
Using TCP Through Sockets

David Mazières
Revised by Frank Dabek and Eric Petererson

1 Introduction

This document provides an introduction to using sockets on Unix systems with a focus on
asynchronous I/O. We first cover the basics of Unix file I/O and then discuss the use of
sockets to communicate over a network using TCP. Section three describes the use of non-
blocking I/O to improve performance and presents, as an example, an asynchronous finger
client. Finally, a library that simplifies the use of asynchronous sockets is presented.

Readers of this document are assumed to be proficient in the C and C++ programming
languages including template classes and be comfortable using a Unix operating system to
develop programs. Detailed knowledge of network standards or Unix I/O is not required.

Noting the following typesetting conventions may assist the reader: words set in sans
serif type (such as open) are Unix system calls; any text set in a mono spaced font (such as
nbytes) is either a C code fragment or a C object or name.

2 File descriptors

Most I/O on Unix systems takes place through the read and write system calls1. Before
discussing network I/O, it helps to understand how these functions work even on simple
files. If you are already familiar with file descriptors and the read and write system calls, you
can skip to the next section.

All read and write operations must be performed on file descriptors, non-negative integers
which are created via a call to open (see below). File descriptors remain bound to files even
when files are renamed or deleted or undergo permission changes that revoke access2.

By convention, file descriptors numbers 0, 1, and 2 correspond to standard input, standard
output, and standard error respectively. Thus a call to printf will result in a write to file
descriptor 1.

Section 2.1 shows a very simple program that prints the contents of files to the standard
output—just like the UNIX cat command. The function typefile uses four system calls to
copy the contents of a file to the standard output.

1High-level I/O functions such as fread and fprintf are implemented in terms of read and write.
2Note that not all network file systems properly implement these semantics.

1

• int open(char *path, int flags, ...);

The open system call requests access to a particular file. path specifies the name of the
file to access; flags determines the type of access being requested—in the case of this
example read-only access. open ensures that the named file exists (or can be created,
depending on flags) and checks that the invoking user has sufficient permission for
the mode of access.

If successful, open returns a file descriptor.

If unsuccessful, open returns −1 and sets the global variable errno to indicate the nature
of the error. The routine perror will print “filename: error message” to the standard
error based on errno.

• int read (int fd, void *buf, int nbytes);

read will read up to nbytes bytes of data into memory starting at buf. It returns the
number of bytes actually read, which may very well be less than nbytes. The case in
which read returns fewer than nbytes is often called a “short read” and is a common
source of errors. If read returns 0, this indicates an end of file. If it returns −1, this
indicates an error.

• int write (int fd, void *buf, int nbytes);

write will write up to nbytes bytes of data at buf to file descriptor fd. It returns the
number of bytes actually written, which unfortunately may be less than nbytes if the
file descriptor is non-blocking (see Section 4.1). Write returns −1 to indicate an error.

• int close (int fd);

close deallocates a file descriptor. Systems typically limit each process to 64 file de-
scriptors by default (though the limit can sometimes be raised substantially with the
setrlimit system call). Thus, it is a good idea to close file descriptors after their last
use so as to prevent “too many open files” errors.

2.1 type.c: Copy file to standard output

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

void

typefile (char *filename)

{

int fd, nread;

char buf[1024];

fd = open (filename, O_RDONLY);

if (fd == -1) {

perror (filename);

2

return;

}

while ((nread = read (fd, buf, sizeof (buf))) > 0)

write (1, buf, nread);

close (fd);

}

int

main (int argc, char **argv)

{

int argno;

for (argno = 1; argno < argc; argno++)

typefile (argv[argno]);

exit (0);

}

3 TCP/IP Connections

3.1 Introduction

TCP is the reliable protocol many applications use to communicate over the Internet. TCP
provides a stream abstraction: Two processes, possibly on different machines, each have a
file descriptor. Data written to either descriptor will be returned by a read from the other.
Such network file descriptors are called sockets in Unix.

Every machine on the Internet has a unique, 32-bit IP (Internet protocol) address3. An
IP address is sufficient to route network packets to a machine from anywhere on the Inter-
net. However, since multiple applications can use TCP simultaneously on the same machine,
another level of addressing is needed to disambiguate which process and file descriptor in-
coming TCP packets correspond to. For this reason, each end of a TCP connection is named
by 16-bit port number in addition to its 32-bit IP address.

So how does a TCP connection get set up? Typically, a server will listen for connections
on an IP address and port number. Clients can then allocate their own ports and connect
to that server. Servers usually listen on well-known ports. For instance, finger servers listen
on port 79, web servers on port 80 and mail servers on port 25. A list of well-known port
numbers can be found in the file /etc/services on any Unix machine.

The Unix telnet utility will allow to you connect to TCP servers and interact with
them. By default, telnet connects to port 23 and speaks to a telnet daemon that runs
login. However, you can specify a different port number. For instance, port 7 on many
machines runs a TCP echo server:

athena% telnet athena.dialup.mit.edu 7

...including Athena’s default telnet options: "-ax"

3This discussion will assume IP version 4. Version 6 of IP significantly expands the address space

3

Trying 18.184.0.39...

Connected to ten-thousand-dollar-bill.dialup.mit.edu.

Escape character is ’^]’.

repeat after me...

repeat after me...

The echo server works!

