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● Lots of third-party libraries from SourceForge
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● Application is typically millions of lines of code
● Lots of third-party libraries from SourceForge
● Application has access to entire user database
● Result: any bug allows attacker to steal all data!

– PayMaxx app code exposed 100,000 users' SSNs



Recent work:
information flow control

● Don't try to eliminate all application bugs (hard!)
● OS'es like Asbestos, HiStar, Flume keep user 

data secure even if application is malicious
– Track flow of user's data through system
– Only send user's data to that user's browser
– No need to audit/understand application code!



Recent work:
information flow control

● Don't try to eliminate all application bugs (hard!)
● OS'es like Asbestos, HiStar, Flume keep user 

data secure even if application is malicious
– Track flow of user's data through system
– Only send user's data to that user's browser
– No need to audit/understand application code!

● Limitation: works only on one machine
– Web applications need multiple machines for scale



This talk: extending information
flow control to distributed systems

● Outline:
– Review of information flow control (IFC) in an OS
– Challenges in distributed IFC and our solution
– Apps: web server, incremental deployment, ...

● Results:
– Can control information flow in distributed system
– Key idea: self-certifying category names
– Enforce security of scalable web server in 6,000 lines
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Labels control information flow
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 Owns blue data, can remove color (e.g. encrypt)

 Color is category of data (e.g. my files)

 Blue data can flow only to other blue objects



Labels are egalitarian
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● Any process can request a new category (color)
– Gets ownership of that category (    )
– Uses category in labels to control information flow
– Can grant ownership to others
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Labels prevent application code
from disclosing data onto network
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● What happens when the server gets overloaded?



Limitation: OS alone cannot control 
information flow in distributed system
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Distributed challenge: when to
allow processes to communicate?
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httpd App code

● Design goal: decentralized – no fully-trusted parts
– (Not the usual meaning of decentralized IFC, or DIFC)

● Challenge: no equivalent of a fully-trusted OS 
kernel that can make all decisions

?

Data
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High-level approach:
encode labels in messages
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Problem: decentralized trust
● When can we trust the recipient with message?
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Solution: per-category trust
● DB trusts front-end, app servers with a particular 

user's data (e.g. messages labeled blue)
● But DB doesn't trust the app code...
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Exporters control information flow
on each machine using local OS
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● Database doesn't trust the app code, but trusts 
the app server's exporter to contain the app code
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Exporter's API

exp_send(dest_host, dest_mbox, msg, label)

– Exporter provides interface to send datagrams

– Message should only be sent if every category
in label trusts the machine dest_host

– How does the exporter check for this trust?



Strawman: check trust by 
querying category owners
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Querying category owners
creates a covert channel in API

Exporter                                             
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Strawman 2:
store trust in exporter
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Strawman 2:
store trust in exporter

Exporter                                             

Process
(secret bit = 1)

exp_send(host_x, msg)

                   host_x
                   host_y

● Exporter sends no queries that could leak data
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Storing trust in exporter also
creates a covert channel in API

Exporter                                             

Process
(secret bit = 1)

                   host_x

Colluding
Process

Attacker's host Y      

X             

Depends on 
value of the 

secret bit

                   host_y

exp_send(host_y, msg)

Depends on 
behavior of 
malicious 
process

Depends on 
value of the 

secret bit

exp_trust(     , host_y)



Problem:
What to do with covert channels?

● Non-goal: eliminate all covert channels
– Not practical

● Goal: avoid covert channels in interface
– Allow trading off performance to mitigate

covert channels without changing the API



Solution:
Self-certifying category names

● Categories named by public key

● Trust for a category defined by certificates 
signed by that category's private key

● Caller supplies all certificates to exp_send()
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Caller supplies all certificates
needed by exporter

exp_send(dest_host, dest_mbox, msg, label, certs)
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Caller-supplied

Mapping



Caller supplies all certificates
needed by exporter

exp_send(dest_host, dest_mbox, msg, label, certs)

Can send to
host X 

=   

Caller-supplied

Mapping

Certificate

No covert channels
to determine trust:

➔ No external 
communication

➔ No shared state



Exporter API design summary
● Self-certifying categories allow exporter to be 

stateless – just verify caller-supplied certificates
– Stateless exporter design avoids covert channels

● exp_send() sends labeled datagrams
– Also allows granting ownership (stars) across network
– By design, only depends on caller-supplied args!

● Small trusted exporter: 3,700 lines + libs (crypto)



exp_send() enforces security
policies specified by labels

Exporter: datagrams via exp_send()

● Higher-level functionality will not be trusted



Building distributed applications
on top of exp_send()

RPC library

Exporter: datagrams via exp_send()

● RPC implemented on top of exp_send's 
datagrams, much like RPC over UDP



Building distributed applications
on top of exp_send()

Resource
allocation

Exporter: datagrams via exp_send()

RPC library

● Resource allocation RPC server
(manages access to CPU, memory)



Building distributed applications
on top of exp_send()

Resource
allocation

Exporter: datagrams via exp_send()

RPC library

● Program invocation: starts a process using 
previously-allocated resources

Program
invocation



Application

Building distributed applications
on top of exp_send()

Resource
allocation

Exporter: datagrams via exp_send()

RPC library

Program
invocation



Bootstrapping a new machine

New machine B Existing machine A

Resources root's shell

Exporter A    Exporter B    
=   

● Goal: gain access to new machine's resources
using admin's privileges on existing machine



Bootstrapping a new machine

New machine B Existing machine A

Resources root's shell

Exporter A    Exporter B    
=   

(1) Create mapping on new machine to bridge its 
protection domain with existing machine's

(2) Write down new machine's public key

=   

(1)
Mapping

(2)
B's public 

key



Bootstrapping a new machine

New machine B Existing machine A

Resources root's shell

Exporter A    Exporter B    
=   

● Use process invocation and ownership of root's 
category to start running code on new machine

=   

Message

Process
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httpdhttpd
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inetd OpenSSL
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Replication
● Goal: ensure certificate private key is protected 

while minimizing trusted code
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Replication
● Admin gives key replicator access to resources 

(blue star) and name (public key) of new server
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Replication
● Replication daemon sends over key and starts 

RSAd (using program invocation RPC service)

New server BExisting server A

Resources
root's   
shell   

key
replicator

RSA
key RSA

key
RSAd



Replication
● Admin provides resources, but does not get 

access to RSA key itself
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Network protocol
works with multiple OS'es
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Incremental deployment example:
Run untrusted perl on HiStar

      Return value,
      output data

      Perl code,
      input data

● Security policy specified by label
● Lower overhead, richer policies than VM/sandbox

HiStar machineLinux machine

 

perl

Exporter
Exporter
Library

Apache



Scaling untrusted app code
to multiple compute clusters

● Extend the idea of untrusted application code to 
third-party compute clusters

● Earlier: untrusted app code handles user data
– Limitation: had to use web site's trusted servers
– Cannot mix Facebook+MySpace: no common server

● Now: users can explicitly trust compute clusters
– Secure mash-ups can combine data from many sites
– No need for fully-trusted common application platform



Summary
● Shown how to use information flow control for

security in decentralized distributed systems

● Key idea: self-certifying category names
 stateless checks
 no implicit shared state
 avoids covert channels in design

● Build everything on top of datagrams with IFC


