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Too much trusted software
● Untrustworthy code a huge problem
● Users willingly run malicious software

– Malware, spyware, ...
● Even legitimate software is often vulnerable

– Symantec remote vulnerability
● No sign that this problem is going away
● Can an OS make untrustworthy code secure?
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Information Flow Control
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Buggy scanner leaks private data
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Buggy scanner leaks private data
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Buggy scanner leaks private data
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Buggy scanner leaks private data
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Buggy scanner leaks private data
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Buggy scanner leaks private data

Update
Process

Virus
Database Network

disk
usage

Private
User Files

Private
User Files

Virus
Scanner

/tmp

● Must restrict FS'es that virus scanner can write



  

Buggy scanner leaks private data
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● List goes on – is there any hope?



  

What's going on?
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● Kernel not designed to 
enforce these policies

● Retrofitting difficult
– Need to track potentially 

any memory observed or 
modified by a system call!

– Hard to even enumerate
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HiStar Solution
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● Make all state explicit, track all communication



  

HiStar: Contributions
● Narrow kernel interface, few comm. channels

– Minimal mechanism: enough for a Unix library
– Strong control over information flow

● Unix support implemented as user-level library
– Unix communication channels are made explicit,

in terms of HiStar's mechanisms
– Provides control over the gamut of Unix channels



  

HiStar kernel objects
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HiStar kernel objects
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HiStar: Unix process
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Unix File Descriptors
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Unix File Descriptors
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● Tainted process only talks to other tainted procs



  

Unix File Descriptors
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Seek pointer: 0xa32f
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● Lots of shared state in kernel, easy to miss



  

HiStar File Descriptors
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HiStar File Descriptors
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● All shared state is now explicitly labeled
● Just need segment read/write checks



  

Taint Tracking Strawman
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Taint Tracking Strawman
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● Propagate taint when writing to file



  

Taint Tracking Strawman
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● Propagate taint when writing to file
● What happens when reading?
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Taint Tracking Strawman
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Strawman has Covert Channel
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Strawman has Covert Channel
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Strawman has Covert Channel
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● What if we taint B
when it reads File 1?
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Strawman has Covert Channel
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HiStar: Immutable File Labels
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● Label (taint level) is state that must be tracked
● Immutable labels solve this problem!



  

Who creates tainted files?
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● Tainted thread can't modify untainted directory 
to place the new file there...
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Reading a tainted file
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Reading a tainted file
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Reading a tainted file
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HiStar avoids file covert channels
● Immutable labels prevent covert channels that 

communicate through label state
● Untainted threads pre-allocate tainted files

– File existence or label provides no secret information
● Threads taint themselves to read tainted files

– Tainted file's label accessible via parent directory



  

Problems with IPC
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Problems with IPC
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– Taint server thread
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– Secrecy preserved?

● Lots of client calls
– Limit server threads?
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– Otherwise, no control

over resources!
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Gates make resources explicit
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Gates make resources explicit

● Client donates initial
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Gates make resources explicit

● Client donates initial
resources (thread)
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Gates make resources explicit

● Client donates initial
resources (thread)

● Client thread runs in 
server address space, 
executing server code

● No implicit resource 
allocation – no leaks
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How do we get anything out?
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“Owner” privilege
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● Yellow objects can only interact with other 
yellow objects, or objects with yellow star

● Small, trusted shell can isolate a large, 
frequently-changing virus scanner



  

Multiple categories of taint
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● Owner privilege and information flow control 
are the only access control mechanism

● Anyone can allocate a new category, gets star



  

What about “root”?
● Huge security hole for information flow control

– Observe/modify anything – violate any security policy

● Make it explicit
– Can be controlled as necessary



  

HiStar root privileges are explicit
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● Kernel gives no special treatment to root



  

HiStar root privileges are explicit
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● Users can keep secret data inaccessible to root



  

What about inaccessible files?
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● Noone has privilege to access Bob's Secret Files



  

HiStar resource allocation
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HiStar resource allocation
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HiStar resource allocation

Unlink

● Create a new sub-container for secret files
● Bob can delete sub-container even if he cannot 
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HiStar resource allocation
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HiStar resource allocation
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HiStar resource allocation
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● Root has control over 
all resources, via the 
root container



  

Persistent Storage
● Unix: file system implemented in the kernel

– Many potential pitfalls leading to covert channels:
mtime, atime, link counts, ...

– Would be great to implement it in user-space as well

● HiStar: Single-level store (ala Multics / EROS)
– All kernel objects stored on disk – memory is a cache
– No difference between disk & memory objects



  

File System

Segment
/tmp/one

Container
/tmp/two

Filename Segment
one
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/tmp

. . .

● Implemented at user-level, using same objects
● Security checks separate from FS implementation



  

HiStar kernel design
● Kernel operations make information flow explicit

– Explicit operation for thread to taint itself
● Kernel never implicitly changes labels

– Explicit resource allocation: gates, pre-created files
● Kernel never implicitly allocates resources

● Kernel has no concept of superuser
– Users can explicitly grant their privileges to root
– Root owns the top-level container



  

Applications
● Many Unix applications

– gcc, gdb, openssh, ...

● High-security applications alongside with Unix
– Untrusted virus scanners (already described)
– VPN/Internet data separation (see paper)
– login with user-supplied authentication code (next)



  

Login on Unix
● Login must run as root

– Only root can setuid() to grant user privileges

● Why is this bad?
– Login is complicated (Kerberos, PAM, ...)
– Bugs lead to complete system compromise



  

Login on HiStar

Login
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PW:
H(1bob)

● Each user can provide their own auth. service
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Login on HiStar
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Password disclosure
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● What if Bob mistypes his username as “alice”?



  

Password disclosure
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Avoiding password disclosure
● It's all about information flow

– HiStar enforces:
– “Password cannot go out onto the network”

● Details in the paper



  

Reducing trusted code
● HiStar allows developers to reduce trusted code

– No code with every user's privilege during login
– No trusted code needed to initiate authentication
– 110-line trusted wrapper for complex virus scanner

● Small kernel: 16,000 lines of code



  

HiStar Conclusion
● HiStar reduces amount of trusted code

– Enforce security properties on untrusted code
using strict information flow control

● Kernel interface eliminates covert channels
– Make everything explicit: labels, resources

● Unix library makes Unix information flow explicit
– Superuser by convention, not by design



  

What about Asbestos?
● Different goal: Unix vs. specialized web server

– HiStar closes covert channels inherent in the 
Asbestos design (mutable labels, IPC, ...)

– Lower-level kernel interface
● Process vs Container+Thread+AS+Segments+Gates
● 2 times less kernel code than Asbestos
● Generality shown by the user-space Unix library

– System-wide support for persistent storage
● Asbestos uses trusted user-space file server

– Resources are manageable
● In Asbestos, reboot to kill runaway process



  

How is this different from EROS?
● To isolate in EROS, must strictly partition the 

capabilities between isolated applications
● Labels enforce policy without affecting structure

– Can impose policies on existing code (see paper)
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Synchronous creation of 10,000 files

HiStar allows use of group sync.
Application either runs to completion, or

appears to never start (single-level store)
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