
Securing Untrustworthy
Software Using

Information Flow Control

Nickolai Zeldovich

Joint work with: Silas Boyd-Wickizer,
Eddie Kohler, David Mazières

Problem: Bad Code
● PayMaxx divulges social security numbers

– Sequential account number stored in the URL
– First account had SSN 000-00-0000, no password

● CardSystems loses 40,000,000 CC numbers
● Secret service mail stolen from T-mobile
● 10,000 users compromised at Stanford (CDC)
● Don't these people know what they're doing?

Problem: Bad Code
● Even security experts can't get it right
● May 2006: Symantec AV 10.x remote exploit

– Software deployed on 200,000,000 machines
– Without this software, machines also vulnerable
– You just can't win

● If Symantec can't get it right, what hope is there?

Solution: Give up
● Accept that software is untrustworthy
● Legitimate software is often vulnerable
● Users willingly run malicious software

– Malware, spyware, ...
● No sign that this problem is going away
● Make software less trusted

Example: Virus Scanner

Private
User Files

Virus
Scanner

/tmp

Update
Process

Virus
Database Network

ClamAV

Goal: private files cannot go onto the network

Information Flow Control

Private
User Files

Virus
Scanner

/tmp

Update
Process

Virus
Database Network

Goal: private files cannot go onto the network

Buggy scanner leaks private data

Private
User Files

Virus
Scanner

/tmp

Update
Process

Virus
Database Network

● Must restrict sockets to protect private data

Buggy scanner leaks private data

Update
Process

Virus
Database Network

Private
User Files

Virus
Scanner

/tmp

● Must restrict scanner's ability to use IPC

Buggy scanner leaks private data

Update
Process

Virus
Database Network

Private
User Files

Virus
Scanner

/tmp

● Must run scanner in chroot jail

Buggy scanner leaks private data

Update
Process

Virus
Database Network

User
Shell

ptrace

Private
User Files

Virus
Scanner

/tmp

● Must run scanner with different UID

Buggy scanner leaks private data

setproctitle:
0x6e371bc2

Update
Process

Virus
Database Network

ps

Private
User Files

/tmp

● Must restrict access to /proc, ...

Buggy scanner leaks private data

Update
Process

Virus
Database Network

disk
usage

Private
User Files

Private
User Files

Virus
Scanner

/tmp

● Must restrict FS'es that virus scanner can write

Buggy scanner leaks private data

Update
Process

Virus
Database Network

fcntl
locking

Private
User Files

Virus
Scanner

/tmp

● List goes on – is there any hope?

What's going on?

P1

Unix
Kernel

Unix

P2 P3

Hardware

● Kernel not designed to
control information flow

● Retrofitting difficult
– Need to track potentially

any memory observed or
modified by a system call!

– Hard to even enumerate

What's going on?

P1

Unix
Kernel

Unix

P2 P3

Hardware

● Kernel not designed to
control information flow

● Retrofitting difficult
– Need to track potentially

any memory observed or
modified by a system call!

– Hard to even enumerate

HiStar Solution

HiStar
Kernel

Unix HiStar

Unix
Library

P1 P2 P3

U1 U2 U3

Hardware

P1

Unix
Kernel

P2 P3

Hardware

● Make all state explicit, track all communication

HiStar: Contributions
● Narrow kernel interface, few comm. channels

– Minimal mechanism: enough for a Unix library
– Strong control over information flow
– Overall theme: make everything explicit

● Unix support implemented as user-level library
– Unix communication channels are made explicit,

in terms of HiStar's mechanisms
– Provides control over the gamut of Unix channels

HiStar kernel objects

Segment
(Data)

Address
Space Thread Gate

(IPC)

Container
(Directory) Device

(Network)

HiStar kernel objects

Segment
(Data)

Address
Space Thread Gate

(IPC)

Container
(Directory) Device

(Network)

