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Abstract
We present Castor, a record/replay system for multi-core
applications that provides consistently low and predictable
overheads. With Castor, developers can leave record and
replay on by default, making it practical to record and
reproduce production bugs, or employ fault tolerance to
recover from hardware failures.

Castor is inspired by several observations: First, an effi-
cient mechanism for logging non-deterministic events is criti-
cal for recording demanding workloads with low overhead.
Through careful use of hardware we were able to increase log
throughput by 10× or more, e.g., we could record a server
handling 10× more requests per second for the same record
overhead. Second, most applications can be recorded without
modifying source code by using the compiler to instrument
language level sources of non-determinism, in conjunction
with more familiar techniques like shared library interposi-
tion. Third, while Castor cannot deterministically replay all
data races, this limitation is generally unimportant in practice,
contrary to what prior work has assumed.

Castor currently supports applications written in C, C++,
and Go on FreeBSD. We have evaluated Castor on parallel
and server workloads, including a commercial implementa-
tion of memcached in Go, which runs Castor in production.

CCS Concepts •Software and its engineering → Oper-
ating systems

Keywords Multi-Core Replay, Replay Debugging, Fault-
Tolerance
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1. Introduction

Record/replay is used in a wide range of open source and
commercial applications: replay debugging [1–3, 36], can
record difficult bugs when they occur and reproduce them
offline, decoupled analysis [2], can record execution online
with low overhead then replay it offline with high overhead
dynamic analysis tools, and hardware fault tolerance [14, 41],
can record execution and replay it on a separate machine to
enable real-time failover when hardware failures occur.

Unfortunately, the performance overhead of record/replay
systems is frequently prohibitive, particularly in multi-core
settings. Often this limits their use to test and development
environments and makes them impractical for implementing
fault tolerance [5].

Our goal with Castor is to provide record/reply with
low enough overheads that developers are willing to leave
recording on by default [17, 45], making it practical to record
and reproduce difficult production bugs, or to enable fault
tolerance in high performance network services.

The widespread use of multi-core architectures poses a
key challenge to achieving this goal. Record/replay systems
work by recording and replaying non-deterministic program
inputs. Multi-core architectures introduce a new source of
non-determinism in the form of shared memory interactions,
most frequently for synchronization between threads running
on separate cores.

Open source [36], commercial [1, 2] and some research
systems [20] cope with this challenge by eliminating multi-
core execution, and its resultant non-determinism, by deter-
ministically scheduling all threads on a single core. Other
research systems constrain and record non-determinism by
statically or dynamically adding and recording synchroniza-
tion [19, 26, 30], or use speculative execution [8, 29, 37, 49]
to find a deterministic replay. These approaches have signifi-
cant runtime overhead and scalability issues that limit their
usefulness for production workloads.

http://www.scs.stanford.edu/~dm/


Another approach is possible that avoids these overheads.
When source code is available, explicit synchronization—e.g.,
locks, language-level atomics, or (in legacy code) volatile
variables—can be directly instrumented to capture and record
inter-thread non-determinism [18, 22, 23, 39]. Castor builds
on this approach with several new observations:

Hardware-optimized logging is essential for keeping
record/replay overheads low as core counts and workload
intensities increase. Non-deterministic events, such as system
calls and synchronization, are recorded to and replayed from
a log. Maximizing log throughput is critical, since record
overheads increase in proportion to the log throughput con-
sumed, modulo cache effects. Simply put, the more resources
we spend on logging, e.g., CPU, memory bandwidth, the less
the application has to accomplish real work.

Castor maximizes log throughput by eliminating con-
tention. For example, hardware synchronized time stamp
counters are used as a contention-free source of ordering for
events. This and other optimizations improve log throughput
by a factor of 3×–10× or more—e.g., if recording a web
server with a given amount of load imposes a 2% overhead
without these optimization, with them, we can record 3×–
10× more load (requests per second), for the same 2%.

Minimizing log latency is also critical, as it directly
impacts application response times. For example, if a thread is
descheduled during a performance-critical logging operation,
it can introduce delay, as other application threads that depend
on the pending operation are prevented from making forward
progress. This can result in user-visible performance spikes.

To prevent this, we make use of a unique property of
transactional memory which forces transactions to abort on
protection ring crossings. This ensures that performance
critical operations will abort if they are descheduled, thus
preventing delay. We discuss logging further in §3.

Record/replay can often be enabled transparently, i.e.,
without any program modification. Castor and similar sys-
tems record sources of non-determinism, such as synchro-
nization, by instrumenting source code. Other systems do
this manually, e.g., developers replace user level locks with
wrapper functions. Manual instrumentation can be tedious
and error prone, often does not support all sources of non-
determinism, and can introduce additional and unpredictable
performance overheads.

To avoids this, Castor uses a custom LLVM compiler pass
to automatically record user level non-determinism including
atomics, ad hoc synchronization with volatiles, compiler
intrinsics, and inline assembly; generally this requires no
program modifications (see §3.1). It also make use of trans-
actional memory to transparently record inline assembly and
efficiently record user level synchronization (see §3.4).

The impact of data races on these systems is often neg-
ligible. Shared memory accesses that are not explicitly syn-
chronized, i.e., data races, can introduce non-determinism
on replay in Castor and similar systems. In the past, there

has been concern that this could undermine the usefulness
of replay [29, 30] by interfering with fault tolerance or bug
reproducibility. However, this limitation is of negligible im-
portance today for several reasons.

First, modern languages no longer support “benign data
races,” i.e., races intentionally included for performance.
Any benefits they offered in the past are now supported
through relaxed-memory-order atomics [11]. Thus, all data
races are undefined behavior, i.e., bugs on the same order as
dereferencing a NULL pointer [12, 47].

Next, data races appear exceedingly rare relative to other
bugs, thus are unlikely to interfere with reproducing other
bugs on replay. For example, over a four-year period, there
were 165 data races found in the Chromium code base, 131
of which were found by a race detector, compared to 65,861
total bugs, or about 1 in 400. Further, none of these bugs made
it into release builds, so at least in this example, data races
would likely have no impact on the production use of replay.
Other studies of data races suggest that most do not introduce
sufficient non-determinism to impact replay [25, 34], and
when they do, there are often viable ways of coping. We
explore this further in §6.

Castor works with normal debugging, analysis and profil-
ing tools such as gdb, lldb, valgrind, and pmcstat. It can
also replay modified binaries, enabling the use of ThreadSan-
itizer and similar tools by recompiling and relinking before
replay. Special asserts and printfs can also be added after
the fact. We discuss using Castor, along with its performance
on server and parallel workloads in §5.

2. Overview
Castor records program execution by writing the outcome of
non-deterministic events to a log so they can be reproduced
at replay time, as depicted in Figure 1.

Two types of non-determinism are recorded: input non-
determinism and ordering non-determinism. Input non-
determinism occurs when an input changes from one ex-
ecution to another, such as network data from a recv system
call, or the random number returned by a RDRAND instruc-
tion; in these cases, we record the input to the log. Ordering
non-determinism occurs when the order operations happen in
changes the outcome of an execution—for example, the order
that two threads read data from the same socket or acquire a
lock. In these cases, we also record a counter that captures
the correct ordering (see §3.3).