The echo server works!

quit

quit

^]

telnet> q

Connection closed.

athena%

Note that in order to quit telnet, you must type Control-] followed by q and return. The
echo server will happily echo anything you type like quit.

As another example, let’s look at the finger protocol, one of the simplest widely used
TCP protocols. The Unix finger command takes a single argument of the form user@host.
It then connects to port 79 of host, writes the user string and a carriage-return line-feed
over the connection, and dumps whatever the server sends back to the standard output.
We can simulate the finger command using telnet. For instance, using telnet to do the
equivalent of the command finger help@mit.edu, we get:

athena% telnet mit.edu 79

...including Athena’s default telnet options: "-ax"

Trying 18.72.0.100...

Connected to mit.edu.

Escape character is ’^]’.

help

These help topics are available:

about general options restrictions url

change-info motd policy services wildcards

To view one of these topics, enter "help name-of-topic-you-want".

...

Connection closed by foreign host.

athena%

3.2 TCP client programming

Now let’s see how to make use of sockets in C. Section 3.3 shows the source code to a simple
finger client that does the equivalent of the last telnet example of the previous section. In

4

general, a client wishing to create a TCP connection to a server first calls socket to create
a socket, optionally calls bind to specify a local address, and finally connects to the server
using the connect system call.

The function tcpconnect shows all the steps necessary to connect to a TCP server. It
makes the following system calls:

• int socket (int domain, int type, int protocol);

The socket system call creates a new socket, just as open creates a new file descriptor.
socket returns a non-negative file descriptor number on success, or −1 on an error.

When creating a TCP socket, domain should be AF INET, signifying an IP socket, and
type should be SOCK STREAM, signifying a reliable stream. Since the reliable stream
protocol for IP is TCP, the first two arguments already effectively specify TCP. Thus,
the third argument can be left 0, letting the Operating System assign a default protocol
(which will be IPPROTO TCP).

Unlike file descriptors returned by open, you can’t immediately read and write data to
a socket returned by socket. You must first assign the socket a local IP address and
port number, and in the case of TCP you need to connect the other end of the socket
to a remote machine. The bind and connect system calls accomplish these tasks.

• int bind (int s, struct sockaddr *addr, int addrlen);

bind sets the local address and port number of a socket. s is the file descriptor number
of a socket. For IP sockets, addr must be a structure of type sockaddr in, usually
as follows (in /usr/include/netinet/in.h). addrlen must be the size of struct

sockaddr in (or whichever structure one is using).

struct in_addr {

u_int32_t s_addr;

};

struct sockaddr_in {

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

Different versions of Unix may have slightly different structures. However, all will have
the fields sin family, sin port, and sin addr. All other fields should be set to zero.
Thus, before using a struct sockaddr in, you must call bzero on it, as is done in
tcpconnect. Once a struct sockaddr in has been zeroed, the sin family field must
be set to the value AF INET to indicate that this is indeed a sockaddr in. (Bind cannot
take this for granted, as its argument is a more generic struct sockaddr *.)

5

sin port specifies which 16-bit port number to use. It is given in network (big-endian)
byte order4, and so must be converted from host to network byte order with htons.
It is often the case when writing a TCP client that one wants a port number but
doesn’t care which one. Specifying a sin port value of 0 tells the OS to choose the
port number. The operating system will select an unused port number between 1,024
and 5,000 for the application. Note that only the super-user can bind port numbers
under 1,024. Many system services such as mail servers listen for connections on well-
known port numbers below 1,024. Allowing ordinary users to bind these ports would
potentially also allow them to do things like intercept mail with their own rogue mail
servers.

sin addr contains a 32-bit IP address for the local end of a socket. The special value
INADDR ANY tells the operating system to choose the IP address. This is usually what
one wants when binding a socket, since one typically does not care about the IP address
of the machine on which it is running.

• int connect (int s, struct sockaddr *addr, int addrlen);

connect specifies the address of the remote end of a socket. The arguments are the
same as for bind, with the exception that one cannot specify a port number of 0 or an
IP address of INADDR ANY. Connect returns 0 on success or −1 on failure.

Note that one can call connect on a TCP socket without first calling bind. In that
case, connect will assign the socket a local address as if the socket had been bound to
port number 0 with address INADDR ANY. The example finger calls bind for illustrative
purposes only.

The above three system calls create a connected TCP socket, over which the finger
program writes the name of the user being fingered and reads the response. Most of the rest of
the code should be straight-forward, except you might wish to note the use of gethostbyname
to translate a hostname into a 32-bit IP address.

3.3 myfinger.c: A simple network finger client

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <netdb.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

4To avoid ambiguity, the socket standard specifies a ‘network’ byte order (which happens to be big-
endian). The calls htons and ntohs convert shorts back and forth between byte orders. These calls are
macros and on big-endian machines have no effect. To ensure portability, however, they should always be
used.

