
Explicit Information Flow
in the HiStar OS

Nickolai Zeldovich, Silas Boyd-Wickizer,
Eddie Kohler, David Mazières

Too much trusted software
● Untrustworthy code a huge problem
● Users willingly run malicious software

– Malware, spyware, ...
● Even legitimate software is often vulnerable

– Symantec remote vulnerability
● No sign that this problem is going away
● Can an OS make untrustworthy code secure?

Example: Virus Scanner

Private
User Files

Virus
Scanner

/tmp

Update
Process

Virus
Database Network

● Goal: private files cannot go onto the network

Symantec™

Information Flow Control

Private
User Files

Virus
Scanner

/tmp

Update
Process

Virus
Database Network

● Goal: private files cannot go onto the network

Buggy scanner leaks private data

Private
User Files

Virus
Scanner

/tmp

Update
Process

Virus
Database Network

● Must restrict sockets to protect private data

Buggy scanner leaks private data

Update
Process

Virus
Database Network

Private
User Files

Virus
Scanner

/tmp

● Must restrict scanner's ability to use IPC

Buggy scanner leaks private data

Update
Process

Virus
Database Network

Private
User Files

Virus
Scanner

/tmp

● Must run scanner in chroot jail

Buggy scanner leaks private data

Update
Process

Virus
Database Network

User
Shell

ptrace

Private
User Files

Virus
Scanner

/tmp

● Must run scanner with different UID

Buggy scanner leaks private data

setproctitle:
0x6e371bc2

Update
Process

Virus
Database Network

ps

Private
User Files

/tmp

● Must restrict access to /proc, ...

Buggy scanner leaks private data

Update
Process

Virus
Database Network

disk
usage

Private
User Files

Private
User Files

Virus
Scanner

/tmp

● Must restrict FS'es that virus scanner can write

Buggy scanner leaks private data

Update
Process

Virus
Database Network

fcntl
locking

Private
User Files

Virus
Scanner

/tmp

● List goes on – is there any hope?

What's going on?

P1

Unix
Kernel

Unix

P2 P3

Hardware

● Kernel not designed to
enforce these policies

● Retrofitting difficult
– Need to track potentially

any memory observed or
modified by a system call!

– Hard to even enumerate

What's going on?

P1

Unix
Kernel

Unix

P2 P3

Hardware

● Kernel not designed to
enforce these policies

● Retrofitting difficult
– Need to track potentially

any memory observed or
modified by a system call!

– Hard to even enumerate

HiStar Solution

HiStar
Kernel

Unix HiStar

Unix
Library

P1 P2 P3

U1 U2 U3

Hardware

P1

Unix
Kernel

P2 P3

Hardware

● Make all state explicit, track all communication

HiStar: Contributions
● Narrow kernel interface, few comm. channels

– Minimal mechanism: enough for a Unix library
– Strong control over information flow

● Unix support implemented as user-level library
– Unix communication channels are made explicit,

in terms of HiStar's mechanisms
– Provides control over the gamut of Unix channels

HiStar kernel objects

Segment
(Data)

Address
Space Thread Gate

(IPC)

Container
(Directory) Device

(Network)

HiStar kernel objects

Segment
(Data)

Address
Space Thread Gate

(IPC)

Container
(Directory) Device

(Network)

Label Label

Label Label LabelLabel

Think of labels as
a “tainted” bit

HiStar: Unix process

Code
Segment

Address
SpaceThread

Process
Container

Data
Segment

Unix File Descriptors

Process A Process B

File Descriptor
(O_RDONLY) Kernel

State

Unix File Descriptors

Process A Process B

File Descriptor
(O_RDONLY)

X

Kernel
State

● Tainted process only talks to other tainted procs

Unix File Descriptors

Process A Process B

File Descriptor
(O_RDONLY)

Seek pointer: 0xa32f

X

Kernel
State

● Lots of shared state in kernel, easy to miss

HiStar File Descriptors

Address Space A

Thread A

File Descriptor Segment
(O_RDONLY)

Seek pointer: 0xa32f

Address Space B

Thread B

HiStar File Descriptors

Address Space A

Thread A

File Descriptor Segment
(O_RDONLY)

Seek pointer: 0xa32f

Address Space B

Thread B

X

● All shared state is now explicitly labeled
● Just need segment read/write checks

Taint Tracking Strawman

Tainted
Thread A File Thread B

write(File)

Taint Tracking Strawman

Tainted
Thread A Thread B

write(File)

File

● Propagate taint when writing to file

Taint Tracking Strawman

Thread B

read(File)

● Propagate taint when writing to file
● What happens when reading?

