
Securing distributed systems
with

information flow control

Nickolai Zeldovich
Silas Boyd-Wickizer

David Mazières

Traditional web applications:
lots of trusted (yellow) code

Application
code Database

User's
browser

HTTP
front
end

User's
browserUser's

browser

● Application is typically millions of lines of code
● Lots of third-party libraries from SourceForge
● Application has access to entire user database

Traditional web applications:
lots of trusted (yellow) code

Application
code Database

User's
browser

HTTP
front
end

User's
browserUser's

browser

● Application is typically millions of lines of code
● Lots of third-party libraries from SourceForge
● Application has access to entire user database
● Result: any bug allows attacker to steal all data!

– PayMaxx app code exposed 100,000 users' SSNs

Recent work:
information flow control

● Don't try to eliminate all application bugs (hard!)
● OS'es like Asbestos, HiStar, Flume keep user

data secure even if application is malicious
– Track flow of user's data through system
– Only send user's data to that user's browser
– No need to audit/understand application code!

Recent work:
information flow control

● Don't try to eliminate all application bugs (hard!)
● OS'es like Asbestos, HiStar, Flume keep user

data secure even if application is malicious
– Track flow of user's data through system
– Only send user's data to that user's browser
– No need to audit/understand application code!

● Limitation: works only on one machine
– Web applications need multiple machines for scale

This talk: extending information
flow control to distributed systems

● Outline:
– Review of information flow control (IFC) in an OS
– Challenges in distributed IFC and our solution
– Apps: web server, incremental deployment, ...

● Results:
– Can control information flow in distributed system
– Key idea: self-certifying category names
– Enforce security of scalable web server in 6,000 lines

Labels control information flow

File A Process

Label Label

File B

Label

Labels control information flow

File A Process

Label Label

File B

Label

 Blue data can flow only to other blue objects

 Color is category of data (e.g. my files)

Labels control information flow

File A Process

Label Label

File B

Label

X

X
 Blue data can flow only to other blue objects

 Color is category of data (e.g. my files)

Labels control information flow

File A Process

Label Label

File B

Label

X

 Color is category of data (e.g. my files)
X

 Blue data can flow only to other blue objects

Labels control information flow

File A Process

Label Label

File B

Label

 Owns blue data, can remove color (e.g. encrypt)

 Color is category of data (e.g. my files)

 Blue data can flow only to other blue objects

Labels are egalitarian

File A Process

Label Label

File B

Label

● Any process can request a new category (color)
– Gets ownership of that category ()
– Uses category in labels to control information flow
– Can grant ownership to others

Traditional web server:
lots of trusted (yellow) code

Application
code Database

User's
browser

HTTP
front
end

User's
browserUser's

browser

Information flow control:
separate color for each user's data

User's
browser

HTTP
front
end

User's
browserUser's

browser

DatabaseApplication
code

Information flow control:
track each user's data in app

Application
code

User's
browser

HTTP
front
end

User's
browserUser's

browser

Application
code

Application
code

Database

Labels prevent application code
from disclosing data onto network

Application
code

User's
browser

HTTP
front
end

User's
browserUser's

browser

Application
code

Application
codeX

X

Database

Front-end uses ownership to
send data only to user's browser

Application
code

User's
browser

HTTP
front
end

User's
browserUser's

browser

Application
code

Application
codeX

X

Database

Front-end uses ownership to
send data only to user's browser

Application
code

User's
browser

HTTP
front
end

User's
browserUser's

browser

Application
code

Application
codeX

X

Database

● What happens when the server gets overloaded?

Limitation: OS alone cannot control
information flow in distributed system

Application
code

XUser's
browser

HTTP
front
end

User's
browserUser's

browser

Application
code

Application
code

X
X

X

X

X

X

X

Database

Distributed challenge: when to
allow processes to communicate?

HTTP
front-end

Application
server

httpd App code

● Design goal: decentralized – no fully-trusted parts
– (Not the usual meaning of decentralized IFC, or DIFC)

● Challenge: no equivalent of a fully-trusted OS
kernel that can make all decisions

?

Data
server

Database

?

High-level approach:
encode labels in messages

HTTP
front-end

Application
server

httpd

Message

App code

Each machine uses OS to enforce labels locally

Data
server

Message

Database

Problem: decentralized trust
● When can we trust the recipient with message?

Attacker's
machine

X

HTTP
front-end

Application
server

httpd

Message

App code

Data
server

Message

Database

Solution: per-category trust
● DB trusts front-end, app servers with a particular

user's data (e.g. messages labeled blue)
● But DB doesn't trust the app code...
Attacker's
machine

X

HTTP
front-end

Application
server

httpd

Message

App code

Data
server

Message

Database

Exporters control information flow
on each machine using local OS

HTTP
front-end

Application
server

httpd

Message

App code

Data
server

Message

Database

Exporter Exporter Exporter

● Database doesn't trust the app code, but trusts
the app server's exporter to contain the app code

Attacker's
machine

X

Exporter's API

exp_send(dest_host, dest_mbox, msg, label)

– Exporter provides interface to send datagrams

– Message should only be sent if every category
in label trusts the machine dest_host

– How does the exporter check for this trust?