Castor interposes on non-deterministic events at multiple
levels. It relies on a compiler pass to instrument language-
level sources of non-determinism such as atomics, compiler
intrinsics, and inline assembly (see §3.1). The Castor runtime,
which is linked into applications, employs library interposi-
tion to instrument OS level events, including system calls and
locks (see §2.1).
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Figure 1: Recording Execution—Using a combination of
shared library interposition and compiler instrumentation,
Castor records non-deterministic events, logging them to per-
thread ring buffers in shared memory. A separate recording
agent process drains the events, and sorts them into a partially
ordered log it then writes to disk or sends over the network.

Appropriately compiled applications are run with the
record and replay command line tools, which replace key
library functions and set environment variables to tell the
logging code whether to record or replay.

The record command executes the application in record
mode and spawns the recording agent. Each application
thread writes log entries to its own per-thread ring buffer
in shared memory (see §3.2). The recording agent drains
the per-thread buffers and sorts the log entries into a single
partially ordered log of events (see §3.3). Periodically the
agent writes the log either to disk or over the network, e.g.,
for fault tolerance (see §3.9).

The replay command executes the program in replay
mode and spawns the replay agent. The agent reads log
entries from the disk or network, and places them into per-
thread buffers, where they are consumed by interposition
code in the application threads.

2.1 Logged Events
Castor interposes on events at different layers of the stack;
which layer is chosen affects performance, usability, and
implementation complexity (see §4.2).

Some system calls are recorded directly, like read and
clock_gettime, for other events, higher-level library calls
are recorded. For example, Castor records pthread mutex oper-
ations directly, rather than recording the multiple _umtx_op
system calls these operations make internally; this results in
smaller, easier to understand logs, and lower overhead.

Castor supports two modes of operation: Self-contained
mode logs the result of most system calls, including those that
interact with the file system such as open and read; replay
then uses the previous results rather than re-executing the

system calls. Recording file system calls eliminates external
dependencies, i.e., no files other than the log are needed
for replay. A self-contained log is easy to use and transport,
making this mode ideal for replay debugging.

Passthrough mode, by contrast, re-executes many system
calls at replay time to recreate kernel state so replay can “go
live,” to support fault tolerance. In this mode, the initial file
system state is captured using ZFS snapshots (see §4.1).

We record language-level events in the compiler including
compiler builtins, inline assembly, and shared memory opera-
tions (see §3.1). Recording shared memory non-determinism
in C11/C++11 and Go is possible because the memory con-
sistency model explicitly defines constructs such as atomics
and locks for inter-thread synchronization [12, 27, 47].

Conflicting memory accesses that do not synchronize with
one another, i.e., data races, are undefined behavior that we
do not record. We discuss the impact of data races in §6.

2.2 Optimizing for Default-On Use

To support default-on operation, we optimize for log through-
put, tail latency, and end-to-end latency. Our goal is to keep
performance consistent regardless of the number of threads,
locks, or cores in use.

Log throughput is a critical metric, as logging overhead
is directly proportional to the amount of log throughput con-
sumed, modulo cache effects. For example, in our bench-
marks a 10-core Nginx setup could handle 160K requests
per second. If each request generates 10 events, that requires
1.6M events per second of log throughput. Castor can pro-
cesses 30M events per second if it owns a whole core, 1.6M /
30M is 5%. This translates to 5% application overhead, since
that is what Castor steals from the application for logging.
Doubling throughput to 60M would cut that overhead in half,
either halving application overhead, or allowing Castor to
cope with twice as much load for the same overhead. Castor
employs a variety of techniques to maximize log throughput
by eliminating contention (see §3.2 and §3.3).

Tail latency comes from unpredictable performance spikes
that affect the long tail of response times. High performance
servers like memcached want to avoid these spikes as they can
negatively impact user experience [17]. Recording user-level
synchronization carelessly can introduce performance spikes
when threads are descheduled during critical logging opera-
tions. Castor mitigates this by using transactional memory, to
keep tail latency low (see §3.4).

End-to-end latency is how long it takes from the time we
record an event until we can replay it—keeping this low and
predictable is critical to support fault tolerance, and similar
applications that replay a replica in parallel [16, 23]. Castor
uses incremental log sorting and other techniques (see §3.4
and §3.9) to keep end-to-end latency low. This ensures that
the primary is responsive, and that execution on the replica
does not lag to far behind the primary, which can impact
downtime on failover.



3. Design
Our discussion begins with looking at how to transparently
record language-level non-determinism and optimize logging
for high throughput and low latency. Later we discuss how
Castor supports replay and fault tolerance.

3.1 Transparently Recording Language Level Events
Past systems required developers to manually modify appli-
cations to record user-level synchronization [18, 22, 23, 39].
This can be tedious and error prone, and requires developers
to deeply understand the inner workings of replay.

In contrast, Castor uses the compiler to transparently
record language level non-determinism. This requires no user
input except in a few rare cases discussed below.

We implemented this by leveraging Clang/LLVM, the
standard compiler on FreeBSD and OS X. Clang/LLVM is
extensible, allowing us to dynamically load our compiler pass
without modifying the compiler.

Our pass records C11/C++11 atomics, compiler intrinsics
(e.g., __sync_* builtins), and builtins for non-deterministic
instructions, e.g., RDRAND, RDTSC. We also record/replay op-
erations on volatile variables. While ad hoc synchroniza-
tion is officially unsupported in C/C++, our conservative in-
terpretation of the volatile qualifier allows us to precisely
replay legacy code with “benign races.”

Inline assembly is replayed as a black box by wrapping
it in a transaction. Unfortunately, a few instructions such
as CPUID and PAUSE are unsupported inside of transactions,
forcing us to issue a warning and fall back to locking until
the code is fixed. Fortunately, this is not common.

Transactions are recorded in a similar manner, using
nested transactions on x86. On replay, the runtime ensures
transactions either execute or are aborted deterministically.
The runtime retries spurious aborts that occur for many
reasons, including interrupts.

3.2 Efficient Log Structure
Log structure significantly affects log throughput. Many pre-
vious record/replay systems log all events to a single FIFO
queue, which scales poorly. As core counts increase, con-
tention between threads grows and log throughput plummets,
as shown by the curve labeled Lock in Figure 2b. Overhead
is primarily due to write/write conflicts on the queue’s tail
pointer. This structure can also induce head of line blocking.

Using per-thread FIFO queues with an atomically incre-
mented global counter increases log throughput by 3×, as
shown by the curves labeled Atomic in Figures 2a and 2b.

Castor can still experience contention on adding and
removing entries from the FIFO queues because the reader
and writer are on separate cores. Cache coherence traffic
dominates log append times as load increases, mostly due to
contention on the global counter and also from the cache-line
bouncing between the logging and recording threads. We
reduce this using familiar techniques, e.g., eliminating false
sharing by placing the head and tail pointers of our queue,
and log entries, in separate cache lines.