Tainted
Thread A File

Taint Tracking Strawman

Thread B

read(File)

ACCESS
X

DENIED

Tainted
Thread A File

Strawman has Covert Channel

Tainted
Thread A

File 0

File 1

Thread B Network

Secret = 1

X

Strawman has Covert Channel

Tainted
Thread A Thread B

File 0

File 1

Network

write(File 1)

Secret = 1

Strawman has Covert Channel

Tainted
Thread A Thread B

File 0

File 1

Network

read(File 0)
read(File 1)

Secret = 1

Strawman has Covert Channel

Tainted
Thread A Thread B

File 0

File 1

Network

send email:
“secret=1”

Secret = 1

Strawman has Covert Channel

Tainted
Thread A Thread B

File 0

File 1

Network

Secret = 1

read(File 0)
read(File 1)

X

● What if we taint B
when it reads File 1?

Strawman has Covert Channel

Tainted
Thread A

Thread 0File 0

File 1 Thread 1

Network

Secret = 1

read(File 0)

read(File 1)

● What if we taint B
when it reads File 1?

Strawman has Covert Channel

Tainted
Thread A

Thread 0File 0

File 1 Thread 1

Network

Secret = 1

send email:
“secret=1”

send email:
“secret=0”

X

● What if we taint B
when it reads File 1?

HiStar: Immutable File Labels

Tainted
Thread A Thread B

read(...)
Untainted

File

Tainted
File

X

X

write(...)

● Label (taint level) is state that must be tracked
● Immutable labels solve this problem!

Who creates tainted files?

Tainted
Thread A

Untainted
File

Thread B

DirectoryCreate
Tainted File

Tainted
File

X

● Tainted thread can't modify untainted directory
to place the new file there...

Thread B
Tainted

File

Directory

Tainted
Thread A

Create
Tainted File

Thread C

HiStar: Untainted thread
pre-creates tainted file

● Existence and label of tainted file
provide no information about A

Untainted
File

Reading a tainted file

Tainted
Thread A

Untainted
File

Thread B
Tainted

File

Directory

● Existence and label of tainted file
provide no information about A

X
X

Thread C

Reading a tainted file

Tainted
Thread A

Untainted
File

Thread B
Tainted

File

Directory readdir():
T. File's label

● Existence and label of tainted file
provide no information about A

X
X

Thread C

Reading a tainted file

Tainted
Thread A

Untainted
File

Thread B
Tainted

File

Directory
Taint self

● Existence and label of tainted file
provide no information about A

● Neither does B's decision to taint

X

Thread C

HiStar avoids file covert channels
● Immutable labels prevent covert channels that

communicate through label state
● Untainted threads pre-allocate tainted files

– File existence or label provides no secret information
● Threads taint themselves to read tainted files

– Tainted file's label accessible via parent directory

Problems with IPC

IPC
Port

DB
ServerClient

Thread

Time

● IPC with tainted client
– Taint server thread

during request SELECT ...

 Server
Threads

Create

Problems with IPC

IPC
Port

IPC
Return

DB
ServerClient

Thread

Time

● IPC with tainted client
– Taint server thread

during request
SELECT ...

 Server
Threads

Create

Problems with IPC

IPC
Port

IPC
Return

DB
ServerClient

Thread

Time

● IPC with tainted client
– Taint server thread

during request

Results

 Server
Threads

Create

Problems with IPC

IPC
Port

IPC
Return

DB
ServerClient

Thread

Time

● IPC with tainted client
– Taint server thread

during request
– Secrecy preserved?

Results
 Server
Threads

Create

Problems with IPC

IPC
Port

IPC
Return

DB
ServerClient

Thread

Time

● IPC with tainted client
– Taint server thread

during request
– Secrecy preserved?

