Securing distributed systems
with
information flow control

Nickolail Zeldovich
Silas Boyd-Wickizer
David Mazieres

Traditional web applications:
lots of trusted (yellow) code

User's
browser

ATTP [aoplication
front Database
code
end
N

* Application is typically millions of lines of code
» Lots of third-party libraries from SourceForge
» Application has access to entire user database

Traditional web applications:
lots of trusted (yellow) code

User's
browser

ATTP [aoplication
front Database
code
end
N

* Application is typically millions of lines of code
» Lots of third-party libraries from SourceForge
» Application has access to entire user database

* Result: any bug allows attacker to steal all data!
- PayMaxx app code exposed 100,000 users' SSNs

Recent work:
information flow control

* Don't try to eliminate all application bugs (hard!)

 OS'es like Asbestos, HiStar, Flume keep user
data secure even if application is malicious

- Track flow of user's data through system
- Only send user's data to that user's browser
- No need to audit/understand application code!

Recent work:
information flow control

* Don't try to eliminate all application bugs (hard!)

 OS'es like Asbestos, HiStar, Flume keep user
data secure even if application is malicious

- Track flow of user's data through system
- Only send user's data to that user's browser
- No need to audit/understand application code!

* Limitation: works only on one machine

- Web applications need multiple machines for scale

This talk: extending information
flow control to distributed systems

e Qutline:

- Review of information flow control (IFC) in an OS
- Challenges in distributed IFC and our solution
- Apps: web server, incremental deployment, ...

* Results:
— Can control information flow in distributed system
- Key idea: self-certifying category names
- Enforce security of scalable web server in 6,000 lines

Labels control information flow

Label Label Label

/ / /

File B

i

File A = Process

Labels control information flow

. Color is category of data (e.g. my files)

® Blue data can flow only to other blue objects

Label Q Label Q Label @

File A =, Process =, FileB

Labels control information flow

. Color is category of data (e.g. my files)

® Blue data can flow only to other blue objects

Lab/elj Label O Label

File A =5 Process 325 FileB

Labels control information flow

. Color is category of data (e.g. my files)

® Blue data can flow only to other blue objects

Lab/elj Lab/elm Label)

File A =5 Process ¥ FileB

Labels control information flow

. Color is category of data (e.g. my files)
® Blue data can flow only to other blue objects

* Owns blue data, can remove color (e.g. encrypt)

Label Label * Label
[/ /

File A =, Process =, FileB

Labels are egalitarian

« Any process can request a new category (color)

- Gets ownership of that category (*)
- Uses category in labels to control information flow
- Can grant ownership to others

Label Label * Label

File A =, Process =, FileB

Traditional web server:
lots of trusted (yellow) code

User's
browser

HTTP
front
end

Application
code

Database

Information flow control:
separate color for each user's data

HTTP
front Application Database

end code Y%

User's
browser

Information flow control:
track each user's data in app

User's
browser

Application
code

HTTP
front
end

Application
code (\)

Application
code

Database

Kok

Labels prevent application code
from disclosing data onto network

L

Application
code

—K

Application Database

code ("7

User's
browser

Application
code

Front-end uses ownership to
send data only to user's browser

L

Application
code

—K

Application Database

code ("7

User's
browser

Application
code

Front-end uses ownership to
send data only to user's browser

L

Application
code

—K

Application Database

code ("7

User's
browser

Application
code

* What happens when the server gets overloaded?

Limitation: OS alone cannot control
information flow Iin distributed system

Application
code

Database

Kok

Application
code (\)

User's
browser

Application
code

Distributed challenge: when to
allow processes to communicate?

» Design goal: decentralized — no fully-trusted parts
- (Not the usual meaning of decentralized |IFC, or DIFC)

HTTP Application Data
front-end server server

o npeots D

* Challenge: no equivalent of a fully-trusted OS
kernel that can make all decisions

High-level approach:
encode labels in messages

Each machine uses OS to enforce labels locally

HTTP Application Data
front-end server server

=N =
s/ e

Problem: decentralized trust

* WWhen can we trust the recipient with message”?

Attacker's HTTP Application Data
machine front-end server server

- SRS

App code EDataba@

Message

Solution: per-category trust

DB trusts front-end, app servers with a particular

user's data (e.g. messages labeled blue)

 But DB doesn't trust the app code...