6

#define FINGER_PORT 79

#define bzero(ptr, size) memset (ptr, 0, size)

/* Create a TCP connection to host and port. Returns a file

* descriptor on success, -1 on error. */

int

tcpconnect (char *host, int port)

{

struct hostent *h;

struct sockaddr_in sa;

int s;

/* Get the address of the host at which to finger from the

* hostname. */

h = gethostbyname (host);

if (!h || h->h_length != sizeof (struct in_addr)) {

fprintf (stderr, "%s: no such host\n", host);

return -1;

}

/* Create a TCP socket. */

s = socket (AF_INET, SOCK_STREAM, 0);

/* Use bind to set an address and port number for our end of the

* finger TCP connection. */

bzero (&sa, sizeof (sa));

sa.sin_family = AF_INET;

sa.sin_port = htons (0); /* tells OS to choose a port */

sa.sin_addr.s_addr = htonl (INADDR_ANY); /* tells OS to choose IP addr */

if (bind (s, (struct sockaddr *) &sa, sizeof (sa)) < 0) {

perror ("bind");

close (s);

return -1;

}

/* Now use h to set set the destination address. */

sa.sin_port = htons (port);

sa.sin_addr = *(struct in_addr *) h->h_addr;

/* And connect to the server */

if (connect (s, (struct sockaddr *) &sa, sizeof (sa)) < 0) {

perror (host);

close (s);

return -1;

}

return s;

}

int

main (int argc, char **argv)

7

{

char *user;

char *host;

int s;

int nread;

char buf[1024];

/* Get the name of the host at which to finger from the end of the

* command line argument. */

if (argc == 2) {

user = malloc (1 + strlen (argv[1]));

if (!user) {

fprintf (stderr, "out of memory\n");

exit (1);

}

strcpy (user, argv[1]);

host = strrchr (user, ’@’);

}

else

user = host = NULL;

if (!host) {

fprintf (stderr, "usage: %s user@host\n", argv[0]);

exit (1);

}

*host++ = ’\0’;

/* Try connecting to the host. */

s = tcpconnect (host, FINGER_PORT);

if (s < 0)

exit (1);

/* Send the username to finger */

if (write (s, user, strlen (user)) < 0

|| write (s, "\r\n", 2) < 0) {

perror (host);

exit (1);

}

/* Now copy the result of the finger command to stdout. */

while ((nread = read (s, buf, sizeof (buf))) > 0)

write (1, buf, nread);

exit (0);

}

3.4 TCP server programming

Now let’s look at what happens in a TCP server. A TCP server, like a client, begins by
calling socket to create a socket and by binding the socket to a well-known port using bind
(although optional for clients, servers nearly always call bind to specify the port on which

8

they will operate). Following the bind operation, server and client paths diverge: instead of
connecting the socket, a server will instead call listen followed by accept. These functions,
described below, alert the operating system to accept new connects and, for each connection,
create a new, connected socket which will be returned by accept.

Section 3.6 shows the complete source code to a simple finger server. It listens for clients
on the finger port, 79. Then, for each connection established, it reads a line of data, interprets
it as the name of a user to finger, and runs the local finger utility directing its output back
over the socket to the client.

The function tcpserv takes a port number as an argument, binds a socket to that port,
tells the kernel to listen for TCP connections on that socket, and returns the socket file
descriptor number, or −1 on an error. This requires three main system calls:

• int socket (int domain, int type, int protocol);

This function creates a socket, as described in Section 3.2.

• int bind (int s, struct sockaddr *addr, int addrlen);

This function assigns an address to a socket, as described in Section 3.2. Unlike the
finger client, which did not care about its local port number, here we specify a specific
port number. INADDR ANY can still be specified as the local IP address: on a multi-
homed machine the socket will accept connections on any of the server’s addresses.

Binding a specific port number can cause complications when killing and restarting
servers (for instance during debugging). Closed TCP connections can sit for a while
in a state called TIME WAIT before disappearing entirely. This can prevent a restarted
TCP server from binding the same port number again, even if the old process no longer
exists. The setsockopt system call shown in tcpserv avoids this problem. It tells the
operating system to let the socket be bound to a port number already in use.

• int listen (int s, int backlog);

listen tells the operating system to accept network connections. It returns 0 on success,
and −1 on error. s is an unconnected socket bound to the port on which to accept
connections. backlog formerly specified the number of connections the operating sys-
tem would accept ahead of the application. That argument is ignored by most modern
Unix operating systems, however. People traditionally use the value 5.

Once you have called listen on a socket, you cannot call connect, read, or write, as the
socket has no remote end. Instead, a new system call, accept, creates a new socket for
each client connecting to the port s is bound to.

Once tcpserv has begun listening on a socket, main accepts connections from clients, with
the system call accept.

• int accept (int s, struct sockaddr *addr, int *addrlenp);

9

f
i
n
g
e
r

1 2 1 2

c
l
i
e
n
t

s

c
h
i
l
d

1 2

c
l
i
e
n
t

s

c
h
i
l
d

1 2

p
a
r
e
n
t

s
t
d
o
u
t

s
t
d
e
r
r

c
l
i
e
n
t

s

Figure 1: file descriptors in a forking server are inherited by the child process (top
figure). In the second figure, the child process has called dup2 to connect file descriptors
1 and 2 which normally correspond to standard output and standard error to the network
socket. In the final figure, the child has called execl and the local finger process runs, sending
its standard output over s.

Accept takes a socket s on which one is listening and returns a new socket to which
a client has just connected. If no clients have connected, accept will block until one
does. accept returns −1 on an error.

For TCP, addr should be a struct sockaddr in *. addrlenp must be a pointer
to an integer containing the value sizeof (struct sockaddr in). accept will ad-
just *addrlenp to contain the actual length of the struct sockaddr it copies into
*addr. In the case of TCP, all struct sockaddr in’s are the same size, so *addrlenp

shouldn’t change.