3.3 Scalable Ordering with Hardware Time Stamps
Many operations must replay in-order to ensure consistency.
Examples include any operation that modifies shared state,
such as an open() system call which modifies the descriptor
table, or an atomic compare and exchange. If we are not
careful, the mechanism used to provide ordering can become
a significant source of overhead.

One common approach is to impose a total order on
events using a global counter (shown as curve Atomic in
Figures 2a and 2b). Unfortunately, this becomes a central
point of contention between threads.

To avoid this, we leverage the synchronized global time
stamp counter (TSC) present in modern processors to provide
a partial order, approximating Lamport time stamps [27].1

Pairing every logged operation with a time stamp of when
it completed (see Listing 1) eliminates contention for the
counter between cores. Unlike the global counter approach,
there is a small chance two cores will read the same time
stamp; hence Castor must read the time stamp atomically
with the operation in question.

Using the TSC approach, log throughput nearly doubles
compared to the global counter approach (Atomic) on our
smaller machine, as shown in Figure 2a. On our larger
machine, the log throughput for TSC can exceed Atomic
by 10× or more, as shown in Figure 2b. Here, the cost of
write-write conflicts becomes more pronounced due to higher
cache latencies.

Our TSC approach also eliminates contention between
agents. Thus, when the record agent becomes a bottleneck,
we can add another one. By running two agents, one on each
socket, our TSC approach can log 50 million messages/sec-
ond with 22 cores, as shown in Figure 2b as TSC2X.

3.4 Transactional Memory for Bounding Latency
Taking an OS context switch in the critical section of logging
operations can induce high overheads, either because the
operation that was interrupted now takes much longer, or
because all the other threads waiting on the lock associated
with that critical section are forced to wait.

Transactional memory allows us to avoid this situation
since transactions cannot span a protection ring crossing.
Running critical sections in a transaction ensures they will
abort if preempted. We exploit this in two different scenarios.

Predictably Low Overhead Atomics Developers assume
atomics and similar operations will be fast; violating this
assumption can introduce strange new performance problems
that impact tail latency. Recording atomics without violating
this assumption can be challenging.

1 Synchronized time stamp counters have been available on Intel processors
since the Nehalem microarchitecture (2008). Older CPUs and other archi-
tectures have OS synchronized per-CPU counters that can be synchronized
to within a few cycles of one another. Having the delta between counters
bounded low enough allows us to wait inside each event enqueue to ensure
we know the relative ordering of events.
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Figure 2: Log throughput with different designs—Lock, is a single shared FIFO. Atomic is per-thread FIFOs with a global atomic
counter, removing contention between threads. TSC replaces the counter with synchronized time stamps, for less contention
between cores. TSC2X has a per-socket agent that doubles the log throughput. The only scalability problems for the TSC
approach comes from read/write conflicts between the application thread and agent, while the counter approach has write/write
conflicts for atomic increments.

To see why, remember that recording atomics requires
a source of ordering, and that reading the order and doing
the operation must be atomic for consistency as discussed
in §3.3.

Next, consider what happens if we use per-object locking
to provide atomicity for reading the order and doing an atomic
increment. If the OS deschedules the thread performing the
increment, all other contending threads must wait. Thus, an
operation that the developer expected to take a hundred cycles
or less can now take millions of cycles.

We have seen this manifest in workloads as visible perfor-
mance spikes when using per-object locks. When microbench-
marking this, we saw periodic spikes in latency as high as
500 million cycles or approximately 0.22 seconds, on our
Skylake machine.

To prevent these spikes, we use transactional memory
to atomically read the time stamp counter and perform
the operation. Thus, if the OS deschedules the thread, the
transaction will abort on the protection ring crossing.

Of course, using transactions also helps by eliminating
contention for per-object locks. Unavoidably, we fall back to
per-object locks for processors that do not support transac-
tional memory.2

Incremental Log Sorting for Low End-to-End Latency
To support real-time replay for fault tolerance, we need
to minimize the delay between when we record a log en-
try, and when we replay it. When using fault tolerance (see

2 Transactional memory was introduced in 2014 by Intel, and is available in
all Intel processors from laptop to server class chips as of 2016. It has been
available in the POWER8 and SPARC T5 architectures prior Intel’s release.

§3.9), this delay affects the response time on the primary, and
how far our replica lags behind the primary, which affects
downtime when a failover occurs.

Before we can replay the log, we need to sort it. To
minimize delay, we sort log entries incrementally using a
sliding window. Once entries are in sorted order they are sent
to the replica, and the window advances.

To bound the number of entries in the window to a
predictable function of the logging rate, we need to bound
the time between when events are appended to the log and
when their time stamp was computed.

Unfortunately, if the OS deschedules a thread before it can
append an event to the log—i.e., after the operation has been
performed and the time stamp has been read—the append can
be delayed indefinitely. To prevent this, we put the entire log
append within a transaction, again, forcing a complete abort
and retry if the thread is interrupted.

To see why this matters in the context of fault tolerance,
notice that before our primary can externalize a pending
output, e.g., send a packet, we must sort all entries prior to
the output and send them to the replica, allowing it to take
over if the primary fails. If an append is delayed, we must
stall the pending output and grow our window size, inducing
user visible latency proportional to the size of the window.

To see how this could impact latency, we measured how
much delay is induced if our thread is descheduled, using
either the atomic counter+lock or TSC+TSX approach. In
the common case, this was on the order of thousands of
cycles, however, worst case behavior was 300 million cycles
or 134 ms of delay for the counter approach—greater than



the RTT across the United States. Meanwhile, the worst case
behavior when using transactional memory was 500 thousand
cycles or 223 µs of delay.

Finally, while our TSX approach works for all user level
operations, we cannot use it for recording OS level operations
since they cross protection boundaries. Future kernel support
could allow us to mitigate this.

3.5 Many Threads with Low Overhead

As the number of running threads increases, the overhead of
polling logs for pending entries to drain by the record agent
can become significant.

This overhead was particularly pronounced in our Go
implementation (see §4.2). In Go, the use of hundreds or even
thousand of users level threads, called goroutines is common.
As our logs are per-goroutine this quickly became a problem.
At even 10 goroutines the overhead of polling logs became
noticeable. At 100 goroutines throughput could drop from 9M
to just 4.2M events. At 1000 goroutines throughput dropped
to 0.8M events, less than one-tenth of peak throughput.

To address this, we added hooks to the Go scheduler so
the agent can track which goroutines are running and avoid
scanning logs with no pending entries. When recording, the
agent drains a goroutine’s log when it is descheduled. On
replay, the current goroutine will yield if its waiting too long
for the next event to occur since another goroutine may need
to consume earlier log entries to make forward progress.

Using this approach, Castor can handle up to 10K gorou-
tines with a nearly constant 9M events per second throughput.

3.6 Record Buffer Sizing

Castor provides record modes optimized for different use
cases:

Fault tolerance: Requires low latency. We use short ring
buffers (4 KiB per thread), and dedicate a core to the record-
ing agent, which constantly polls. This can also improve
throughput as all data can fit in the L1/L2 cache. Log sorting
is done online.