Attacker's
machine

@

HTTP
front-end

L httpcm

N

Application
server

App code

Data
server

LDatabaﬁ

Messagg Messa

o

Exporters control information flow

on each machine using local OS

 Database doesn't trust the app code, but trusts
the app server's exporter to contain the app code

Attacker's
machine

@

HTTP
front-end

el
e

Application Data
server

server
App code EDataba@
{ Exporter {Exporter

S S

Exporter's API

exp_send(dest host, dest mbox, msg, label)

- Exporter provides interface to send datagrams

- Message should only be sent if every category
In /abel trusts the machine dest host

- How does the exporter check for this trust?

Strawman: check trust by
querying category owners

Process
(secret bit = 1)

%xporter

F

* Category owner

Strawman: check trust by
querying category owners

exp_send(host x, msg)
Process
(secret bit = 1)

%xporter

F

?17

Host X

* Category owner

Strawman: check trust by
querying category owners

exp_send(host x, msg)
Process
(secret bit = 1)

%xporter

3

?17

Host X

Control msg:
“can | send to
host x?”

* Category owner

Querying category owners
creates a covert channel in API

@

_— Process
(secret bit = 1)

Exporter

F

Attacker's host

Host X

* Category owner

Querying category owners
creates a covert channel in API

_— Process
(secret bit = 1)

Exporter

F

Attacker's host *

Host X

* Category owner

Querying category owners
creates a covert channel in API

@

exp_send(host_x, msQ)
_— Process
(secret bit = 1)

Exporter

F

Attacker's host *

?17

Host X

* Category owner

Querying category owners
creates a covert channel in API

@

_— Process
(secret bit = 1)

exp_send(host_x, msg)

5
Control msg: t Control msg:
“can | send to POrer | “can | send to
f)” I?H
host_ X" 217 host_ X"
Y
Attacker's host Y& HostX vk Category owner

Strawman 2:
store trust in exporter

Process
(secret bit = 1)

Exporter

—» host_x
—» host

Strawman 2:
store trust in exporter

exp_send(host_x, msg)
Process
(secret bit = 1)

—» host_x
Exporter —» host_

* Exporter sends no queries that could leak data

Storing trust in exporter also
creates a covert channel in API

% * CoIIudiné’

Process Process
(secret bit = 1)

® —» host X
Exporter

Attacker's host Y v

Storing trust in exporter also
creates a covert channel in API

Process

P Proce*'ss CoIIudmé’
(secret bit = 1)
exp_trust(® host_y)

%xporter

—» host_x
—» host

Attacker's host Y i

S

Depends on
value of the
secret bit

Storing trust in exporter also
creates a covert channel in API

9 .

_— Process
(secret bit = 1)

exp_trust(® host_vy)

Colludin

Process

g

%xporter

Attacker's host Y i

)

Depends on
value of the

exp_send(host_y, msg)

—» host_x
—» host

secret bit

\

Problem:
What to do with covert channels?

* Non-goal: eliminate all covert channels
— Not practical

e GGoal: avoid covert channels in interface

- Allow trading off performance to mitigate
covert channels without changing the API

Solution:
Self-certifying category names

« Categories named by public key

* Trust for a category defined by certificates
signed by that category's private key

» Caller supplies all certificates to exp send()

Caller supplies all certificates
needed by exporter

exp_send(dest _host, dest mbox, msg, label, certs)

L

- N

Caller-supplied

Caller supplies all certificates
needed by exporter

exp_send(dest _host, dest mbox, msg, label, certs)
i

1

\

S | N
Mapping) = 8=

Caller-supplied

Caller supplies all certificates
needed by exporter

exp_send(dest _host, dest mbox, msg, label, certs)
i

No covert channels P V -
to determine trust: Mapping Q=8
> No external Certificate
communication
Can send to
> No shared state host X
N %

Caller-supplied

Exporter APl design summary

» Self-certifying categories allow exporter to be
stateless — just verify caller-supplied certificates

- Stateless exporter design avoids covert channels

* exp_send() sends labeled datagrams

- Also allows granting ownership (stars) across network
- By design, only depends on caller-supplied args!

« Small trusted exporter: 3,700 lines + libs (crypto)

exp_send() enforces security
policies specified by labels

* Higher-level functionality will not be trusted

Exporter: datagrams via exp_send()

Building distributed applications
on top of exp_send()

« RPC implemented on top of exp send's
datagrams, much like RPC over UDP

RPC library

Exporter: datagrams via exp_send()

Building distributed applications
on top of exp_send()

* Resource allocation RPC server
(manages access to CPU, memory)

Resource
allocation

RPC library

Exporter: datagrams via exp_send()

Building distributed applications
on top of exp_send()

 Program invocation: starts a process using
previously-allocated resources

Resource @ Program
allocation Invocation

RPC library

Exporter: datagrams via exp_send()

Building distributed applications
on top of exp_send()

