems (FBASs).
More precisely:

• We instantiate the consensus algorithm of Section 3 to FBASs, providing
effective ways to implement its steps.

• Given a FBAS, we define a corresponding PBQS and we show that, under
eventual synchrony, the instantiated consensus algorithm behaves simi-
larly to its counterpart in the PBQS model.

The results of this section show that consensus clusters can be kept safe and
live in a federated Byzantine agreement system that does not enjoy system-wide
quorum intersection, whereas previous work on the subject made the assumption
of system-wide quorum intersection. This is important because, in practice,
misconfigured participants, rival factions, or compromised participants could,
in violating quorum intersection, yield several disjoint consensus clusters.

4.1 Federated Byzantine Agreement Systems

In a FBAS, each participant chooses a set of slices, which are sets of participants.
A participant p considers a set Q to be a quorum when (a) p has at least one
slice that is a subset of Q and (b) every member of Q has a slice that is a subset
of Q. Practical aspects of FBASs are beyond the scope of this paper, and we
refer the reader to Mazières [14] for such matters. What we will say is that it is
intended that a participant will trust any information unanimously agreed upon
by any of its slices, and thus a quorum is, intuitively, a set that trusts itself.

Slice-based quorums have the advantage that any new participant can join
or leave the system without coordination (to join, all it needs to do is join the
communication substrate; in practice, this is an overlay network emulating a
point-to-point network using public-key cryptography). Moreover, any partic-
ipant can also reconfigure its slices unilaterally, without coordination, e.g., to
remove participants it deems unreliable or to add newcomers. On the flip side,
without further assumptions, there is no guarantee that quorums will intersect,
and the set of participants at a given time is generally unknown. For the anal-
ysis that follows, we assume that the set of participants is unknown but fixed
and that the participants’ slices do not change throughout an execution.

12



Three key aspects of federated Byzantine agreement systems prevent a straight-
forward analogy with PBQSs for the purpose of solving consensus:

1. Since each participants self-declares its set of slices (e.g., by broadcasting
it), participants discover their quorums as they receive the slices of other
participants. Byzantine participants have the opportunity to declare ar-
bitrary slices and shape the quorums of well-behaved participants.

2. The algorithms of Section 3 require checking whether a set of participants
is a blocking set. Doing this check by enumerating quorums is not practical
even if all slices are known because the number of quorums of a participant
may be exponential in the size of the system.

3. The set of participants is unknown, and thus round-robin leader-election
is impossible.

4.2 Abstracting Federated Byzantine Agreement Systems

In a FBAS, participants discover quorums as they learn about the slices of other
participants. Therefore, for a participant, the notion of quorum is not fixed;
instead, it is augmented with new quorums as the participant learns about the
slices of other participants. We call the quorums of a participant p at time t
the observed quorums of p at time t. We now define a fixed notion of abstract
quorums, which form a PBQS, and relate them to observed quorums.

Definition 8 (Abstract Quorums). A setQ is an abstract quorum of participant
p when p ∈ B or p has a slice contained in Q, and every well-behaved member
of Q has a slice contained in Q.

Note that the definition of abstract quorum places requirements only on
well-behaved nodes. Hence it is not computable by the participants, who do
not know which participants are well-behaved. The following three lemmas are
direct consequences of the definition of abstract quorum.

Lemma 5. Abstract quorums form a PBQS.

Proof. From the definition of abstract quorum we immediately get that if Q is
an abstract quorum of p and p′ ∈ Q, then Q is an abstract quorum of p′.

Lemma 6. If Q is an observed quorum of a well-behaved participant p at some
time t, then Q is an abstract quorum.

Lemma 7. Assume that Q is an abstract quorum of p ∈ W consisting ex-
clusively of well-behaved participants. Then, under eventual synchrony and as-
suming that participants do advertise their slices: shortly after GST, Q is an
observed quorum of p.

Proof. Since Q is exclusively well-behaved, shortly after GST, all well-behaved
participants receive the slices of the members of Q and can check whether Q is
a quorum of theirs.

13



Lemma 6 shows that the set of abstract quorums is an over-approximation
of the observed quorums. Because all the algorithms presented so far use the
notion of quorum only positively (i.e. adding quorums can only enable more
behaviors), Lemma 6 implies that abstract quorums are a safe abstraction of
the Stellar Network when considering those algorithms, and substituting the no-
tion of observed quorum for quorum in those algorithms does not compromise
their safety properties. Lemma 7 shows that, after GST, a well-behaved partic-
ipant has observed all its abstract quorums. Since the liveness of the consensus
algorithm depends only on the behavior of its maximal consensus cluster, we
conclude that the instantiation of the algorithm to the FBAS model preserves
liveness.