Debugging and analysis: We use 4 MiB/thread buffers,
and allow the recording agent to sleep when there are few
events. Thus, it uses only a fraction of a CPU core. Log
sorting is done offline.

Crash recording: We use 128 MiB/thread for recording
crashes in long running applications similar to commercial
tools [1, 2]. In this case there is no agent and no draining
of logs. When logs fills up, Castor dumps a checkpoint to
disk, flushes the log to disk asynchronously, and allocates a
fresh log for the next interval. This supports recording a finite
interval prior to a crash. Older logs and checkpoints can be
discarded to bound storage consumption.

Buffer sizing can impact Castors log throughput and abil-
ity to handle workload spikes. Larger per-thread buffers han-
dle workload spikes better while increasing cache pressure.
Smaller buffers tend to perform better as all data fits in the

cache reducing Castor’s cache footprint, but increases sen-
sitivity to workload spikes and descheduling/interrupts of
the agent process. Adaptively tuning this based on workload
could be useful.

3.7 Replay Modes
As discussed in §3.3 certain events must replay in-order to
ensure consistency. Castor supports two approaches, each
with its own trade-offs. In both modes, the replay agent reads
log entries from either the disk or network and places them
into per-thread queues.

Totally ordered replay replays events in the same total
order they were recorded in. To start, Castor takes log entries,
which are already sorted (see §3.4) by event id, and replaces
the event id with a monotonic count. Next, Castor sets up a
global monotonic counter to control replay order, an event
can only replay when the global counter matches its event id.

On replay, when an application thread reaches an instru-
mented event, such as a lock acquire, it waits for the agent
to enqueue a log entry for that event. Once it has the entry, it
waits for the event id of the entry to match the global counter.
When this happens, the thread replays the lock acquire, incre-
ments the global counter, and execution continues.

This approach has a few benefits: it is simple, performs
reasonably at low core counts, and requires almost no pro-
cessing by the agent. However, while threads run in parallel,
they are still forced to synchronize on a global counter. This
limits parallelism, since events without dependencies could
be running in parallel.

Partially ordered replay removes global synchronization.
Instead, the replay agent dynamically infers which events
have dependencies and constrains them from executing con-
currently.

To do this, the agent tracks dependencies in the log using
a bitmap where each bit corresponds to an event’s object ID,
e.g., the address of a lock. During replay, before the agent
enqueues a log entry for an operation on an object, it checks
to see if a bit has already been set for the object; if it has, the
agent waits until the bit is cleared; if it has not, it sets the bit.
Once an application thread has processed an operation on an
object, it clears the bit for that object.

Partially ordered replay has two advantages. First, it
eliminates the write/write contention on a global counter.
Second, it relaxes the execution schedule of operations to
maximize parallelism. This can improve replay performance
and also reduces sensitivity to scheduler and interrupt delivery
differences between record and replay.

3.8 Divergence Detection
Divergence occurs when replayed execution differs suffi-
ciently from recorded execution that continued replay is either
infeasible or inadvisable. Divergence may be due to imple-
mentation bugs in record/replay, data races, hardware non-
determinism, or replaying on a different microarchitecture
with behavioral differences.



On replay, Castor compares the log to program behavior
to detected three types of divergence: event divergence,
deadlock divergence, and argument divergence.

Event divergence is a disagreement between a thread and
its own log about type of event is next. For example, if a
thread makes a gettimeofday system call, and Castor goes
to the log to fetch the log entry for this event and instead finds
an entry for a read system call, something has gone wrong.
We saw these frequently while implementing Castor when
we failed to record a source of non-determinism that changed
control flow on replay.

Deadlock divergence is a disagreement regarding the or-
dering of the log between threads, i.e., when synchronization
that is not being recorded/replayed (races or uninstrumented
code) deadlocks with the log-enforced ordering. For example,
suppose thread A is blocked waiting for thread B, thread B
tries to acquire a lock, and the log shows that thread A should
get the lock next. Something went terribly wrong as replay
will deadlock. We encountered these during development
when we failed to properly instrument synchronization.

Argument divergence is a disagreement regarding the val-
ues associated with an event and the log, e.g., the arguments
to a system call. For example, for the write system call
we log the number of bytes written and a hash of the value
being written. For efficiency, we currently use xxHash [6],
though hardware support for SHA1/256 will be available in
future processors [50]. This check is critical for fault toler-
ance as the program output on record and replay should be
indistinguishable.

All of these checks proved very helpful while developing
Castor. The first two checks caught most bugs, including two
intentional races in the Go runtime.

3.9 Fault Tolerance
Fault tolerance supports continuous availability in the face
of hardware failures, and involves two servers; the primary
which is being recorded, and the replica, which streams the
log in real-time from the primary and replays it to create a
hot standby.

Failover occurs when the hardware running the primary
fails and the replica takes over. Failover in Castor is transpar-
ent, i.e., the primary and replica are indistinguishable from
the perspective of an external observer, since divergence de-
tection (see §3.8) ensures that output from the primary and
backup are identical up to the point of failover.

This is a potentially subtle point, the replica and primary
can differ in their internal state prior to failover, but this
irrelevant. Like two runs of an NFA that share a common
prefix, before failover they are identical from an external
observer’s perspective. After failover nothing changes, from
the observer’s perspective it is as if only the replica ever
existed.

When the replica detects a divergence, it immediately
pauses and resynchronizes. To resynchronize, the replica
notifies the primary, which sends a checkpoint. The Castor

runtime replays all log entries prior to the checkpoint to
ensure kernel state is consistent, then loads the checkpoint
and resumes execution.

Before Castor allows the primary to externalize an output
event, i.e., send a packet, it ensures that the replica has
consumed all log entries prior to that event. This guarantees
that the replica received the log entries and that a divergence
did not occur. Thus, if the primary dies, the replica has
everything it needs to take over transparently.

To implement this, when a thread on the primary at-
tempts to send a packet, Castor delays the packet and tags
it with a time stamp. As the replica consumes the log, it
asynchronously acknowledges the latest time stamp it has
consumed. When the primary receives an acknowledgment,
it releases all packets with a lower time stamp.

4. Implementation
The Castor runtime is under 6 KLOC. The record, replay, and
fault tolerance agents comprise just over 1 KLOC. The LLVM
compiler pass is just over 1 KLOC. We changed 5 lines in
libc. Go support requires 2 KLOC, 500 lines of which are
shared with the C version.

4.1 FreeBSD

Capturing OS-level non-determinism in libc and libthr
(pthread) is done through library interposition. FreeBSD
provides weak symbols for much of libc, meaning we can
override these symbols at link time by providing our own
replacement with the same name, e.g., read. Other functions
can be interposed on dynamically by changing a table of
function pointers built into libc for this purpose. Finally, we
modified 5 lines of code in libc and libthr to expose symbols
we needed to hook.

In self-contained mode (see §2.1), to record Castor ex-
ecutes system calls and writes their return value and side
effects to the log. On replay, most system calls are elided, and
their values and side effects are returned from the log, similar
to a variety of other systems [18, 20, 39, 40, 44]. We inter-
pose on roughly 107 types of events in our current prototype,
including system calls, library calls, user level locks, etc.