Strawman: check trust by
querying category owners

Exporter

Process
(secret bit = 1)

 Category owner

Strawman: check trust by
querying category owners

Exporter

Process
(secret bit = 1)

exp_send(host_x, msg)

 Category ownerHost X

? ?

Strawman: check trust by
querying category owners

Exporter

Process
(secret bit = 1)

exp_send(host_x, msg)

 Category owner

Control msg:
“can I send to

host_x?”

Host X

? ?

Querying category owners
creates a covert channel in API

Exporter

Process
(secret bit = 1)

 Category ownerAttacker's host

X

Host X

Querying category owners
creates a covert channel in API

Exporter

Process
(secret bit = 1)

 Category ownerAttacker's host

X

Host X

Querying category owners
creates a covert channel in API

Exporter

Process
(secret bit = 1)

 Category ownerAttacker's host

X

exp_send(host_x, msg)

Host X

? ?

Querying category owners
creates a covert channel in API

Exporter

Process
(secret bit = 1)

 Category ownerAttacker's host

X

exp_send(host_x, msg)

Host X

? ?

Control msg:
“can I send to

host_x?”

Control msg:
“can I send to

host_x?”

Strawman 2:
store trust in exporter

Exporter

Process
(secret bit = 1)

 host_x
 host_y

Strawman 2:
store trust in exporter

Exporter

Process
(secret bit = 1)

exp_send(host_x, msg)

 host_x
 host_y

● Exporter sends no queries that could leak data

Storing trust in exporter also
creates a covert channel in API

Exporter

Process
(secret bit = 1)

 host_x

Colluding
Process

Attacker's host Y

X

Storing trust in exporter also
creates a covert channel in API

Exporter

Process
(secret bit = 1)

 host_x

Colluding
Process

Attacker's host Y

X

exp_trust(, host_y)

 host_y

Depends on
value of the

secret bit

Storing trust in exporter also
creates a covert channel in API

Exporter

Process
(secret bit = 1)

 host_x

Colluding
Process

Attacker's host Y

X

Depends on
value of the

secret bit

 host_y

exp_send(host_y, msg)

Depends on
behavior of
malicious
process

Depends on
value of the

secret bit

exp_trust(, host_y)

Problem:
What to do with covert channels?

● Non-goal: eliminate all covert channels
– Not practical

● Goal: avoid covert channels in interface
– Allow trading off performance to mitigate

covert channels without changing the API

Solution:
Self-certifying category names

● Categories named by public key

● Trust for a category defined by certificates
signed by that category's private key

● Caller supplies all certificates to exp_send()

Caller supplies all certificates
needed by exporter

exp_send(dest_host, dest_mbox, msg, label, certs)

Caller-supplied

Caller supplies all certificates
needed by exporter

exp_send(dest_host, dest_mbox, msg, label, certs)

= 

Caller-supplied

Mapping

Caller supplies all certificates
needed by exporter

exp_send(dest_host, dest_mbox, msg, label, certs)

Can send to
host X 

= 

Caller-supplied

Mapping

Certificate

No covert channels
to determine trust:

➔ No external
communication

➔ No shared state

Exporter API design summary
● Self-certifying categories allow exporter to be

stateless – just verify caller-supplied certificates
– Stateless exporter design avoids covert channels

● exp_send() sends labeled datagrams
– Also allows granting ownership (stars) across network
– By design, only depends on caller-supplied args!

● Small trusted exporter: 3,700 lines + libs (crypto)

exp_send() enforces security
policies specified by labels

Exporter: datagrams via exp_send()

● Higher-level functionality will not be trusted

Building distributed applications
on top of exp_send()

RPC library

Exporter: datagrams via exp_send()

● RPC implemented on top of exp_send's
datagrams, much like RPC over UDP

Building distributed applications
on top of exp_send()

Resource
allocation

Exporter: datagrams via exp_send()

RPC library

● Resource allocation RPC server
(manages access to CPU, memory)

Building distributed applications
on top of exp_send()

Resource
allocation

Exporter: datagrams via exp_send()

RPC library

● Program invocation: starts a process using
previously-allocated resources

Program
invocation

Application

Building distributed applications
on top of exp_send()

Resource
allocation

Exporter: datagrams via exp_send()

RPC library

Program
invocation

Bootstrapping a new machine

New machine B Existing machine A

Resources root's shell

Exporter A Exporter B
= 

● Goal: gain access to new machine's resources
using admin's privileges on existing machine

Bootstrapping a new machine

New machine B Existing machine A

Resources root's shell

Exporter A Exporter B
= 

(1) Create mapping on new machine to bridge its
protection domain with existing machine's

(2) Write down new machine's public key

= 

(1)
Mapping

(2)
B's public

key

Bootstrapping a new machine

New machine B Existing machine A

Resources root's shell

Exporter A Exporter B
= 

● Use process invocation and ownership of root's
category to start running code on new machine