● Lots of client calls
– Limit server threads?

Leaks information...
– Otherwise, no control

over resources!

Create

Results
 Server
Threads

Gates make resources explicit

● Client donates initial
resources (thread)

Time

Gate

DB
ServerClient

Thread
SELECT ...

 Server
Threads

Create

Gates make resources explicit

● Client donates initial
resources (thread)

● Client thread runs in
server address space,
executing server code

Time

Gate

DB
ServerClient

Thread

SELECT ...

 Server
Threads

Create

Server
Code

Return
Gate

Gates make resources explicit

● Client donates initial
resources (thread)

● Client thread runs in
server address space,
executing server code

Time

Gate

DB
ServerClient

Thread

Results

 Server
Threads

Create

Server
Code

Return
Gate

Gates make resources explicit

● Client donates initial
resources (thread)

● Client thread runs in
server address space,
executing server code

● No implicit resource
allocation – no leaks

Time

Gate

DB
ServerClient

Thread

 Server
Threads

Create

Server
Code

Return
Gate

Results

How do we get anything out?

Network

Virus
Scanner

X

Alice's
Files

“Owner” privilege

Alice's
shell

Network

Virus
Scanner

X

Alice's
Files

● Yellow objects can only interact with other
yellow objects, or objects with yellow star

● Small, trusted shell can isolate a large,
frequently-changing virus scanner

Multiple categories of taint

Alice's
shell

Network

Virus
Scanner

X

Alice's
Files

Bob's
shell

Bob's
Files

Virus
Scanner

X

● Owner privilege and information flow control
are the only access control mechanism

● Anyone can allocate a new category, gets star

What about “root”?
● Huge security hole for information flow control

– Observe/modify anything – violate any security policy

● Make it explicit
– Can be controlled as necessary

HiStar root privileges are explicit

Alice's
shell

Bob's
shell

root's
shell

Alice's
Files

Bob's
Files

● Kernel gives no special treatment to root

HiStar root privileges are explicit

Bob's
Secret Files

Alice's
shell

Bob's
shell

root's
shell

Alice's
Files

Bob's
FilesX

● Users can keep secret data inaccessible to root

What about inaccessible files?

Bob's
Secret Files

Alice's
shell

Bob's
shell

root's
shell

Alice's
Files

Bob's
FilesX

 X

● Noone has privilege to access Bob's Secret Files

HiStar resource allocation

Bob's
Container

Bob's Files
Bob's
shell

HiStar resource allocation

Bob's Secret
Container

Bob's
Container

Bob's Files
Bob's

Secret Files
Bob's
shell

● Create a new sub-container for secret files

HiStar resource allocation

Bob's Secret
Container

Bob's
Container

Bob's Files
Bob's

Secret Files
Bob's
shell X

● Create a new sub-container for secret files

HiStar resource allocation

Unlink

● Create a new sub-container for secret files
● Bob can delete sub-container even if he cannot

otherwise access it!

Bob's Secret
Container

Bob's
Container

Bob's Files
Bob's

Secret Files
Bob's
shell X

HiStar resource allocation
● Create a new sub-container for secret files
● Bob can delete sub-container even if he cannot

otherwise access it!

Bob's Secret
Container

Bob's
Container

Bob's Files
Bob's

Secret Files
Bob's
shell X

HiStar resource allocation
● Create a new sub-container for secret files
● Bob can delete sub-container even if he cannot

otherwise access it!

Bob's
Container

Bob's Files
Bob's
shell

HiStar resource allocation

Bob's
Container

Bob's Files
Bob's
shell

Root
Container

root's
shell

● Root has control over
all resources, via the
root container

Persistent Storage
● Unix: file system implemented in the kernel

– Many potential pitfalls leading to covert channels:
mtime, atime, link counts, ...

– Would be great to implement it in user-space as well

● HiStar: Single-level store (ala Multics / EROS)
– All kernel objects stored on disk – memory is a cache
– No difference between disk & memory objects

File System

Segment
/tmp/one

Container
/tmp/two

Filename Segment
one
two

Container
/tmp

. . .