Label Label

Label Label LabelLabel

Think of labels as
a “tainted” bit

HiStar: Unix process

Code
Segment

Address
SpaceThread

Process
Container

Data
Segment

Unix File Descriptors

Process A Process B

File Descriptor
(O_RDONLY) Kernel

State

Unix File Descriptors

Process A Process B

File Descriptor
(O_RDONLY)

X

Kernel
State

● Tainted process only talks to other tainted procs

Unix File Descriptors

Process A Process B

File Descriptor
(O_RDONLY)

Seek pointer: 0xa32f

X

Kernel
State

● Lots of shared state in kernel, easy to miss

HiStar File Descriptors

Address Space A

Thread A

File Descriptor Segment
(O_RDONLY)

Seek pointer: 0xa32f

Address Space B

Thread B

HiStar File Descriptors

Address Space A

Thread A

File Descriptor Segment
(O_RDONLY)

Seek pointer: 0xa32f

Address Space B

Thread B

X

● All shared state is now explicitly labeled
● Reduce problem to object read/write checks

Taint Tracking Strawman

Tainted
Thread A File Thread B

write(File)

Taint Tracking Strawman

Tainted
Thread A Thread B

write(File)

File

● Propagate taint when writing to file

Taint Tracking Strawman

Thread B

read(File)

● Propagate taint when writing to file
● What happens when reading?

Tainted
Thread A File

Taint Tracking Strawman

Thread B

read(File)

ACCESS
X

DENIED

Tainted
Thread A File

Strawman has Covert Channel

Tainted
Thread A

File 0

File 1

Thread B Network

Secret = 1

X

Strawman has Covert Channel

Tainted
Thread A Thread B

File 0

File 1

Network

write(File 1)

Secret = 1

Strawman has Covert Channel

Tainted
Thread A Thread B

File 0

File 1

Network

read(File 0)
read(File 1)

Secret = 1

X

Strawman has Covert Channel

Tainted
Thread A Thread B

File 0

File 1

Network

send email:
“secret=1”

Secret = 1

X

Strawman has Covert Channel

Tainted
Thread A Thread B

File 0

File 1

Network

Secret = 1

read(File 0)
read(File 1)

X

● What if we taint B
when it reads File 1?

Strawman has Covert Channel

Tainted
Thread A

Thread 0File 0

File 1 Thread 1

Network

Secret = 1

read(File 0)

read(File 1)

● What if we taint B
when it reads File 1?

Strawman has Covert Channel

Tainted
Thread A

Thread 0File 0

File 1 Thread 1

Network

Secret = 1

send email:
“secret=1”

send email:
“secret=0”

X

● What if we taint B
when it reads File 1?

HiStar: Immutable File Labels

Tainted
Thread A Thread B

read(...)
Untainted

File

Tainted
File

X

X

write(...)

● Label (taint level) is state that must be tracked
● Immutable labels solve this problem!

Who creates tainted files?

Tainted
Thread A

Untainted
File

Thread B

DirectoryCreate
Tainted File

Tainted
File

X

● Tainted thread can't modify untainted directory
to place the new file there...

Thread B
Tainted

File

Directory

Tainted
Thread A

Create
Tainted File

Wrapper
Thread C

HiStar: Untainted thread
pre-creates tainted file

● Existence and label of tainted file
provide no information about A

Untainted
File

Reading a tainted file

Tainted
Thread A

Untainted
File

Thread B
Tainted

File

Directory

● Existence and label of tainted file
provide no information about A

X
X

Wrapper
Thread C

Reading a tainted file

Tainted
Thread A

Untainted
File

Thread B
Tainted

File

Directory readdir():
T. File's label

● Existence and label of tainted file
provide no information about A

X
X

Wrapper
Thread C

Reading a tainted file

Tainted
Thread A

Untainted
File

Thread B
Tainted

File

Directory
Taint self

● Existence and label of tainted file
provide no information about A

● Neither does B's decision to taint

X

Wrapper
Thread C

HiStar avoids file covert channels
● Immutable labels prevent covert channels that

communicate through label state
● Untainted threads pre-allocate tainted files

– File existence or label provides no secret information
● Threads taint themselves to read tainted files

– Tainted file's label accessible via parent directory

Problems with IPC

IPC
Port

DB
ServerClient

Thread

Time

● IPC with tainted client
– Taint server thread

during request SELECT ...

