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» Lots of third-party libraries from SourceForge
» Application has access to entire user database
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* Application is typically millions of lines of code
» Lots of third-party libraries from SourceForge
» Application has access to entire user database

* Result: any bug allows attacker to steal all data!
- PayMaxx app code exposed 100,000 users' SSNs



Recent work:
information flow control

* Don't try to eliminate all application bugs (hard!)

 OS'es like Asbestos, HiStar, Flume keep user
data secure even if application is malicious

- Track flow of user's data through system
- Only send user's data to that user's browser
- No need to audit/understand application code!



Recent work:
information flow control

* Don't try to eliminate all application bugs (hard!)

 OS'es like Asbestos, HiStar, Flume keep user
data secure even if application is malicious

- Track flow of user's data through system
- Only send user's data to that user's browser
- No need to audit/understand application code!

* Limitation: works only on one machine

- Web applications need multiple machines for scale



This talk: extending information
flow control to distributed systems

e Qutline:

- Review of information flow control (IFC) in an OS
- Challenges in distributed IFC and our solution
- Apps: web server, incremental deployment, ...

* Results:
— Can control information flow in distributed system
- Key idea: self-certifying category names
- Enforce security of scalable web server in 6,000 lines
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Labels control information flow

. Color is category of data (e.g. my files)
® Blue data can flow only to other blue objects

* Owns blue data, can remove color (e.g. encrypt)
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Labels are egalitarian

« Any process can request a new category (color)

- Gets ownership of that category (*)
- Uses category in labels to control information flow
- Can grant ownership to others

Label Label * Label

File A =, Process =, FileB
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Information flow control:
separate color for each user's data
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Information flow control:
track each user's data in app
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Labels prevent application code
from disclosing data onto network
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Front-end uses ownership to
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L

Application
code

—K

Application Database

code ("7

User's
browser

Application
code




Front-end uses ownership to
send data only to user's browser
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* What happens when the server gets overloaded?



Limitation: OS alone cannot control
information flow Iin distributed system
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Distributed challenge: when to
allow processes to communicate?

» Design goal: decentralized — no fully-trusted parts
- (Not the usual meaning of decentralized |IFC, or DIFC)

HTTP Application Data
front-end server server

o npeots D

* Challenge: no equivalent of a fully-trusted OS
kernel that can make all decisions




High-level approach:
encode labels in messages

Each machine uses OS to enforce labels locally
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Problem: decentralized trust

* WWhen can we trust the recipient with message”?
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machine front-end server server
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Solution: per-category trust

DB trusts front-end, app servers with a particular

user's data (e.g. messages labeled blue)

 But DB doesn't trust the app code...
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Exporters control information flow

on each machine using local OS

 Database doesn't trust the app code, but trusts
the app server's exporter to contain the app code
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Exporter's API

exp_send(dest host, dest mbox, msg, label)

- Exporter provides interface to send datagrams

- Message should only be sent if every category
In /abel trusts the machine dest host

- How does the exporter check for this trust?




Strawman: check trust by
querying category owners
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Strawman: check trust by
querying category owners

exp_send(host x, msg)
Process
(secret bit = 1)

%xporter
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Host X

Control msg:
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* Category owner




Querying category owners
creates a covert channel in API
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Querying category owners
creates a covert channel in API
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Strawman 2:
store trust in exporter

exp_send(host_x, msg)
Process
(secret bit = 1)

—» host_x
Exporter —» host_

* Exporter sends no queries that could leak data




Storing trust in exporter also
creates a covert channel in API
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Storing trust in exporter also
creates a covert channel in API
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Storing trust in exporter also
creates a covert channel in API
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Problem:
What to do with covert channels?

* Non-goal: eliminate all covert channels
— Not practical

e GGoal: avoid covert channels in interface

- Allow trading off performance to mitigate
covert channels without changing the API



Solution:
Self-certifying category names

« Categories named by public key

* Trust for a category defined by certificates
signed by that category's private key

» Caller supplies all certificates to exp send()



Caller supplies all certificates
needed by exporter
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Caller supplies all certificates
needed by exporter

exp_send(dest _host, dest mbox, msg, label, certs)
i

No covert channels P V -
to determine trust: Mapping Q=8
> No external Certificate
communication
Can send to
> No shared state host X
N %

Caller-supplied



Exporter APl design summary

» Self-certifying categories allow exporter to be
stateless — just verify caller-supplied certificates

- Stateless exporter design avoids covert channels

* exp_send() sends labeled datagrams

- Also allows granting ownership (stars) across network
- By design, only depends on caller-supplied args!

« Small trusted exporter: 3,700 lines + libs (crypto)



exp_send() enforces security
policies specified by labels

* Higher-level functionality will not be trusted

Exporter: datagrams via exp_send()




Building distributed applications
on top of exp_send()

« RPC implemented on top of exp send's
datagrams, much like RPC over UDP

RPC library

Exporter: datagrams via exp_send()




Building distributed applications
on top of exp_send()

* Resource allocation RPC server
(manages access to CPU, memory)

Resource
allocation

RPC library

Exporter: datagrams via exp_send()




Building distributed applications
on top of exp_send()

 Program invocation: starts a process using
previously-allocated resources

Resource @ Program
allocation Invocation

RPC library

Exporter: datagrams via exp_send()




Building distributed applications
on top of exp_send()

Application

Resource @ Program
allocation Invocation

RPC library

Exporter: datagrams via exp_send()




Bootstrapping a new machine

* Goal: gain access to new machine's resources
using admin's privileges on existing machine

New machine B Existing machine A

@ ﬂ
. Resources &OOt S Sh*?
=§=r
Exporter xporter A




Bootstrapping a new machine

(1) Create mapping on new machine to bridge its
protection domain with existing machine's

(2) Write down new machine's public key
New machine B Existing machine A

. (2)
B's public
(1) o
Mapping . Resources root's shell y
= == = H—r¢
Exporter Exporter A




Bootstrapping a new machine

e Use process invocation and ownership of root's
category to start running code on new machine

New machine B Existing machine A
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Traditional web server (like Apache):
1M+ lines of trusted code
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Per-user authentication agents,
no fully-privileged code
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SSL library
cannot send data to attacker
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SSL library
cannot disclose private key
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Security enforced by
~6,000 lines of code (yellow)
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Scalable web server,
no fully-trusted machines
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Replication

* Goal: ensure certificate private key is protected

while minimizing trusted code
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Replication

 Admin gives key replicator access to resources
(blue star) and name (public key) of new server

Existing server A New server B
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Replication

* Replication daemon sends over key and starts
RSAd (using program invocation RPC service)

Existing server A New server B
@ D
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 Admin provides resources, but does not get

Replication

access to RSA key itself
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Network protocol
works with multiple OS'es

310 lines 340k lines
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Incremental deployment example:
Run untrusted perl on HiStar

» Security policy specified by label

* Lower overhead, richer policies than VM/sandbox

Linux machine

Apache

e i N
Exporter
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Input data

Return value,

output data
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Scaling untrusted app code
to multiple compute clusters

« Extend the idea of untrusted application code to
third-party compute clusters

» Earlier: untrusted app code handles user data

- Limitation: had to use web site's trusted servers
- Cannot mix Facebook+MySpace: no common server

 Now: users can explicitly trust compute clusters

- Secure mash-ups can combine data from many sites
- No need for fully-trusted common application platform



Summary

 Shown how to use information flow control for
security in decentralized distributed systems

» Key idea: self-certifying category names
- stateless checks
- no implicit shared state
- avoids covert channels in design

» Build everything on top of datagrams with |[FC