4.3 Checking Whether a Set is Blocking

The algorithms of Section 3 depend on the ability for a participant p to com-
pute whether a given set R is one of its blocking sets. Even if all slices were
known, doing so by enumerating p’s quorums is not practical because, by virtue
of how quorums are defined in a FBAS, p may have a number of quorums that is
exponential is the size of the system. Instead, we now show that there is a recur-
sive algorithm to check whether a set is a blocking set (a) without enumerating
quorums and (b) relying only on the knowledge of the slices of well-behaved
participants. This algorithm can be run locally or as a distributed algorithm,
e.g., as in Stellar’s Federated Voting algorithm [14]. It relies on the notion of
slice-blocking.

Definition 9 (Slice-Blocking). We say that the set of participants R slice-blocks
p when R intersects each slice of p.

Definition 10 (Inductively Blocked). If R is a set of participants, the set of
participants inductively blocked by R, denoted R∗, is defined computationally
as follows. Start with R∗ = ∅. While a fixpoint is not reached, repeat the
following step: add to R∗ all the participants that are slice-blocked by R∗ ∪R.

A participant can compute locally whether some set R is blocking based on
its knowledge of other’s slices. However, if its knowledge of slices is incomplete,
it might wrongly believe that R is not blocking. This can only remove behaviors
in the algorithms of Section 3, because blocking set is used only positively, and
thus, with Lemma 8, the substitution of inductively blocking for blocking does
not impact safety.

Finally, Lemma 9 shows that, after GST, well-behaved blocking sets are
reliably identified by well-behaved participants using the notion of inductively
blocking. Thus, liveness is also preserved when substituting inductively blocking
for blocking.

Lemma 8. At any time, if R inductively blocks p ∈ W then R blocks p in the
abstract quorum system.

14



Proof. Assume by induction that if p′ is in a slice of p and p′ is inductively
blocked by R, then all quorums of p′ intersect R.

Now suppose by contradiction that R does not block p in the abstract system,
i.e. that Q is an abstract quorum of p and R ∩ Q = ∅. Since Q is an abstract
quorum of p, there must be a slice sp of p such that sp ⊆ Q. Moreover, since R
inductively blocks p, then sp must have a member p′ that is inductively blocked
by R. By the quorum-sharing property, Q is an abstract quorum of p′. Thus
Q ∩R 6= ∅, which is a contradiction.

Lemma 9. If p ∈W and R ⊆W blocks p in the abstract quorum system, then,
shortly after GST, R inductively blocks p.

Proof. First, observe that, shortly after GST, p knows all the slices of the well-
behaved participants. Thus, suppose that p knows all the slices of the well-
behaved participants.

Suppose that R does not inductively block p according to p. Then, by
definition, there is a slice sp of p whose members are not inductively blocked
by R and such that sp ∩ R = ∅. Since the members of sp are not inductively
blocked by R, then, for every p′ ∈ sp \B, we also have that there is a slice s′p of
p′ whose members are not inductively blocked by R and such that s′p ∩ R = ∅
(we have to exclude B from sp since p might not know the slices of Byzantine
participants; in the worst case, none of those are observed inductively blocked).
Continuing inductively in this fashion, we obtain an abstract quorum Q of p
which does not intersect R, and we have only used the slices of well-behaved
participants. This contradicts the fact that R blocks p in the abstract quorum
system.

4.4 Leader Election

As noted before, round-robin leader-election is impossible in a FBAS because
the set of participants is in general unknown. In this section we show how to
probabilistically elect a leader. However, we give no bound on the probabil-
ity of success, except that it is non-zero. Devising an efficient leader-election
mechanism, or, more generally, a conciliator[2] mechanism, is left open.

To agree on a common leader taken among C with non-zero probability,
every participant p selects at random a participant p′ belonging to one of its
slices or itself. If p = p′, then p elects itself as leader and broadcasts (leader, p).
Otherwise, it waits to receive a broadcast of the form (leader, p′′) from p′, and
then elects the participant p′′ as leader and broadcasts (leader, p′′).

We now show that, through this process, members of C agree on a common
leader taken among C with non-zero probability.

Definition 11. Graph D(S) If S is a set of participants, the directed graph
D(S) is defined as the graph whose set of vertices is S, and where there is an
edge from n1 to n2 when n2 6= n1 and n2 is in a slice of n1.

15



Lemma 10. If C is a consensus cluster, p ∈ C, and Q is a quorum of a member
of C, then Q is reachable from p in D(C).