 Server
Threads

Create

Problems with IPC

IPC
Port

IPC
Return

DB
ServerClient

Thread

Time

● IPC with tainted client
– Taint server thread

during request
SELECT ...

 Server
Threads

Create

Problems with IPC

IPC
Port

IPC
Return

DB
ServerClient

Thread

Time

● IPC with tainted client
– Taint server thread

during request

Results

 Server
Threads

Create

Problems with IPC

IPC
Port

IPC
Return

DB
ServerClient

Thread

Time

● IPC with tainted client
– Taint server thread

during request
– Secrecy preserved?

Results
 Server
Threads

Create

Problems with IPC

IPC
Port

IPC
Return

DB
ServerClient

Thread

Time

● IPC with tainted client
– Taint server thread

during request
– Secrecy preserved?

● Lots of client calls
– Limit server threads?

Leaks information...
– Otherwise, no control

over resources!

Create

Results
 Server
Threads

Gates make resources explicit

● Client donates initial
resources (thread)

Time

Gate

DB
ServerClient

Thread
SELECT ...

 Server
Threads

Create

Gates make resources explicit

● Client donates initial
resources (thread)

● Client thread runs in
server address space,
executing server code

Time

Gate

DB
ServerClient

Thread

SELECT ...

 Server
Threads

Create

Server
Code

Return
Gate

Gates make resources explicit

● Client donates initial
resources (thread)

● Client thread runs in
server address space,
executing server code

Time

Gate

DB
ServerClient

Thread

Results

 Server
Threads

Create

Server
Code

Return
Gate

Gates make resources explicit

● Client donates initial
resources (thread)

● Client thread runs in
server address space,
executing server code

● No implicit resource
allocation – no leaks

Time

Gate

DB
ServerClient

Thread

 Server
Threads

Create

Server
Code

Return
Gate

Results

How do we get anything out?

Network

Virus
Scanner

X

Alice's
Files

“Owner” privilege

Alice's
shell

Network

Virus
Scanner

X

Alice's
Files

● Star can get around information flow restrictions
● Small, trusted shell can isolate a large,

frequently-changing virus scanner

Multiple categories of taint

Alice's
shell

Network

Virus
Scanner

X

Alice's
Files

Bob's
shell

Bob's
Files

Virus
Scanner

X

● Owner privilege and information flow control
are the only access control mechanism

● Anyone can allocate a new category, gets star

HiStar root privileges are explicit

Alice's
shell

Bob's
shell

root's
shell

Alice's
Files

Bob's
Files

● Kernel gives no special treatment to root

HiStar root privileges are explicit

Bob's
Secret Files

Alice's
shell

Bob's
shell

root's
shell

Alice's
Files

Bob's
FilesX

● Users can keep secret data inaccessible to root

What to do with inaccessible files?

Bob's
Secret Files

Alice's
shell

Bob's
shell

root's
shell

Alice's
Files

Bob's
FilesX

 X

● Noone has privilege to access Bob's Secret Files

HiStar resource allocation

Bob's
Container

Bob's Files
Bob's
shell

HiStar resource allocation

Bob's Secret
Container

Bob's
Container

Bob's Files
Bob's

Secret Files
Bob's
shell

● Create a new sub-container for secret files

HiStar resource allocation

Bob's Secret
Container

Bob's
Container

Bob's Files
Bob's

Secret Files
Bob's
shell X

● Create a new sub-container for secret files

HiStar resource allocation

Unlink

● Create a new sub-container for secret files
● Bob can delete sub-container even if he cannot

otherwise access it!

Bob's Secret
Container

Bob's
Container

Bob's Files
Bob's

Secret Files
Bob's
shell X

HiStar resource allocation
● Create a new sub-container for secret files
● Bob can delete sub-container even if he cannot

otherwise access it!