The finger daemon makes use of a few more Unix system calls which, while not network-
specific, are often encountered in network servers. With fork it creates a new process. This
new process calls dup2 to redirect its standard output and error over the accepted socket.
Finally, a call to execl replaces the new process with an instance of the finger program.
Finger inherits its standard output and error, so these go straight back over the network to
the client.

• int fork (void);

fork creates a new process, identical to the current one. fork returns twice: in the old
process, fork returns a process ID of the new process. In the new or “child” process,
fork returns 0. fork returns −1 if there is an error.

• int dup2(int oldfd, int newfd);

dup2 closes file descriptor number newfd, and replaces it with a copy of oldfd. When
the second argument is 1, this changes the destination of the standard output. When
that argument is 2, it changes the standard error.

10

• int execl(char *path, char *arg0, ..., NULL);

The execl system call runs a command—as if you had typed it on the command line.
The command executed will inherit all file descriptors except those with the close-on-
exec flag set. execl replaces the currently executing program with the one specified by
path. On success, it therefore doesn’t return. On failure, it returns −1.

3.5 Closing a socket

If the close system call is passed the only remaining file descriptor reference to a socket,
communication in both directions will be closed. If another reference to the socket exists
(even in another process), communications are unaffected over the remaining descriptors. It
is sometimes convenient to transmit an end-of-file over a socket without closing the socket—
either because not all descriptors can be closed, or because one wishes to read from the
socket even after writing an end-of-file.

Consider, for example, a protocol in which a client sends a single query and then receives
a response from the server. The client might signal the end of the query with an end-of-
file—effectively closing the write half of its TCP connection. Once the server receives the
end-of-file, it parses and responds to the query. The client must still be able to read from
the socket even after sending an end of file. It can do so using the shutdown system call.

• int shutdown (int fd, int how);

shutdown shuts down communications over a socket in one or both directions, without
deallocating the file descriptor and regardless of how many other file descriptor ref-
erences there are to the socket. The argument how can be either 0, 1, or 2. 0 shuts
down the socket for reading, 1 for writing, and 2 for both. When a TCP socket is shut
down for writing, the process at the other end of the socket will see a 0-length read,
indicating end-of-file, but data can continue to flow in the other direction.

The TCP protocol has no way of indicating to the remote end that a socket has been
shut down for reading. Thus, it is almost never useful tu call shutdown on a TCP
socket with a how argument of 0 or 2.

3.6 myfingerd.c: A simple network finger server

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <netdb.h>

#include <signal.h>

#include <fcntl.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

11

#include <arpa/inet.h>

#define FINGER_PORT 79

#define FINGER_COMMAND "/usr/bin/finger"

#define bzero(ptr, size) memset (ptr, 0, size)

/* Create a TCP socket, bind it to a particular port, and call listen

* for connections on it. These are the three steps necessary before

* clients can connect to a server. */

int

tcpserv (int port)

{

int s, n;

struct sockaddr_in sin;

/* The address of this server */

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (port);

/* We are interested in listening on any and all IP addresses this

* machine has, so use the magic IP address INADDR_ANY. */

sin.sin_addr.s_addr = htonl (INADDR_ANY);

s = socket (AF_INET, SOCK_STREAM, 0);

if (s < 0) {

perror ("socket");

return -1;

}

/* Allow the program to run again even if there are old connections

* in TIME_WAIT. This is the magic you need to do to avoid seeing

* "Address already in use" errors when you are killing and

* restarting the daemon frequently. */

n = 1;

if (setsockopt (s, SOL_SOCKET, SO_REUSEADDR, (char *)&n, sizeof (n)) < 0) {

perror ("SO_REUSEADDR");

close (s);

return -1;

}

/* This function sets the close-on-exec bit of a file descriptor.

* That way no programs we execute will inherit the TCP server file

* descriptor. */

fcntl (s, F_SETFD, 1);

if (bind (s, (struct sockaddr *) &sin, sizeof (sin)) < 0) {

fprintf (stderr, "TCP port %d: %s\n", port, strerror (errno));

close (s);

return -1;

}

if (listen (s, 5) < 0) {

perror ("listen");

12

close (s);

return -1;

}

return s;

}

/* Read a line of input from a file descriptor and return it. Returns

* NULL on EOF/error/out of memory. May over-read, so don’t use this

* if there is useful data after the first line. */

static char *

readline (int s)

{

char *buf = NULL, *nbuf;

int buf_pos = 0, buf_len = 0;

int i, n;

for (;;) {

/* Ensure there is room in the buffer */

if (buf_pos == buf_len) {

buf_len = buf_len ? buf_len << 1 : 4;

nbuf = realloc (buf, buf_len);

if (!nbuf) {

free (buf);

return NULL;

}

buf = nbuf;

}

/* Read some data into the buffer */

n = read (s, buf + buf_pos, buf_len - buf_pos);

if (n <= 0) {

if (n < 0)

perror ("read");

else

fprintf (stderr, "read: EOF\n");

free (buf);

return NULL;

}

/* Look for the end of a line, and return if we got it. Be

* generous in what we consider to be the end of a line. */

for (i = buf_pos; i < buf_pos + n; i++)

if (buf[i] == ’\0’ || buf[i] == ’\r’ || buf[i] == ’\n’) {

buf[i] = ’\0’;

return buf;

}

buf_pos += n;

}

}

13

static void

runfinger (int s)

{

char *user;