Proof. Since p ∈ C and C is a consensus cluster, there is a quorum Q′ of p such
that Q′ ⊆ C. Now suppose that Q is not reachable from p in D(C). Then, with
Q′ ⊆ C, we get that Q′ ∩Q = ∅ . This contradicts the assumption that C is a
consensus cluster.

Definition 12. Elementary quorum An elementary quorum is a quorum Q
such that no strict subset of Q is a quorum.

Note that, by definition, every quorum contains an elementary quorum.

Lemma 11. If n1 and n2 are members of an elementary quorum q consisting
exclusively of well-behaved participants, then there is a path in D(q) from n1 to
n2.

Proof. Suppose q is an elementary quorum and that n1, n2 ∈ q and n2 is not
reachable from n1 in D(q). Then consider the set S of participants that are
reachable from n1 in D(q). By our assumption above, n2 does not belong to
S. Thus S is a strict subset of q. Moreover, every member n of S has a slice
sn ⊆ q. Additionally, consider that we must have that sn ⊆ S, as otherwise a
participant outside S would be reachable from n1. Thus every member of S has
a slice in S, and therefore S is a quorum. Since S is a strict subset of q, this
contradicts the fact that q is an elementary quorum.

Lemma 12. If C is a consensus cluster, then there exists a member of C that
is reachable in D(C) from every other participant in C.

Proof. Since C is a quorum, C contains an elementary quorumQ. By Lemma 10,
Q is reachable from every member n of C in D(C). Moreover, by Lemma 11,
every member of Q is reachable in D(Q) from every other member of Q. Thus,
because D(Q) ⊆ D(C), every member of Q is reachable in D(C) from every
member of C.

Lemma 13. If C is a consensus cluster, then, with non-zero probability, every
member of C elects the same leader l ∈ C.

Proof. Note that the leader-election algorithm can be seen as randomly selection
edges in D(P ) (where P is the set of participants). Because there is a member
n of C reachable in D from all other members of C in D(C) (and because well-
behaved participant have a finite number of outgoing edges), then with non-zero
probability the edges selected by the leader-election algorithm will form a sink
tree rooted at n, who will be elected unique leader by all members of C.

16



5 Related Work

Federated Byzantine quorum systems were first introduced in the Stellar Whitepa-
per by Mazières [14], who also proposes the notion of intact set and a consensus
algorithm for intact sets, the Stellar Consensus Protocol (SCP). The epidemic
propagation mechanism and the clock-synchronization protocol presented in the
present paper are taken from the Stellar Whitepaper. Mazières also discusses
more practical aspects of the Stellar Network.

One important contribution of the present paper is that Stellar’s intact sets,
conjectured in the Stellar Whitepaper to be optimal for consensus, are in fact
not the biggest sets for which an algorithm can solve consensus. An intact set is
a subset S of W such that every member of S is well-behaved and: (a) if Q and
Q′ are quorums of S, then Q ∩Q′ ∩ S 6= ∅; (b) S is a quorum. Comparing the
definitions of consensus cluster and intact set, it is easy to see that any intact
set is also a consensus cluster. However, as shown by the following lemma, there
are some consensus clusters that are strictly bigger than any intact set.

Lemma 14. There are some configurations in which a set S is a consensus
cluster but S is not intact and S has no intact superset.

Proof. Consider a system of three well-behaved participants p1, p2, and p3 (note
that there are no malicious participants) where p1 has a single slice {p1}, p2 has
two slices {p1, p2} and {p2, p3}, and p3 has two slices {p1, p3} and {p2, p3}.
According to those slices, the quorums are {p1}, {p1, p2, p3}, {p2, p3}, {p1, p2},
and {p1, p3}. In this system, C = {p2, p3} is a consensus cluster but is not
intact, because Q1 = {p1, p2} and Q2 = {p1, p3} intersect outside C. Moreover,
the only strict superset of C, {p1, p2, p3}, is not intact because the quorums
{p1} and {p2, p3} do not intersect.

Another novel aspect of the present paper compared to the Stellar Whitepa-
per is that we do not assume global quorum intersection; nevertheless, we show
that consensus clusters enjoy safe and live consensus. This is important because
it shows that safety and liveness guarantees do not collapse system-wide in the
face of misconfigurations or attacks.

We have studied federated quorum system under the assumption that well-
behaved participants do not change their slices. However, in practice, well-
behaved participants might change their slices to eliminate unreliable partici-
pants or add newcomers. The Stellar Whitepaper also analyzes this situation.