Bob's Secret
Container

Bob's
Container

Bob's Files
Bob's

Secret Files
Bob's
shell X

HiStar resource allocation
● Create a new sub-container for secret files
● Bob can delete sub-container even if he cannot

otherwise access it!

Bob's
Container

Bob's Files
Bob's
shell

HiStar resource allocation

Bob's
Container

Bob's Files
Bob's
shell

Root
Container

root's
shell

● Root has control over all
resources: root container

● Remove recalcitrant
users

Persistent Storage
● Unix: file system implemented in the kernel

– Potential covert channels: mtime, atime, link count, ...

● HiStar: Single-level store (like Multics / EROS)
– All kernel objects stored on disk
– Memory is just a cache of disk objects

Single-level store
% ssh root@histar
HiStar#

Single-level store
% ssh root@histar
HiStar# reboot

Single-level store
% ssh root@histar
HiStar# reboot
rebooting...

Kernel checkpoints to disk:
● Threads
● Address spaces
● Segments (memory)
● ...
and then reboots machine

Single-level store
% ssh root@histar
HiStar# reboot
rebooting...
done
HiStar#

Kernel boots up, reads in:
● Threads
● Address spaces
● Segments (memory)
● ...
and continues as before!

Kernel checkpoints to disk:
● Threads
● Address spaces
● Segments (memory)
● ...
and then reboots machine

File System

Segment
/tmp/one

Container
/tmp/two

Filename Segment
one
two

Container
/tmp

. . .

● Implemented at user-level, using same objects
● Security checks separate from FS implementation

HiStar kernel design
● Kernel operations make information flow explicit

– Explicit operation for thread to taint itself
● Kernel never implicitly changes labels

– Explicit resource allocation: gates, pre-created files
● Kernel never implicitly allocates resources

● Kernel has no concept of superuser
– Users can explicitly grant their privileges to root
– Root owns the top-level container

Applications
● Many Unix applications

– gcc, gdb, openssh, ...

● High-security applications alongside with Unix
– Untrusted virus scanners (already described)
– VPN/Internet data separation
– login with user-supplied authentication code (next)
– Privilege-separated web server

Login on Unix: highly centralized
● Difficult and error-prone to extend login process

– Any bugs can lead to complete system compromise!

/etc/shadow:

Alice: H(alic3)
Bob: H(1bob)

Login
Process

(runs as root)

User: Bob
Pass: 1bob

Login on HiStar: less trusted code

Login
Process

Alice's
Auth. Service

Bob's
Auth. Service

User: Bob
Pass: 1bob PW:

H(alic3)

PW:
H(1bob)

● Login process requires no privileges
● Each user can provide their own auth. service

Pass: 1bob
Alice's

Auth. Service

Bob's
Auth. Service

PW:
H(alic3)

PW:
H(1bob)

● Login process requires no privileges
● Each user can provide their own auth. service

Login
Process

Login on HiStar: less trusted code

OK

Alice's
Auth. Service

Bob's
Auth. Service

PW:
H(alic3)

PW:
H(1bob)

Login
Process

Pass: 1bob

Login on HiStar: less trusted code

● No code runs with every user's privilege

● Users supply their own authentication code
– Password checker, one-time passwords, ...

● OS ensures password is not disclosed
– Even if user mistypes username, gives password to

attacker's authentication code (not described)

Login on HiStar: less trusted code

HiStar SSL Web Server

User's
browser

inetd
RSA
key

User
authentication

User
data

● Only small fraction of code (green) is trusted
310 lines

HiStar SSL Web Server

User's
browser

inetd
RSA
key

User
authentication

User
data

310 lines

● Only small fraction of code (green) is trusted

300 lines

HiStar SSL Web Server

User's
browser

inetd SSL
RSA
key

httpd

User
authentication

User
data

310 lines 340K lines

● OpenSSL only trusted to encrypt/decrypt

300 lines

HiStar SSL Web Server

User's
browser

inetd SSL RSAd
RSA
key

httpd

User
authentication

User
data

● OpenSSL cannot disclose certificate private key
310 lines 340K lines 4600 lines