/* Read the username being fingered. */

user = readline (s);

/* Now connect standard output and standard error to the socket,

* instead of the invoking user’s terminal. */

if (dup2 (s, 1) < 0 || dup2 (s, 2) < 0) {

perror ("dup2");

exit (1);

}

close (s);

/* Run the finger command. It will inherit our standard output and

* error, and therefore send its results back over the network. */

execl (FINGER_COMMAND, "finger", "--", *user ? user : NULL, NULL);

/* We should never get here, unless we couldn’t run finger. */

perror (FINGER_COMMAND);

exit (1);

}

int

main (int argc, char **argv)

{

int ss, cs;

struct sockaddr_in sin;

int sinlen;

int pid;

/* This system call allows one to call fork without worrying about

* calling wait. Don’t worry about what it means unless you start

* caring about the exit status of forked processes, in which case

* you should delete this line and read the manual pages for wait

* and waitpid. For a description of what this signal call really

* does, see the manual page for sigaction and look for

* SA_NOCLDWAIT. Signal is an older signal interface which when

* invoked this way is equivalent to setting SA_NOCLDWAIT. */

signal (SIGCHLD, SIG_IGN);

ss = tcpserv (FINGER_PORT);

if (ss < 0)

exit (1);

for (;;) {

sinlen = sizeof (sin);

cs = accept (ss, (struct sockaddr *) &sin, &sinlen);

14

if (cs < 0) {

perror ("accept");

exit (1);

}

printf ("connection from %s\n", inet_ntoa (sin.sin_addr));

pid = fork ();

if (!pid)

/* Child process */

runfinger (cs);

close (cs);

}

}

4 Non-blocking I/O

4.1 The O NONBLOCK flag

The finger client in Section 3.3 is only as fast as the server to which it talks. When the
program calls connect, read, and sometimes even write, it must wait for a response from the
server before making any further progress. This doesn’t ordinarily pose a problem; if finger
blocks, the operating system will schedule another process so the CPU can still perform
useful work.

On the other hand, suppose you want to finger some huge number of users. Some servers
may take a long time to respond (for instance, connection attempts to unreachable servers
will take over a minute to time out). Thus, your program itself may have plenty of useful
work to do, and you may not want to schedule another process every time a server is slow
to respond.

For this reason, Unix allows file descriptors to be placed in a non-blocking mode. A bit
associated with each file descriptor O NONBLOCK, determines whether it is in non-blocking
mode or not. Section 4.4 shows some utility functions for non-blocking I/O. The function
make async sets the O NONBLOCK bit of a file descriptor non-blocking with the fcntl system
call.

There are a number of ways to achieve this goal other than placing sockets in non-blocking
mode. For instance, a threads package could be used to spawn a process for each request;
requests would then be made in concurrently in blocking mode. An alternative, signal-driven
asynchronous socket interface also exists in a number of Unix operating systems. The method
described here, however, avoids the common pitfalls of preemptive concurrency and is more
portable than signal driven methods.

Many system calls behave slightly differently on file descriptors which have O NONBLOCK

set:

• read. When there is data to read, read behaves as usual. When there is an end of file,
read still returns 0. If, however, a process calls read on a non-blocking file descriptor

15

when there is no data to be read yet, instead of waiting for data, read will return −1
and set errno to EAGAIN. In general, a read call to a non-blocking socket will return
without error any time a call to a blocking socket would return immediately. Under
this definition, data is available to be read when it has been loaded into a kernel buffer
by the OS and is ready to be copied into the user-specified buffer.

• write. Like read, write will return −1 with an errno of EAGAIN if there is no buffer space
available for the operating system to copy data to. If, however, there is some buffer
space but not enough to contain the entire write request, write will take as much data
as it can and return a value smaller than the length specified as its third argument.
Code must handle such “short writes” by calling write again later on the rest of the
data.

• connect. A TCP connection request requires a response from the listening server. When
called on a non-blocking socket, connect cannot wait for such a response before return-
ing. For this reason, connect on a non-blocking socket usually returns −1 with errno

set to EINPROGRESS. Occasionally, however, connect succeeds or fails immediately even
on a non-blocking socket, so you must be prepared to handle this case.

• accept. When there are connections to accept, accept will behave as usual. If there are
no pending connections, however, accept will return −1 and set errno to EWOULDBLOCK.
It’s worth noting that, on some operating systems, file descriptors returned by accept
have O NONBLOCK clear, whether or not the listening socket is non-blocking. In a asyn-
chronous servers, one often sets O NONBLOCK immediately on any file descriptors accept
returns.

4.2 select: Finding out when sockets are ready

O NONBLOCK allows an application to keep the CPU when an I/O system call would ordinarily
block. However, programs can use several non-blocking file descriptors and still find none
of them ready for I/O. Under such circumstances, programs need a way to avoid wasting
CPU time by repeatedly polling individual file descriptors. The select system call solves this
problem by letting applications sleep until one or more file descriptors in a set is ready for
I/O.

select usage

• int select (int nfds, fd_set *rfds, fd_set *wfds, fd_set *efds,

struct timeval *timeout);

select takes pointers to sets of file descriptors and a timeout. It returns when one or
more of the file descriptors are ready for I/O, or after the specified timeout. Before
returning, select modifies the file descriptor sets so as to indicate which file descriptors
actually are ready for I/O. select returns the number of ready file descriptors, or −1
on an error.