The Castor runtime maintains a table of file descriptor
metadata including their type and per-descriptor locks. To
keep this consistent, we interpose on any call that can modify
the descriptor space such as open, dup/dup2, and fcntl.
Castor uses this table for a variety of purposes. Per-resource
locks are used to ensure proper ordering on aliased resources
when replaying. Knowing the type of descriptors lets us avoid
recording reads and writes on socketpairs or pipes between
recorded processes.

For fault tolerance, we replay in pass-through mode, which
re-executes most system calls to recreate kernel state on the
replica. Replaying system calls makes it possible for the
replayed process to go live when the original recording host
fails. In passthrough mode, we leverage ZFS file system



snapshots to synchronize the initial file system state of
the primary and secondary. As a side effect, this improves
performance by eliminating the need to log file system reads.

4.2 Go Language/Runtime

Supporting Go required integrating with the Go runtime.
Languages such as Objective C and Rust that use LLVM and
libc work out of the box with Castor. However, Go developers
use their own compiler, linker, system libraries, etc. thus,
additional support was required. Our implementation is built
on Go 1.4.2.

To support Go, we initially tried recording the lower layers
of the Go runtime with one log per OS thread, similar to
our C/C++ implementation. However, after some experience,
we switched to a different approach: logging higher-level
APIs built on the core runtime and keeping one log per Go
thread (called goroutines). This allowed us to simplify our
implementation considerably by ignoring lower-level non-
determinism in the runtime, such as the scheduler, network
stack, allocator, and garbage collector. It also resulted in logs
that are smaller and easier to understand, as they correspond
more closely to language-level semantics. Supporting large
numbers of goroutines required integrating more closely with
the Go scheduler, as discussed in §3.5.

Logging at a higher layer exposed some internal non-
determinism. In particular, when finalizers execute can vary
from run to run, depending on when garbage collection
happens. Finalizers are processed by a goroutine associated
with the garbage collector. We modified this goroutine to log
when each individual finalizer is run relative to other events
in the system. On replay the routine executes the finalizers in
the same order they ran during the recording. This sometimes
requires the goroutine to force a garbage collection to run if
the object being finalized is not ready.

Asynchronous signal handling is simplified by logging at
a higher layer. Instead of delivering signals at the OS level,
we can leverage existing machinery in Go. In particular, asyn-
chronous signals, e.g., SIGINT, are delivered by a goroutine
in the language runtime that listen on a channel for signal
messages sent by lower layers of the runtime. To record sig-
nals, we modified this routine to log and replay signals.

4.3 Event Logging

Castor’s log is a FIFO queue. Each entry is the size of an
L1/L2 cache line (64 B). The head and tail live on their
own cache lines. The recording agent is a separate process
that polls each per-thread queue and drains them into a buffer
that gets flushed to disk or over the network. As discussed
in §3.2, Castor uses transactional memory and time stamp
counters for contention-free logging. These are available as
TSX and RDTSC on x86-64 processors. When transactional
memory is not supported or fails, we fall back to user-level
sharded (per-object) locks.

Transactional Memory To log an event, the runtime first
checks that the next log entry is free by examining head and
tail. It then executes a transaction in which it atomically:
checks the sharded lock, executes the logged operation, reads
the time stamp counter, writes the log entry, and bumps the
tail pointer.

Listing 1 shows a simplified version of the code generated
for recording an atomic exchange (the XCHG instruction). The
time stamp is read (RDTSC) in the same transaction as the
atomic exchange, which provides a causal ordering of the log
entry relative to another changes on the same atomic variable.

# %rcx = Pointer to free log entry

# %rbx = Per-thread log tail

# %r8 = Pointer to sharded lock

movq ENTRYTYPE_ATOMIC_XCHG,(%rcx)

xbegin record_slowpath

cmpl $0,(%r8) # Read sharded lock

jne lock_notheld

xabort # Abort if others are in slow path

lock_notheld:

xchg %r9,(%r10) # Atomic exchange

rdtsc

mov %eax,8(%rcx)

mov %edx,12(%rcx)

incq (%rbx)

xend

Listing 1: A simplified version of the code executed for the
record path.

Performance We measured the transaction abort rate and
throughput during the development process using a tight
logging loop. We found most aborts were due to interrupts.
However, use of a time stamp counter is crucial; using a
shared in-memory counter would cause most transactions to
abort due to conflicts on the shared counter. We noticed a
modest benefit from increasing log entries to the L3 cache line
size (128 B) vs. the L1/L2 size (64 B), but decided against
doing so to avoid the impact on log size. We saw a slight
uptick in spurious aborts with the use of hyper-threading,
which we attribute to hyper-threads sharing an L1/L2 cache.
We speculate that cache lines lack a bit to record whether
they belong to one or both hyper-threads’ read sets, though
in practice such aborts have not been an issue.

Sharded Locks and Nested Events Sometimes Castor can-
not use transactional memory, either because a processor does
not support it or because it is incompatible with a particu-
lar operation. System calls always trigger aborts, as well as
certain instructions including CPUID and PAUSE.

When Castor cannot use transactional memory, the atomic-
ity of time stamps and logged events is enforced through user
level sharded locks. Locks are sharded by unique resource
identifier such as memory address or file descriptor.



Recording higher-level interfaces sometimes requires the
use of nested events, since we still want to record and replay
ordering at lower layers properly. For example, when a mutex
is statically initialized with PTHREAD_MUTEX_INITIALIZER,
the first call to pthread_mutex_lock dynamically allo-
cates memory. In this case pthread_mutex_lock, which
is logged, calls into malloc, which also uses locks.

To record something like this, Castor acquires a sharded
lock and logs a start event recording when it acquired the
outer lock. It then performs the target operation, including
generating log entries for nested events. Finally, it generates
an end event recording the target’s non-deterministic results
(if any), before releasing the lock. To support nested events
on the same resource, we built user-level recursive mutexes
using C11 atomics.

5. Evaluation
Our experience using Castor is discussed in §5.1. Perfor-
mance on heavy server workloads is presented in §5.2, and
multi-core scalability via parallel benchmarks from SPLASH-
2 and PARSEC is presented in §5.3. We conclude with mi-
crobenchmarks, and some general observations on perfor-
mance with Castor’s.

Our measurements were taken using two machines run-
ning FreeBSD 10.3. Our first machine has a 3.4 GHz Intel i7-
6700 Skylake processor with 4 cores/8 hyper-threads, 8 GiBs
of memory, and transactional memory (TSX) support. Our
second machine has a dual-socket Intel Xeon E5-2658 v3
Haswell processor with 12 cores/24 hyper-threads per socket
and 128 GiBs of memory, but no TSX support. All measure-
ments were done in debugging and analysis mode (see §3.6)
using 4 MiB/thread buffers with a single recording agent.

5.1 Using Castor
We built all workloads evaluated in this paper by recompiling
and relinking unmodified source code with Castor, supporting
our thesis that a custom compiler pass can avoid the need for
manual instrumentation.