300 lines

HiStar SSL Web Server

User's
browser

inetd SSL RSAd
RSA
key

httpd

User
authentication

User
data

● httpd trusted with user's privilege, credentials
310 lines 340K lines 4600 lines

300 lines

HiStar SSL Web Server

User's
browser

inetd SSL RSAd
RSA
key

httpd

User
authentication

Application
code

User
data

● Application code cannot disclose user data
310 lines 340K lines 4600 lines

680K lines: PDF maker

HiStar allows developers
to reduce trusted code

● No code with every user's privilege during login
● No trusted code to initiate authentication
● 110-line trusted wrapper for large virus scanner
● Web server isolates different users' app code

● Small kernel: under 20,000 lines of code

HiStar controls one machine
● Can enforce security for small web server

Web Server

httpd Application
code

User
data

Large services are distributed
● Must use multiple machines for scalability

– Tainted processes cannot use network in HiStar

Data
Server

Application
Server

Front-end
Server

httpd Application
code

User
data

? ?

Problem: Who can we trust?
● No single fully-trusted kernel to make decisions

Data
Server

Application
Server

Front-end
Server

X

httpd Application
code

User
data

Attacker's
Server

? ?

Globally-trusted authority?
● Made sense for local kernel (HiStar), but not here

– Problems with scalability, security, trust

Data
Server

Application
Server

Front-end
Server

httpd Application
code

User
data

Attacker's
Server Global

Network
Authority?

X

Decentralized design
● When it is safe to contact another machine?

– Any query may leak information to attacker!

httpd Application
code

User
data

Attacker's
Server

? ?

X

Local
Authority

Local
Authority

Local
Authority

Solution:
Self-authenticating categories

● Category (taint color) is a public key C

● If you know private key C-1, you own (“star”) C

● To trust host H with your secret data, sign
delegation (H is trusted to handle C) using C-1

● Category can “speak for itself”

Naming machines: Strawman

Category
C

Hostname
H.com

“Trusts”
Signed by C -1

Naming machines: Strawman

Category
C

Hostname
H.com

“Trusts”
Signed by C -1

“Has key”

Verisign

Host key
K

IP address
1.2.3.4

“Has IP”DNS

Naming machines: Strawman

Category
C

Hostname
H.com

“Trusts”
Signed by C -1

“Has key”

Verisign

Host key
K

IP address
1.2.3.4

“Has IP”DNS

● Can we reduce trust of Verisign, DNS?

Name hosts by public key

Category
C

Hostname
H.com

“Trusts”

Signed by C-1

“Has key”

Verisign

Host key
K

IP address
1.2.3.4

“Has IP”DNS

● Trust the public key instead of the hostname!

Hosts sign their IP address

Category
C

Hostname
H.com

“Trusts”

Signed by C-1

“Has key”

Verisign

Host key
K

IP address
1.2.3.4

“Has IP”DNS

● Design separates trust from distribution, policy

“M
y IP

 is”

S
igned by K

-1

Exporter daemons

httpd Application
code

User
data

 Exporter Exporter Exporter

● HiStar enforces information flow locally
● Exporters send UDP-like messages with labels

– Not part of kernel – only in TCB for distributed apps
– Need delegations to determine if recipient is trusted