16

select represents sets of file descriptors as bit vectors—one bit per descriptor. The first
bit of a vector is 1 if that set contains file descriptor 0, the second bit is 1 if it contains
descriptor 1, and so on. The argument nfds specifies the number of bits in each of the
bit vectors being passed in. Equivalently, nfds is one more than highest file descriptor
number select must check on.

These file descriptor sets are of type fd set. Several macros in system header files
allow easy manipulation of this type. If fd is an integer containing a file descriptor,
and fds is a variable of type fd set, the following macros can manipulate fds:

– FD_ZERO (&fds);

Clears all bits in a fds.

– FD_SET (fd, &fds);

Sets the bit corresponding to file descriptor fd in fds.

– FD_CLR (fd, &fds);

Clears the bit corresponding to file descriptor fd in fds.

– FD_ISSET (fd, &fds);

Returns a true if and only if the bit for file descriptor fd is set in fds.

select takes three file descriptor sets as input. rfds specifies the set of file descriptors
on which the process would like to perform a read or accept. wfds specifies the set
of file descriptors on which the process would like to perform a write. efds is a set
of file descriptors for which the process is interested in exceptional events such as the
arrival of out of band data. In practice, people rarely use efds. Any of the fd set *

arguments to select can be NULL to indicate an empty set.

The argument timeout specifies the amount of time to wait for a file descriptor to
become ready. It is a pointer to a structure of the following form:

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

};

timeout can also be NULL, in which case select will wait indefinitely.

Tips and subtleties

File descriptor limits. Programmers using select may be tempted to write code capable
of using arbitrarily many file descriptors. Be aware that the operating system limits the
number of file descriptors a process can have. If you don’t bound the number of descriptors
your program uses, you must be prepared for system calls like socket and accept to fail with
errors like EMFILE. By default, a modern Unix system typically limits processes to 64 file

17

descriptors (though the setrlimit system call can sometimes raise that limit substantially).
Don’t count on using all 64 file descriptors, either. All processes inherit at least three file
descriptors (standard input, output, and error), and some C library functions need to use
file descriptors, too. It should be safe to assume you can use 56 file descriptors, though.

If you do raise the maximum number of file descriptors allowed to your process, there
is another problem to be aware of. The fd set type defines a vector with FD SETSIZE bits
in it (typically 256). If your program uses more than FD SETSIZE file descriptors, you must
allocate more memory for each vector than than an fd set contains, and you can no longer
use the FD ZERO macro.

Using select with connect. After connecting a non-blocking socket, you might like to
know when the connect has completed and whether it succeeded or failed. TCP servers can
accept connections without writing to them (for instance, our finger server waited to read a
username before sending anything back over the socket). Thus, selecting for readability will
not necessarily notify you of a connect’s completion; you must check for writability.

When select does indicate the writability of a non-blocking socket with a pending connect,
how can you tell if that connect succeeded? The simplest way is to try writing some data to
the file descriptor to see if the write succeeds. This approach has two small complications.
First, writing to an unconnected socket does more than simply return an error code; it kills
the current process with a SIGPIPE signal. Thus, any program that risks writing to an
unconnected socket should tell the operating system that it wants to ignore SIGPIPE. The
signal system call accomplishes this:

signal (SIGPIPE, SIG_IGN);

The second complication is that you may not have any data to write to a socket, yet still wish
to know if a non-blocking connect has succeeded. In that case, you can find out whether a
socket is connected with the getpeername system call. getpeername takes the same argument
types as accept, but expects a connected socket as its first argument. If getpeername returns
0 (meaning success), then you know the non-blocking connect has succeeded. If it returns
−1, then the connect has failed.

4.3 Putting it all together

We now present an example that demonstrates the power of non-blocking socket I/O. Sec-
tion 4.5 shows the source code to multifinger—an asynchronous finger client. When fingering
many hosts, multifinger performs an order of magnitude better than a traditional Unix finger
client. It connects to NCON MAX hosts in parallel using non-blocking I/O. Some simple testing
showed this client could finger 1,000 hosts in under 2 minutes.

The program presented here uses helper routines (async.c) to link readability and writabil-
ity conditions to callbacks, a common technique. In the next section, we will present a robust
implementation of an asynchronous socket library based on callbacks.

The simple callback-based socket library presented here implements three functions:

18

• void cb_add (int fd, int write, void (*fn)(void *), void *arg);

Tells the dispatcher to call function fn with argument arg when file descriptor fd is
ready for reading, if write is 0, or writing, otherwise.

• void cb_free (int fd, int write);

Tells the dispatcher it should no longer call any function when file descriptor fd is
ready for reading or writing (depending on the value of write).

• void cb_check (void);

Wait until one or more of the registered file descriptors is ready, and make any appro-
priate callbacks.

The function cb add maintains two fd set variables, rfds for descriptors with read
callbacks, and wfds for ones with write callbacks. It also records the function calls it needs
to make in two arrays of cb (“callback”) structures.

cb check calls select on the file descriptors in rfds and wfds. Since select overwrites the
fd set structures it gets, cb check must first copy the sets it is checking. cb check then
loops through the sets of ready descriptors making any appropriate function calls.