Application

Resource @ Program
allocation Invocation

RPC library

Exporter: datagrams via exp_send()

Bootstrapping a new machine

* Goal: gain access to new machine's resources
using admin's privileges on existing machine

New machine B Existing machine A

@ ﬂ
. Resources &OOt S Sh*?
=§=r
Exporter xporter A

Bootstrapping a new machine

(1) Create mapping on new machine to bridge its
protection domain with existing machine's

(2) Write down new machine's public key
New machine B Existing machine A

. (2)
B's public
(1) o
Mapping . Resources root's shell y
= == = H—r¢
Exporter Exporter A

Bootstrapping a new machine

e Use process invocation and ownership of root's
category to start running code on new machine

New machine B Existing machine A

p
[Processﬂ E ﬂ
kResoTArces root S shel

{ = B~ { = B—=
Exporter Exporter A
k &-I'

Message

Traditional web server (like Apache):
1M+ lines of trusted code

. RSA
IStener

(340k LoC)
browser i

http ¢ Application
(PDF: 600k LoC)

!

User
data

User's
browser

Application code
cannot disclose user data

listener

OpenSSL
(340k LoC)

http

ook

RSA
key

< Applicati

on
(PDF: 600k L

Per-user authentication agents,
no fully-privileged code

User's
browser

listener

OpenSSL
(340k LoC)

RSA
key

H http*£
o

[
Application_ |
(PDF: 600k L&)l

A
[A

LPasswordl E

auth agent

User's

User

data AV

SSL library
cannot send data to attacker

User's

OpenSSL
(340k LoC)

browser

RSA
key

Password

[
Application_)
(PDF: 600k L&)V

WY User's

" auth agent -

User

data Q)

SSL library
cannot disclose private key

340k lines

| \» 4600 lines RSA
e Ilsteri4> S§L | RSAi« @

browser
\ i \
\

http L Application
* q (PDF: 600kL@’

]/ Passwordl %
: |
[
[A
[

User's
auth agent

User \
data ®

Security enforced by
~6,000 lines of code (yellow)

310 lines 340k lines

- - 4600 lines RSA
' listener SSL RSAd k
User's * ® *4_ @

browser a

300 lines http ;7 Application
**L (PDF: 6OOkL®&Z

Password T
\ ‘ A | ‘

360 Y User's gz,?ar &&Z
nes —~ quth agent

Scalable web server,
no fully-trusted machines

310 lines 340k lines

- - 4600 lines RSA
' listener SSL RSAd k
User's * ® *4_ @

browser - i
300 lines http ;7 Application L
(PDF: 600k L

Password T
\ ‘ A | ‘

360 Y User's gz,?ar &&Z
nes —~ quth agent

Replication

* Goal: ensure certificate private key is protected

while minimizing trusted code

Existing server A

RSA
key

\,

root's *T key
shell replica

New server B

Resources

N

Replication

 Admin gives key replicator access to resources
(blue star) and name (public key) of new server

Existing server A New server B
@ D
RSA
Replicate key

to B *

root's
shell

Y,

key **
replicator

L Resources ®

Replication

* Replication daemon sends over key and starts
RSAd (using program invocation RPC service)

Existing server A New server B
@ D
RSA
key RER ERSAd ﬂ
? key

root's ﬂ key
shell replicator g Resources ®

 Admin provides resources, but does not get

Replication

access to RSA key itself

Existing server A

RSA
key

Y,

root's key
shell replicator

New server B

RER ERSAd *%
key

\Y,

Resources

N

Network protocol
works with multiple OS'es

310 lines 340k lines

Iisterivr# S§L JJ_:

600 lines RSA

RSAd e i@

| http ;7 Applic
300 lines **g (PDF: 60(@
Password T
User's ggg &E

auth agent |

Incremental deployment example:
Run untrusted perl on HiStar

» Security policy specified by label

* Lower overhead, richer policies than VM/sandbox

Linux machine

Apache

e i N
Exporter
S Library y

Perl code,
Input data

Return value,

output data

HiStar machine

\

perl

Scaling untrusted app code
to multiple compute clusters

« Extend the idea of untrusted application code to
third-party compute clusters

» Earlier: untrusted app code handles user data

- Limitation: had to use web site's trusted servers
- Cannot mix Facebook+MySpace: no common server

 Now: users can explicitly trust compute clusters

- Secure mash-ups can combine data from many sites
- No need for fully-trusted common application platform

Summary

 Shown how to use information flow control for
security in decentralized distributed systems

» Key idea: self-certifying category names
- stateless checks
- no implicit shared state
- avoids covert channels in design

» Build everything on top of datagrams with |[FC