Strawman:
Exporter stores delegations

Private
User Files

Delegations:
Host X: “ “File

Server Exporter

● Delegation: User trusts host X with his data

Strawman:
Exporter stores delegations

Private
User Files

Delegations:
Host X: “ “File

Server Exporter

Send
to X

● Delegation: User trusts host X with his data

Strawman has covert channel

Private
User Files

Delegations:
Host X: “ “File

Server

Attacker
Process

Exporter

Strawman has covert channel

Private
User Files

Delegations:
Host X: “ “File

Server

Attacker
Process

Exporter

Strawman has covert channel

Private
User Files

Delegations:
Host X: “ “File

Server

Attacker
Process

2nd attacker
Process

Exporter

Strawman has covert channel

Private
User Files

Delegations:
Host X: “ “File

Server

Attacker
Process

2nd attacker
Process

Exporter

Strawman has covert channel

Private
User Files

Delegations:
Host X: “ “File

Server

Attacker
Process

2nd attacker
Process1st

bit

Exporter

Strawman has covert channel

Private
User Files

Delegations:
Host X: “ “
Host Y: “ “

File
Server

Attacker
Process

2nd attacker
Process1st

bit Delegate to Y

Exporter

Strawman has covert channel

Private
User Files

Delegations:
Host X: “ “
Host Y: “ “

File
Server

Attacker
Process

2nd attacker
Process

Sen
d

to
Y

Exporter

Solution: Stateless exporter
● Delegations are self-authenticating

Private
User Files

File
Server

Attacker
Process

2nd attacker
Process

Exporter

Sender supplies delegations
● Result only depends on sender-supplied data

Private
User Files

File
Server

Attacker
Process

2nd attacker
Process

Sen
d

to
Y

+ d
ele

ga
tio

ns

for
 ho

st
Y

Exporter

Exporter's interface
● void send(ip_address, tcp_port,
 wire_message, delegation_set)

● struct wire_message {
 pubkey recipient_exporter;
 slot recipient_slot;
 category_set label;
 category_set grant_ownership;
 delegation_set dset;
 opaque data;
};

Exporter's interface
● void send(ip_address, tcp_port,
 wire_message, delegation_set)

● struct wire_message {
 pubkey recipient_exporter;
 slot recipient_slot;
 category_set label;
 category_set grant_ownership;
 delegation_set dset;
 opaque data;
};

Convince sending exporter
it's safe to send message:

Category delegations +
Address delegation

(secrecy)

Exporter's interface
● void send(ip_address, tcp_port,
 wire_message, delegation_set)

● struct wire_message {
 pubkey recipient_exporter;
 slot recipient_slot;
 category_set label;
 category_set grant_ownership;
 delegation_set dset;
 opaque data;
}; Convince recipient exporter

it's safe to accept message:

Category delegations
(integrity)

RPC using exporter messages
● Much like RPC over UDP

– Allocate resources to receive the reply
– Send the request
– Wait for reply message to arrive
– Periodically retransmit or time out

● RPC library manages delegations
– Untrusted by OS, exporters

Security details
● All messages encrypted+MAC on the network

– Session keys between each pair of exporters

● Ownership and address delegations expire
– Compromised machine only affects recent users
– Exporters periodically broadcast address delegations

● Trusted exporter: 3,700 lines of C++ (plus libs)
– Enforces policy on arbitrary untrusted code

 Return value,
 output data

 Perl code,
 input data

Incremental deployment
● Run untrusted perl code on HiStar, from Linux

– Well-defined security properties specified by label

HiStar machineLinux machine

Exporter
Library Exporter

perl

300 lines

Recall: HiStar SSL Web Server

User's
browser

inetd SSL RSAd
RSA
key

httpd

User
authentication

Application
code

User
data

● Only small fraction of code (green) is trusted
310 lines 340K lines 4600 lines

680K lines: PDF maker

300 lines

Scalable, Distributed Web Server

User's
browser

inetd SSL RSAd
RSA
key

httpd

User
authentication

Application
code

User
data

● Same security properties (but trust exporters)
310 lines 340K lines 4600 lines

Conclusion
● Shown how to reduce amount of trusted code

– Trusted: 20,000 line kernel + 3,700 line exporter
– Enforce security of arbitrary distributed application

● Explicit information flow removes covert channels
– Even root privileges can be made explicit

● No need for globally-trusted authority
– Self-authenticating categories make trust explicit

http://www.scs.stanford.edu/histar/

Limitations
● Hard to enforce correctness, progress

– Malicious code cannot leak your data
– But if you give it write access, it can corrupt it!