= 

Message

Process

User's
browser

User
data

User
data

Traditional web server (like Apache):
1M+ lines of trusted code

Application
(PDF: 600k LoC)

User
data

listener OpenSSL
(340k LoC)

http

RSA
keyUser's

browserUser's
browser

Application
(PDF: 600k LoC)
Application

(PDF: 600k LoC)

User
data

User
data

Application code
cannot disclose user data

Application
(PDF: 600k LoC)

User
data

listener OpenSSL
(340k LoC)

http

RSA
key

User's
browserUser's

browserUser's
browser

httpdhttpd

User's
auth agent

User's
auth agent

Application
(PDF: 600k LoC)
Application

(PDF: 600k LoC)

User
data

User
data

Per-user authentication agents,
no fully-privileged code

Application
(PDF: 600k LoC)

User
data

listener OpenSSL
(340k LoC)

http

RSA
key

User's
auth agent

Password

User's
browserUser's

browserUser's
browser

inetd OpenSSL
(340k LoC)

OpenSSL
(340k LoC)

httpdhttpd

User's
auth agent

User's
auth agent

Application
(PDF: 600k LoC)
Application

(PDF: 600k LoC)

User
data

User
data

SSL library
cannot send data to attacker

Application
(PDF: 600k LoC)

User
data

inetd OpenSSL
(340k LoC)

http

RSA
key

User's
auth agent

Password

User's
browserUser's

browserUser's
browser

listener

User's
browserUser's

browserUser's
browser

SSLSSL

httpdhttpd Application
(PDF: 600k LoC)
Application

(PDF: 600k LoC)

User
data

User
data

SSL library
cannot disclose private key

Application
(PDF: 600k LoC)

User
data

SSL

http

RSA
keyRSAd

4600 lines
340k lines

inetdinetdlistener

User's
auth agent

User's
auth agent

User's
auth agent

Password

SSLSSL

httpdhttpd

User's
auth agent

User's
auth agent

Application
(PDF: 600k LoC)
Application

(PDF: 600k LoC)

User
data

User
data

Security enforced by
~6,000 lines of code (yellow)

Application
(PDF: 600k LoC)

User
data

SSL

http

RSA
key

User's
auth agent

Password

RSAd

310 lines

300 lines

360
lines

User's
browserUser's

browserUser's
browser

340k lines
4600 lines

inetdinetdlistener

SSLSSL

httpdhttpd

User's
auth agent

User's
auth agent

Application
(PDF: 600k LoC)
Application

(PDF: 600k LoC)

User
data

User
data

Scalable web server,
no fully-trusted machines

Application
(PDF: 600k LoC)

User
data

SSL

http

RSA
key

User's
auth agent

Password

RSAd

310 lines

300 lines

360
lines

User's
browserUser's

browserUser's
browser

340k lines
4600 lines

inetdinetdlistener

Replication
● Goal: ensure certificate private key is protected

while minimizing trusted code

New server BExisting server A

Resources
root's
shell

key
replicator

RSA
key

Replication
● Admin gives key replicator access to resources

(blue star) and name (public key) of new server

New server BExisting server A

Resources
root's
shell

key
replicator

RSA
keyReplicate

to B

Replication
● Replication daemon sends over key and starts

RSAd (using program invocation RPC service)

New server BExisting server A

Resources
root's
shell

key
replicator

RSA
key RSA

key
RSAd

Replication
● Admin provides resources, but does not get

access to RSA key itself

New server BExisting server A

Resources
root's
shell

key
replicator

RSA
key RSA

key
RSAd

Network protocol
works with multiple OS'es

SSLSSL

httpdhttpd

User's
auth agent

User's
auth agent

Application
(PDF: 600k LoC)
Application

(PDF: 600k LoC)

User
data

User
data

Application
(PDF: 600k LoC)

User
data

SSL

http

RSA
key

User's
auth agent

RSAd

310 lines

300 lines

340k lines
4600 lines

Password

inetdinetdlistener

HiStar

Linux

Flume

Incremental deployment example:
Run untrusted perl on HiStar

 Return value,
 output data

 Perl code,
 input data

● Security policy specified by label
● Lower overhead, richer policies than VM/sandbox

HiStar machineLinux machine

perl

Exporter
Exporter
Library

Apache

Scaling untrusted app code
to multiple compute clusters

● Extend the idea of untrusted application code to
third-party compute clusters

● Earlier: untrusted app code handles user data
– Limitation: had to use web site's trusted servers
– Cannot mix Facebook+MySpace: no common server

● Now: users can explicitly trust compute clusters
– Secure mash-ups can combine data from many sites
– No need for fully-trusted common application platform

Summary
● Shown how to use information flow control for

security in decentralized distributed systems

● Key idea: self-certifying category names
 stateless checks
 no implicit shared state
 avoids covert channels in design

● Build everything on top of datagrams with IFC