● Implemented at user-level, using same objects
● Security checks separate from FS implementation

HiStar kernel design
● Kernel operations make information flow explicit

– Explicit operation for thread to taint itself
● Kernel never implicitly changes labels

– Explicit resource allocation: gates, pre-created files
● Kernel never implicitly allocates resources

● Kernel has no concept of superuser
– Users can explicitly grant their privileges to root
– Root owns the top-level container

Applications
● Many Unix applications

– gcc, gdb, openssh, ...

● High-security applications alongside with Unix
– Untrusted virus scanners (already described)
– VPN/Internet data separation (see paper)
– login with user-supplied authentication code (next)

Login on Unix
● Login must run as root

– Only root can setuid() to grant user privileges

● Why is this bad?
– Login is complicated (Kerberos, PAM, ...)
– Bugs lead to complete system compromise

Login on HiStar

Login
Process

Alice's
Auth. Service

Bob's
Auth. Service

User: Bob
Pass: 1bob

PW:
H(alic3)

PW:
H(1bob)

● Each user can provide their own auth. service

Login on HiStar

Login
Process

Pass: 1bob

Alice's
Auth. Service

Bob's
Auth. Service

PW:
H(alic3)

PW:
H(1bob)

● Each user can provide their own auth. service

Login on HiStar

Login
Process

OK

Pass: 1bob

Alice's
Auth. Service

Bob's
Auth. Service

PW:
H(alic3)

PW:
H(1bob)

Password disclosure

Login
Process

Pass: 1bob

Alice's
Auth. Service

Bob's
Auth. Service

PW:
H(alic3)

PW:
H(1bob)

● What if Bob mistypes his username as “alice”?

Password disclosure

Login
Process

Pass: 1bob

Alice's
Auth. Service

Bob's
Auth. Service

PW:
H(alic3)

PW:
H(1bob)

● What if Bob mistypes his username as “alice”?

Network

Avoiding password disclosure
● It's all about information flow

– HiStar enforces:
– “Password cannot go out onto the network”

● Details in the paper

Reducing trusted code
● HiStar allows developers to reduce trusted code

– No code with every user's privilege during login
– No trusted code needed to initiate authentication
– 110-line trusted wrapper for complex virus scanner

● Small kernel: 16,000 lines of code

HiStar Conclusion
● HiStar reduces amount of trusted code

– Enforce security properties on untrusted code
using strict information flow control

● Kernel interface eliminates covert channels
– Make everything explicit: labels, resources

● Unix library makes Unix information flow explicit
– Superuser by convention, not by design

What about Asbestos?
● Different goal: Unix vs. specialized web server

– HiStar closes covert channels inherent in the
Asbestos design (mutable labels, IPC, ...)

– Lower-level kernel interface
● Process vs Container+Thread+AS+Segments+Gates
● 2 times less kernel code than Asbestos
● Generality shown by the user-space Unix library

– System-wide support for persistent storage
● Asbestos uses trusted user-space file server

– Resources are manageable
● In Asbestos, reboot to kill runaway process

How is this different from EROS?
● To isolate in EROS, must strictly partition the

capabilities between isolated applications
● Labels enforce policy without affecting structure

– Can impose policies on existing code (see paper)

gcc wget Clam
AV

pipe disk
read

disk
write

create
10k
files

fork
exec

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

Linux
HiStar
OpenBSD

Benchmarks, relative to Linux

Comparable performance
to Linux and OpenBSD

Application-level benchmarks
and disk benchmarks

gcc wget Clam
AV

pipe disk
read

disk
write

create
10k
files

fork
exec

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

Linux
HiStar
OpenBSD

Benchmarks, relative to Linux
217x faster!

Synchronous creation of 10,000 files

HiStar allows use of group sync.
Application either runs to completion, or

appears to never start (single-level store)

gcc wget Clam
AV

pipe disk
read

disk
write

create
10k
files

fork
exec

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

Linux
HiStar
OpenBSD

Benchmarks, relative to Linux
7.5x slower

Linux: 9 syscalls per iteration
HiStar: 317 syscalls per iteration