Garćıa-Pérez and Gotsman [7] conduct a detailed study of Stellar’s federated
Byzantine quorum systems and the implementation of broadcast abstractions
therein. They also propose the notion of subjective dissemination quorum sys-
tem (subjective DQS) in which, like in a PBQS, each participant has its own set
of quorums. However, subjective DQSs have two crucial differences compared
to PBQSs: subjective DQSs have system-wide quorum intersection and they do
not have Property 1 (which says that a quorum is a quorum for all its mem-
bers). In the absence of system-wide quorum intersection, Property 1 of PBQSs
ensures that maximal consensus clusters are disjoint (Lemma 4). Without it,

17



maximal consensus clusters may intersect, which implies that consensus is not
solvable even for consensus clusters (a participant in the intersection may have
to violate safety on one side in order to make progress).

Ripple [15] introduced the first permissionless quorum-based consensus pro-
tocol. In the XRP Ledger Consensus Protocol, each participant p is responsible
for configuring its own UNL, which is a list of other participants that p will
accept messages from. Moreover, p will accept as a quorum any set of par-
ticipants consisting of more than a fixed fraction (defined system-wide by the
protocol, e.g. 80%) of its UNL. Maintaining agreement in Ripple’s protocol rests
on the assumption that participants will provide sufficiently overlapping UNLs
(roughly 90% for every pair of participants, in the most adversarial model of
Chase and MacBrough [4]).

Traditional Byzantine quorum systems are uniform, in the sense that every
participant has the same notion of quorum. Uniform Byzantine quorum systems
are studied in details by Malkhi and Reiter [13]. More complex types of uniform
quorum systems are studied by Guerraoui and Vukolić [9]. General Byzantine
adversaries [10] do not give rise to a PBQS because participants have global
knowledge of the adversary in this model.
Acknowledgment: The authors are in debt to an anonymous reviewer who
suspected that our algorithm had a flaw. Indeed, that suspicion was correct.

References

[1] Ittai Abraham, Guy Gueta, Dahlia Malkhi, and Jean-Philippe Martin.
Revisiting fast practical byzantine fault tolerance: Thelma, Velma, and
Zelma. arXiv preprint arXiv:1801.10022, 2018.

[2] James Aspnes. A modular approach to shared-memory consensus, with
applications to the probabilistic-write model. Distributed Computing,
25(2):179–188, 2012.

[3] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems (TOCS),
20(4):398–461, 2002.

[4] Brad Chase and Ethan MacBrough. Analysis of the XRP ledger consensus
protocol. arXiv preprint arXiv:1802.07242, 2018.

[5] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and
Mirco Marchetti. Making byzantine fault tolerant systems tolerate byzan-
tine faults. In NSDI, volume 9, pages 153–168, 2009.

[6] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM), 35(2):288–323,
1988.

18



[7] Álvaro Garćıa-Pérez and Alexey Gotsman. Federated byzantine quorum
systems. In 22nd International Conference on Principles of Distributed Sys-
tems (OPODIS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

[8] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić.
The next 700 BFT protocols. In Proceedings of the 5th European conference
on Computer systems, pages 363–376. ACM, 2010.

[9] Rachid Guerraoui and Marko Vukolić. Refined quorum systems. Distributed
Computing, 23(1):1–42, 2010.

[10] Martin Hirt and Ueli Maurer. Complete characterization of adversaries
tolerable in secure multi-party computation. In PODC, volume 97, pages
25–34, 1997.

[11] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Ed-
mund Wong. Zyzzyva: Speculative byzantine fault tolerance. In Pro-
ceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, pages 45–58, New York, NY, USA, 2007. ACM.

[12] Giuliano Losa. Stellar quorum systems. Archive of Formal Proofs, Au-
gust 2019. http://isa-afp.org/entries/Stellar_Quorums.html, For-
mal proof development.

[13] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed
computing, 11(4):203–213, 1998.

[14] David Mazieres. The Stellar Consensus Protocol: A federated model for
internet-level consensus. Stellar Development Foundation, page 32, 2015.

[15] David Schwartz, Noah Youngs, and Arthur Britto. The Ripple protocol con-
sensus algorithm, 2014. https://ripple.com/files/ripple_consensus_
whitepaper.pdf.

19

http://isa-afp.org/entries/Stellar_Quorums.html
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf

	Introduction
	Personal Byzantine Quorum Systems
	Consensus Algorithms in PBQSs
	A Necessary Condition for Liveness
	Consensus Clusters

	Solving Consensus under Eventual Synchrony in a PBQS
	The Key Insight
	The Consensus Algorithm
	Clock Synchronization

	Consensus in Federated Byzantine Agreement Systems
	Federated Byzantine Agreement Systems
	Abstracting Federated Byzantine Agreement Systems
	Checking Whether a Set is Blocking
	Leader Election

	Related Work