4.4 async.c: Helper routines for callback-based socket I/O

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <stdarg.h>

#include <fcntl.h>

#include <string.h>

#include <errno.h>

#include <assert.h>

#include <sys/socket.h>

#include "async.h"

/* Callback to make when a file descriptor is ready */

struct cb {

void (*cb_fn) (void *); /* Function to call */

void *cb_arg; /* Argument to pass function */

};

static struct cb rcb[FD_MAX], wcb[FD_MAX]; /* Per fd callbacks */

static fd_set rfds, wfds; /* Bitmap of cb’s in use */

void

cb_add (int fd, int write, void (*fn)(void *), void *arg)

{

struct cb *c;

assert (fd >= 0 && fd < FD_MAX);

19

c = &(write ? wcb : rcb)[fd];

c->cb_fn = fn;

c->cb_arg = arg;

FD_SET (fd, write ? &wfds : &rfds);

}

void

cb_free (int fd, int write)

{

assert (fd >= 0 && fd < FD_MAX);

FD_CLR (fd, write ? &wfds : &rfds);

}

void

cb_check (void)

{

fd_set trfds, twfds;

int i, n;

/* Call select. Since the fd_sets are both input and output

* arguments, we must copy rfds and wfds. */

trfds = rfds;

twfds = wfds;

n = select (FD_MAX, &trfds, &twfds, NULL, NULL);

if (n < 0)

fatal ("select: %s\n", strerror (errno));

/* Loop through and make callbacks for all ready file descriptors */

for (i = 0; n && i < FD_MAX; i++) {

if (FD_ISSET (i, &trfds)) {

n--;

/* Because any one of the callbacks we make might in turn call

* cb_free on a higher numbered file descriptor, we want to make

* sure each callback is wanted before we make it. Hence check

* rfds. */

if (FD_ISSET (i, &rfds))

rcb[i].cb_fn (rcb[i].cb_arg);

}

if (FD_ISSET (i, &twfds)) {

n--;

if (FD_ISSET (i, &wfds))

wcb[i].cb_fn (wcb[i].cb_arg);

}

}

}

void

make_async (int s)

{

int n;

20

/* Make file file descriptor nonblocking. */

if ((n = fcntl (s, F_GETFL)) < 0

|| fcntl (s, F_SETFL, n | O_NONBLOCK) < 0)

fatal ("O_NONBLOCK: %s\n", strerror (errno));

/* You can pretty much ignore the rest of this function... */

/* Many asynchronous programming errors occur only when slow peers

* trigger short writes. To simulate this during testing, we set

* the buffer size on the socket to 4 bytes. This will ensure that

* each read and write operation works on at most 4 bytes--a good

* stress test. */

#if SMALL_LIMITS

#if defined (SO_RCVBUF) && defined (SO_SNDBUF)

/* Make sure this really is a stream socket (like TCP). Code using

* datagram sockets will simply fail miserably if it can never

* transmit a packet larger than 4 bytes. */

{

int sn = sizeof (n);

if (getsockopt (s, SOL_SOCKET, SO_TYPE, (char *)&n, &sn) < 0

|| n != SOCK_STREAM)

return;

}

n = 4;

if (setsockopt (s, SOL_SOCKET, SO_RCVBUF, (void *)&n, sizeof (n)) < 0)

return;

if (setsockopt (s, SOL_SOCKET, SO_SNDBUF, (void *)&n, sizeof (n)) < 0)

fatal ("SO_SNDBUF: %s\n", strerror (errno));

#else /* !SO_RCVBUF || !SO_SNDBUF */

#error "Need SO_RCVBUF/SO_SNDBUF for SMALL_LIMITS"

#endif /* SO_RCVBUF && SO_SNDBUF */

#endif /* SMALL_LIMITS */

/* Enable keepalives to make sockets time out if servers go away. */

n = 1;

if (setsockopt (s, SOL_SOCKET, SO_KEEPALIVE, (void *) &n, sizeof (n)) < 0)

fatal ("SO_KEEPALIVE: %s\n", strerror (errno));

}

void *

xrealloc (void *p, size_t size)

{

p = realloc (p, size);

if (size && !p)

fatal ("out of memory\n");

return p;

}

void

fatal (const char *msg, ...)

21

{

va_list ap;

fprintf (stderr, "fatal: ");

va_start (ap, msg);

vfprintf (stderr, msg, ap);

va_end (ap);

exit (1);

}

4.5 multifinger.c: A mostly5 asynchronous finger client

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>

#include <netdb.h>

#include <signal.h>

#include <netinet/in.h>

#include <sys/types.h>

#include <sys/socket.h>

#include "async.h"

#define FINGER_PORT 79

#define MAX_RESP_SIZE 16384

struct fcon {

int fd;

char *host; /* Host to which we are connecting */

char *user; /* User to finger on that host */

int user_len; /* Lenght of the user string */

int user_pos; /* Number bytes of user already written to network */

void *resp; /* Finger response read from network */

int resp_len; /* Number of allocated bytes resp points to */

int resp_pos; /* Number of resp bytes used so far */

};

int ncon; /* Number of open TCP connections */

static void

fcon_free (struct fcon *fc)

{

if (fc->fd >= 0) {

cb_free (fc->fd, 0);

cb_free (fc->fd, 1);

close (fc->fd);

ncon--;

}

5gethostbyname performs synchronous socket I/O.