We used Castor with unmodified debugging tools includ-
ing gdb and lldb for replay debugging, as well as valgrind.
Small runtime detours that insert or consume log entries are
the only visible difference while debugging.

With performance tools like pmcstat we see the time
spent in the record-replay infrastructure and the impact of
eliding system calls as we made no effort to hide these details
from the tool.

Castor supports replaying modified binaries, allowing us
to perform many tasks retroactively, i.e., by recompiling and
relinking before replay to change libraries or add instrumen-
tation, or even change application source code. So long as
changes do not impact the log, this works just fine.

To use dynamic analysis tools like ThreadSanitizer and
AddressSanitizer, we recompile and relink our application
with the appropriate flags, then replay as usual. This works
because the runtimes for these checkers only make raw
system calls so they do not interact with Castor’s event log.

We also created our own versions of assert and printf

that bypass logging. We can add these to our programs after
the fact to debug at replay time.

To deploy fault tolerance, we provide a special command
cft that launches our program in passthrough mode, either
recording or replaying. When using cft, the record agent
transmits the log over the network to the replay agent. We use
CARP (Common Address Redundancy Protocol) support in
FreeBSD to fail over an IP address from one server to another
on hardware failure. For UDP based applications, this works
seamlessly.

5.2 Network Server Workloads
We evaluated a variety of network server workloads with
Castor. As with other workloads in our evaluation, replay
times were substantially lower than record times, as we
discuss in §5.5.

Nginx We benchmarked Nginx [35] on our Haswell ma-
chine, using the wrk HTTP load generator configured with
12 threads and 100 connections for a duration of 30 seconds.
Nginx scaled well with approximately 1% overhead until
10 cores. At 10 cores we were attempting to handle 160K
requests per second and approximately 2 million log mes-
sages per second. At this point we began to run up against
log throughput as a limiting factor. As predicted, overhead
jumped to around 9%, roughly what we expect to see at
10 cores, where our peak log throughput is 20M events/per
second as shown in Figure 2b.

Memcached We measured record overhead of memcached
on our Skylake machine, using mutilate [31] to generate a
maximum load of 119K requests per second. On average we
saw 29 events per request. Multithreaded memcached [48]
with a single worker thread uses a listener thread and 5
additional helper threads, for 7 threads total on our 4 core/8
hyper-thread machine. Overhead again increased proportional
to log bandwidth, with a roughly 7.5% drop in throughput at
119K requests per second.

Lighttpd We measured record overhead for lighttpd [4] on
our Skylake machine with load generated by ab [46], which
we tuned to generate the maximum requests lighttpd could
handle. Lighttpd is a multiprocess webserver and as such
record/replay has no effect on scalability. Thus, performance
is mainly dependent on the logging rate. Turning on recording
incurred a roughly 3% reduction in throughput.

PostgreSQL We measured record overhead for PostgreSQL [38]
on our Skylake machine. Using pgbench with a read/write
intensive workload for 10 minutes with 4 client threads and
two worker threads, we measured a roughly 1% drop in
throughput.

LevelDB We measured record overhead for LevelDB [21]
on our Skylake machine. Using db_bench with default
settings, we saw a 2.6% slowdown from recording, while
CPU consumption increased 9%.
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Figure 3: Recording PARSEC/SPLASH-2 on a 12-core Xeon
Haswell with a single recording agent—execution times
are normalized against number of threads with standard
deviation below 2%. Only Barnes, Radiosity, and FMM
exhibit measurable overheads. Many benchmarks executed
faster with Castor due to changes in memory layout. For
Radiosity, a single recording agent is insufficient to keep up
with workload, illustrating the need for multiple recording
agents to cope with heavier workloads.

Go Caddy (HTTP) We evaluated Caddy [32], a popular
HTTP server written in Go, on our Haswell machine. Our Go
implementation is currently unoptimized and is impacted by
limitations in Go’s C compiler. Record overhead for Caddy
was 15% or less, scaling from one to twelve cores. At one
core, we saw 5,255 req/s when recording, vs, 6,175 req/s
normally, a 15% overhead. At twelve cores, we saw 36,658
req/s when recording, vs, 39,156 req/s normally, a 6.6%
overhead. Replay was 1.9× faster than record.

Go Memcache We evaluated a commercial memcached
implementation written in Go [33] on our Haswell machine.
Record overhead was 5.7% or lower while scaling from
one to twelve cores. This memcached implementation did
not scale well due to its use of coarse-grained locking. We
saw 72,708 req/s when recording, vs. 77,109 req/s normally,
a 5.7% overhead. At twelve cores, we saw 112,270 req/s
when recording, vs, 117,213 req/s normally, a 4.2% overhead.
Replay was 1.3× faster than record.

Running our implementation in a production setting serv-
ing live traffic we observed an additional 5% of CPU was
required to run record and approximately 220 MB of uncom-
pressed log was generated per hour.

5.3 Multi-Core Scalability
We evaluated Castor with benchmarks from the PARSEC and
SPLASH-2 multiprocessing benchmark suites [9, 51] on our
Haswell machine. PARSEC/SPLASH-2 are commonly used
to evaluate multi-core record/replay systems [19, 29, 30, 49],
as their heavy use of synchronization stresses scalability and

their ubiquity facilitates apples-to-apples comparisons among
systems.

The PARSEC distribution includes SPLASH-2. We ex-
cluded the SPLASH-2 kernels from our graph, along with
several other benchmarks that exhibited no noticeable over-
head.

We dedicated a whole core to the recording agent and
thus excluded the 12 core numbers. Logs were written to
the null device to eliminate storage performance interactions.
SPLASH-2 uses pthread mutexes. On replay, Castor enforces
lock ordering that almost eliminates the cases where the
pthread mutex code must call into the kernel.

In Figure 3 we see the normalized execution time for
these benchmarks; a value of 1.00 is ideal. The benchmarks
perform identical work regardless of the number of cores. Ex-
ecution time is normalized against the number of benchmark
threads, standard deviations were generally below 2%.

Water-nsq, Water-spc, and Ocean had nearly zero over-
head. In these and other benchmarks, we found that cache
effects due to changes in memory layout measurably changed
performance, sometimes leading to performance gains, which
is why many benchmarks are actually faster with recording
enabled. We start seeing overhead in FMM and Barnes at
8 cores, but still below 5%.

Only Radiosity showed significant overhead. This was due
to two factors: First, this benchmark was particularly sensitive
to added cache pressure. Second, during certain phases of
the benchmark large numbers of events are generated on all
cores simultaneously, so log bandwidth becomes a limiting
factor at 8 cores and beyond. In particular, the single logging
agent was unable to keep up with draining the log. Adding
an additional recording agent is required to continue to scale.

5.4 PARSEC
We ran pbzip2 on 6 cores with approximately 4% overhead.
We ran several benchmarks from PARSEC versions 2 and
saw results similar to our fastest SPLASH-2 benchmarks, i.e.,
zero overhead and small variations due to cache effects.

5.5 Replay Performance
Replay times were consistently either as fast as or faster than
recording, and often faster than unrecorded execution. There
are a number of reasons for this.