● Applicable to servers, not obvious for desktops
– May need to provide trusted path to and from user

● Fine-grained isolation requires code changes
– Code not always structured along information flow

● Covert channels are inevitable

Potential ways to
reduce covert channels

● One idea: “secure” scheduler for sensitive data
– Preempt based on instruction counts instead of time
– Prohibit process from yielding CPU to others

● Only incur overhead for, e.g. checking password
– Spend a deterministic 0.1 sec CPU time for login

Verifying security
● Verifying the design

– Can objectively determine if something is safe
– Model-checking subset of syscalls (Taral Joglekar)

● Seems to provide non-interference

● Verifying the implementation
– Symbolic execution (Peter Pawlowski, Daniel Dunbar)

● Found two bugs in HiStar (and a few more in EXE)
– Static taint analysis (Suhabe Bugrara, Peter Hawkins)

● No user pointer derefs (where alias analysis terminates)

How to really reboot?
● Separate command called “ureboot”

● Kills all processes except itself (ureboot)
– Delete containers, except for the file system
– FS containers have special bit that excludes threads

● Start a new init process
– It will start everything else (TCP/IP stack, sshd, ...)

gcc wget Clam
AV

pipe disk
read

disk
write

create
10k
files

fork
exec

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

Linux
HiStar
OpenBSD

Benchmarks, relative to Linux

Comparable performance
to Linux and OpenBSD

Application-level benchmarks
and disk benchmarks

gcc wget Clam
AV

pipe disk
read

disk
write

create
10k
files

fork
exec

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

Linux
HiStar
OpenBSD

Benchmarks, relative to Linux
217x faster!

Synchronous creation of 10,000 files

HiStar allows use of group sync.
Application either runs to completion, or

appears to never start (single-level store)

gcc wget Clam
AV

pipe disk
read

disk
write

create
10k
files

fork
exec

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

Linux
HiStar
OpenBSD

Benchmarks, relative to Linux
7.5x slower

Linux: 9 syscalls per iteration
HiStar: 317 syscalls per iteration

Web server: “PDF maker” app

0

1

2

3

4

5

6
Throughput on one server, req / second

Linux
Apache
Unified
Separated
Distributed

Web server: “PDF maker” app

0

1

2

3

4

5

6
Throughput on one server, req / second

Linux
Apache
Unified
Separated
Distributed

1 2 3
0

2

4

6

8

10

12

14

Scalability of application servers
(Fixed number of other servers)

Related Work
● Asbestos inspired this work
● Capability-based systems: KeyKOS, EROS
● Distributed capability systems: Amoeba
● Language-based security: Jif, Joe-E

Asbestos: Built for a web server
● HiStar closes covert channels inherent in the

Asbestos design (mutable labels, IPC, ...)
● Lower-level kernel interface

– Process vs Container+Thread+AS+Segments+Gates
– 2 times less kernel code than Asbestos
– Generality shown by the user-space Unix library

● System-wide support for persistent storage
– Asbestos uses trusted user-space file server

● Resources are manageable
– In Asbestos, reboot to kill runaway process

Labels vs capabilities
● Both provide strong isolation

● Capabilities: determine privilege before starting
– Restricts program structure

● Labels: can change privilege levels at runtime
– Thread can raise label to read a secret file
– Label change prevents writing to non-secret files
– Easier to apply to existing code

Labels in a capability OS

Process ACapability
Wrapper

A's label

Capability
Wrapper

Distributed Capabilities (Amoeba)
● Servers require properly-signed capabilities

● Attacker cannot make up arbitrary capabilities
– Must authenticate to access user's file server

● Attacker can create capabilities for his server
– Cannot prevent code from “calling home”

Language-based security
● Much more fine-grained control
● Resource allocation covert channels hard to fix
● Many similar problems in structuring code

– if (secret == 1)
 foo();
printf(“Hello world.\n”);

– If secret is tainted, foo runs tainted
– printf only runs if foo terminates
– Must prove halting to remove taint on thread