First, the replay agent is able to append to queues in
O(1) time, as it knows the target thread given a log entry.
In contrast, the recording agent drains queues in O(n) time
where n is the number of running threads, as it has to read
the head of every thread until it finds the next log entry.

Second, replay generally can read ahead in the global
log to feed the individual per-thread queues. This means we
can potentially fill all replay queues of all threads, so if an
interrupt occurs on the processor with the replay agent, there
may be more replay buffer available. On recording, interrupts
delivered to the recording agent are more likely to lead to
small delays in execution.



Third, replay logs obviate the need to execute recorded
operations, thus we can avoid re-executing certain system
calls, reducing IO latency in some cases. For example, for
fault-tolerance we replicate network IO to the destination.

5.6 Microbenchmarks

Per-Event Record Overhead Record overheads were quite
predictable. We measured roughly 80–200 cycles for each
non-deterministic event logged. Overhead scaled roughly
linearly as a function of the number of events logged. Cache
effects were the only other significant source of variation.

Go Our Go implementation with a single core can log 7.3M
events per second while 12 goroutines on our 12-core box
tops out at 9.0M events per second. These lower numbers are
due to limitations of the C compiler used by Go, a lack of
transactional memory support in our Go implementation, and
our currently unoptimized integration with the Go scheduler
that requires iterating and dereferencing three structures per
dequeue. On average, it costs 350 cycles to enqueue an event,
with 130 of those cycles spent inside the critical section when
logging locks.

Log Size For the SPLASH-2 benchmarks log sizes ranged
from 14 kiB to 43 MiB and compression ratios using xz

ranged from 23× to 133×. Since our logs tend to have
so much padding it is not surprising that they are easily
compressible.

5.7 Observations

Predictable Performance: Our experience with Castor has
been that workloads behave quite predictably. At lower
event rates cache effects are noticeable, but record overheads
remain consistently low. Overheads were often under a
percent for both server and parallel workloads as shown
in §5.2 and §5.3. As event rates increase, log throughput
becomes the limiting factor, and overheads are a predictable
function of log throughput.

Queue Size vs. Cache Pressure: Some of our server work-
loads perform better with larger queue sizes. In contrast,
SPLASH-2 benchmarks often performed worse due to in-
creased cache pressure. We also saw a related effect, where
the impact on memory layout of adding record/replay actually
improved performance over normal, as seen in Figure 5.3.

Multiple Recording Agents: Record log throughput be-
comes a bottleneck with sufficient load. Often the limiting
factor is ability of a single recording agents ability to rapidly
drain the log. We saw this both with Radiosity in SPLASH-2,
and in our server workloads, e.g., as we scaled NGINX to
10 cores. Thus, to scale beyond a certain point, dedicating
multiple cores to logging is necessary.

6. Data Races and their Impact on Replay
Modern languages such as C11, C++11, and Go, provide
explicit mechanisms, such as the _Atomic qualifier, to notify
the compiler of variables that are shared between threads or
otherwise accessed concurrently. If a variable that does not
employ these mechanisms is operated on concurrently with
no intervening inter-thread synchronization and at least one
operation is a write, it is a data race.

Data races are a source of non-determinism, as their effects
may depend on the relative order of instructions executed
across different CPU cores. Since cross-core instruction
ordering may vary from one execution to another, and since
additionally the order does not depend on any inter-thread
synchronization (which Castor would log), Castor does not
have enough information to replay data races identically.
Thus, we can only guarantee deterministic replay up to the
first data race. Castor always lets us detect that first data race
by retroactively applying a happens-before race detector [7].

Past work has insisted on precisely reproducing all data
races, on the grounds that the non-determinism they introduce
can impact reproducing bugs or fault tolerance [29, 30].
Our perspective is that the practical impact of data races
on record/replay in Castor is largely negligible, for a variety
of reasons.

In the past, “benign data races,” data races that were inten-
tionally included for optimization reasons, were a recognized
practice. Benign data races have always been dangerous and
non-portable practice as their semantics were not well de-
fined, thus, the compiler could always interpret them in a
manner that would yield bizarre bugs [10].

At present, data races are explicitly prohibited and yield
undefined behavior in languages such as C11, C++11, and Go.
Moreover, data races no longer offer performance benefits
on modern architectures [11]. Programs that need scheduler-
induced shared-memory non-determinism can achieve it with
relaxed-memory-order atomics, which we record and replay.
Thus, from a language perspective, it makes little sense to
pay a high price for precisely replaying undefined behavior.
That said, legacy code often uses the volatile qualifier for
variables subject to intentional data races. In this case, Castor
does precisely reproduce benign data races, as it records and
replays volatile variables.

We still want to consider unintentional data races, since
programmers make mistakes, and we want to understand the
impact. In the following sections we consider how frequently
these bugs commonly occur, and, when they do, how they
affect replay.

6.1 Data Race Frequency

We found limited data in the existing literature on how
frequently data races occur and how effective existing tools
are at early detection.

As a first step to understanding these issues, we looked
at the Chromium web browser bug database. We chose



Chromium for a variety of reasons: its large size, prodigious
use of multi-threading, and active development, all lend them-
selves to the presence of data races; its use of ThreadSani-
tizer [42], a state of the art race detector, let us examine the
impact of dynamic race detection on catching these bugs; and
its large well annotated bug database simplified research.

We looked at the period from January 1, 2012 – January 1,
2016. During this time the code base grew from roughly
6M LOC to 13M LOC. We considered only bugs that were
closed and fixed, to eliminate noise from false positives.
While this is a limited data set, it suggests several conclusions.

First, data race bugs were quite rare relative to other bugs.
Out of 65,861 total bugs fixed during this period, 165 were
data races, or about 1 in 400. Next, current development
practices and tools seem effective at catching and eliminating
data races before they reach production. Out of 165 data race
bugs, 131 were caught by ThreadSanitizer.

Notably, none of bugs were in release builds (development,
beta or stable). Thus, it seems likely that data races would
have little effect on record/replay of production code in
similar modern development settings. Moreover, data races
should have almost no impact on Castor’s ability to capture
reproducible bug reports in production code in the field.

It seems that software bugs leading to downtime in general
would dwarf any impact of data races on fault tolerance. In
Chrome for example, there were 211 bugs in stable release
builds that caused crashes, and 10 that caused the application
to hang.

6.2 When do data races impact replay?

Data race bugs generally manifest non-deterministically. If
a race interferes with replay regularly, it will quickly be
detected. If it manifests infrequently, it is unlikely to impact
record/replay in its task, e.g., infrequent divergences in fault
tolerance are easily handed by resynchronizing (see §3.9).

When races do manifest as non-determinism, they can
impact replay in three ways: log divergence (see §3.8), where
execution changes sufficiently that the log is not adequate to
complete replay, value divergence, where intermediate values
of an execution change, and output divergence, where the
user visible result of execution changes, which in Castor are
treated as log divergences (see §3.8).

Log divergences caused by data races seem infrequent.
We have only encountered a couple, caused by deliberate
(benign) data races in the Go runtime that were easily found
and fixed. Others building replay systems reported similar
experiences, e.g., a couple of benign data races [23], or races
that had already been caught [18].

Two studies classifying data races suggest most races
would not cause log divergence. One, studying 68 data races
in Windows Vista and Internet Explorer, found roughly half
had no measurable impact on execution [34], i.e., no change
in control flow or register live outs. Of the remaining half,
most would not impact replay, while the remainder could

possibly lead to log divergence. Similar results were reported
in a separate study [25].

The impact of value divergences depends on use case. For
example, for decoupled analysis, such as running a memory
error detector or race detector, a value divergence is still a
potential program path, and thus little is lost.

For replay debugging, in the worst case, we would not be
able to reproduce a bug that occurred after the data race.
However, we have two options: we can fix the race and
redeploy, or employ some strategy to reproduce the bug
from the existing log—this could be as simple as re-running
a few times with partially ordered replay (see §3.7), or as
complex as using speculative execution [8, 29, 37, 49] to find
an interleaving that reproduces our bug [18].

For fault tolerance, value divergences are irrelevant (ex-
plained in §3.9), since we only care about what an external ob-
server can see. Output divergences are detected as discussed
in §3.8, and dealt with like any other form of log divergence,
by resynchronizing with the primary. This approach is similar
to what VMware’s FT [41] and other commercial solutions
do to cope with hardware non-determinism.

Resynchronizing introduces a delay and a small downtime
window, so having it happen frequently is not desirable. For
reasons discussed above, having this occur often due data
races would be very unusual. Further, for a loss of availability
to result, the downtime window would need to overlap with
the downtime window of the protected hardware. Put another
way, replication failure and hardware failure would need to
coincide.

Finally, should one wish to fix these bugs when they occur
in the field, others have described how data races can be
detected and fixed automatically [18].

7. Related Work
Shared memory non-determinism is a key challenge to multi-
core record/replay. Systems have coped in two ways. Some
reproduce all data races precisely. Others like Castor only
record and replay explicit synchronization.

Reproducing All Data Races Systems that reproduce all
data races tend to scale poorly as shared memory activity
increases. Often this is due to the increased contention these
systems induce by adding synchronization.

Multi-core record/replay systems that work at the OS,
VMM, or binary translator level need to reproduce all data
races, since synchronization information is often lost in the
compilation process. For example, on x86 a relaxed-memory-
order atomic store is indistinguishable from any other word
aligned store at the ISA level.

VMM[19] and OS level [26] replay systems have imple-
mented CREW [28] (concurrent read, exclusive write), a
cache coherency protocol at the page granularity that pro-
vides determinism by leveraging the MMU to add extra syn-
chronization. In these systems, overheads from page faults



and inter-processor interrupts (IPIs) are high, compounded
by false sharing from the large page size.

For example, SMP-Revirt [19] saw slowdowns ranging
from 2×–4× for 2 CPUs, and up to 8× for 4 CPUs on
SPLASH-2. For applications with very little sharing, these
costs can be avoided or amortized [26], and CREW can
be more performant in emulated hardware [15]. However,
high overheads and poor scalability make CREW generally
unsuitable for production workloads.

Several approaches work by simultaneously replaying a
copy of the main process while recording, to find a recording
that is deterministic [52]. ReSpec detects divergences that
occur when logging is insufficient, and is able to rollback
the execution and/or restart the replayed process. DoublePlay
goes further, allowing offline replay by finding an execution
schedule for the threads that can replay correctly on a single
core. DoublePlay has average overheads of 15% and 28% for
two and four threads, while ReSpec has overheads of 18%
and 55%. Both require parallel execution, and thus twice the
CPU resources. Worst case SPLASH-2 slowdowns for both
exceed 2× for 4 threads.

Other systems attempt to reproduce all data races out of
the desire to eliminate non-determinism on replay for debug-
ging or fault tolerance. Chimera ensures synchronization by
analyzing program source code with a static race detector
and instrumenting it with weak locks. Added contention intro-
duces significant slowdowns on multi-core. On SPLASH-2,
Chimera saw overhead ranging from 1.6× for two cores to
over 3× for 8 cores. Similar systems exhibited substantially
larger overheads [24] or only considered small and easily
parallelizable programs [43].

Recording Explicit Non-Determinism (Synchronization)
With source code, shared memory non-determinism can be
recorded by instrumenting well defined interfaces for syn-
chronization, modulo data races.

RecPlay [39] was an early system that recorded synchro-
nization to enable replay debugging and race detection. It
intercepted OS-level synchronization through shared library
interposition.

Record overheads were quite low, around 2% for SPLASH-
2 on a 4 core Sun SPARCServer 1000 [13]. Replay overheads
could be quite high, ranging from 1.1×–4×. This would pre-
clude its use for fault tolerance and similar applications [16].
With RecPlay, user level synchronization was manually con-
verted to OS level synchronization, which could also add
significant overhead.

Since RecPlay predated the C11 spec, benign data races
were still an accepted form of optimization, race detectors
were not yet common, etc. Thus, eliminating data races was
part of embracing the RecPlay programming model.

R2 [22] recorded non-determinism at different layers of
abstraction for improved comprehensibility and performance,
e.g., at the MPI or SQL interface, for a broad selection of
Win32 applications. Workloads were run on a dual-core Xeon,

without parallel benchmarks. Non-determinism was recorded
at the library interface using a system of annotations. R2’s
approach of capturing non-determinism at specific interfaces
is probably best viewed as an optimization, complementary
to our approach of recording language level non-determinism
in situ as a default.

Arnold [18] explored eidetic computing, continuously
recording all applications to make the lineage of any past
byte available. Arnold reported SPLASH-2 numbers for up
to 8 cores. Record overheads were often low, at worst around
20%. It incorporated the ability to use a race detector to
dynamically instrument a binary to reproduce a single race.
Synchronization was recorded through manual instrumenta-
tion. Rex [23] used record/replay to implement Paxos. It also
relied on manually instrumenting synchronization.

Castor is largely complementary to this prior work in
that all systems could incorporate techniques from Castor
for scalability, performance, and transparently instrumenting
user level synchronization.

8. Conclusion
We have presented Castor, a system that provides consis-
tently low overhead recording and real-time replay for mod-
ern multi-core workloads, often with no modification to ap-
plications beyond recompilation. This makes it practical to
leave recording on by default, to capture bugs in production,
or to recover from hardware failures.

Castor offers several lessons for future implementers of
record/replay systems. Hardware optimized logging: log
bandwidth is the critical limiting factor for performance in
this class of system. Castor’s approach to hardware optimized
logging can make an order of magnitude difference in log
bandwidth, which is directly proportional to the amount of
load a record/replay system can handle with low overhead.
Recording unmodified applications: by interposing at the
compiler level we can instrument user level non-determinism
automatically, thus eliminating the tedious and error prone
task of manually instrumenting applications for record/replay,
and easing adoption. Data races have negligible impact on
replay: for a variety of reasons data races generally have
little practical impact on replay. Thus, its worth considering
whether the benefit of trying to reproduce them precisely is
worth the cost.
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