22

xfree (fc->host);

xfree (fc->user);

xfree (fc->resp);

xfree (fc);

}

void

finger_done (struct fcon *fc)

{

printf ("[%s]\n", fc->host);

fwrite (fc->resp, 1, fc->resp_pos, stdout);

fcon_free (fc);

}

static void

finger_getresp (void *_fc)

{

struct fcon *fc = _fc;

int n;

if (fc->resp_pos == fc->resp_len) {

fc->resp_len = fc->resp_len ? fc->resp_len << 1 : 512;

if (fc->resp_len > MAX_RESP_SIZE) {

fprintf (stderr, "%s: response too large\n", fc->host);

fcon_free (fc);

return;

}

fc->resp = xrealloc (fc->resp, fc->resp_len);

}

n = read (fc->fd, fc->resp + fc->resp_pos, fc->resp_len - fc->resp_pos);

if (n == 0)

finger_done (fc);

else if (n < 0) {

if (errno == EAGAIN)

return;

else

perror (fc->host);

fcon_free (fc);

return;

}

fc->resp_pos += n;

}

static void

finger_senduser (void *_fc)

{

struct fcon *fc = _fc;

int n;

23

n = write (fc->fd, fc->user + fc->user_pos, fc->user_len - fc->user_pos);

if (n <= 0) {

if (n == 0)

fprintf (stderr, "%s: EOF\n", fc->host);

else if (errno == EAGAIN)

return;

else

perror (fc->host);

fcon_free (fc);

return;

}

fc->user_pos += n;

if (fc->user_pos == fc->user_len) {

cb_free (fc->fd, 1);

cb_add (fc->fd, 0, finger_getresp, fc);

}

}

static void

finger (char *arg)

{

struct fcon *fc;

char *p;

struct hostent *h;

struct sockaddr_in sin;

p = strrchr (arg, ’@’);

if (!p) {

fprintf (stderr, "%s: ignored -- not of form ’user@host’\n", arg);

return;

}

fc = xmalloc (sizeof (*fc));

bzero (fc, sizeof (*fc));

fc->fd = -1;

fc->host = xmalloc (strlen (p));

strcpy (fc->host, p + 1);

fc->user_len = p - arg + 2;

fc->user = xmalloc (fc->user_len + 1);

memcpy (fc->user, arg, fc->user_len - 2);

memcpy (fc->user + fc->user_len - 2, "\r\n", 3);

h = gethostbyname (fc->host);

if (!h) {

fprintf (stderr, "%s: hostname lookup failed\n", fc->host);

fcon_free (fc);

return;

}

24

fc->fd = socket (AF_INET, SOCK_STREAM, 0);

if (fc->fd < 0)

fatal ("socket: %s\n", strerror (errno));

ncon++;

make_async (fc->fd);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (FINGER_PORT);

sin.sin_addr = *(struct in_addr *) h->h_addr;

if (connect (fc->fd, (struct sockaddr *) &sin, sizeof (sin)) < 0

&& errno != EINPROGRESS) {

perror (fc->host);

fcon_free (fc);

return;

}

cb_add (fc->fd, 1, finger_senduser, fc);

}

int

main (int argc, char **argv)

{

int argno;

/* Writing to an unconnected socket will cause a process to receive

* a SIGPIPE signal. We don’t want to die if this happens, so we

* ignore SIGPIPE. */

signal (SIGPIPE, SIG_IGN);

/* Fire off a finger request for every argument, but don’t let the

* number of outstanding connections exceed NCON_MAX. */

for (argno = 1; argno < argc; argno++) {

while (ncon >= NCON_MAX)

cb_check ();

finger (argv[argno]);

}

while (ncon > 0)

cb_check ();

exit (0);

}

5 Scatter-gather I/O

The read and write system calls move data to and from contiguous memory in a pro-
gram. However, sometimes one wants to write non-contiguous data or read data into a
non-contiguous buffer. Rather than incur the overhead of multiple read and write system
calls or use gratuitous copies through temporary buffers, one can tell the kernel about non-

25

contiguous memory with the readv and writev system calls. These system calls make use of
the iovec structure defined in sys/uio.h:

struct iovec {

void *iov_base; /* Base address. */

size_t iov_len; /* Length. */

};

• int readv (int fd, const struct iovec *iov, int iovcnt);

readv reads from a file descriptor into non-contiguous memory regions. fd specifies
the file descriptor from which to read data. iov points to an array of iovcnt iovec

structures describing regions of memory into which the data should be placed. readv
returns the number of bytes actually read, 0 on an end-of-file, or −1 in the case of
error.

• int writev (int fd, const struct iovec *iov, int iovcnt);

writev writes the contents of non-contiguous memory regions to a file descriptor. fd

specifies the file descriptor to write to. iov points to an array of iovcnt iovec struc-
tures describing the memory regions to be written. writev returns the number of bytes
actually written, or −1 in case of error. When a file descriptor is non-blocking, writev
may write less than the full amount requested.

Note that both readv and writev have a maximum permissible value for iovcnt, defined in
system header files as UIO_MAXIOV.

6 libasync – an asynchronous socket library

In the above example, the routines in async.c allowed the programmer to associate function
callbacks with readability and writability conditions on sockets. libasync provides similar
functionality using C++ templates. It also provides a number of helpful utility functions for
creating sockets and connections and buffering data under conditions where the write system
call may not write the full amount requested.

6.1 Memory allocation & debugging

libasync provides C++ support for a debugging malloc. To make the most of this support,
you should emply two macros New and vNew instead of the built-in C++ operator new. Use
New where you would ordinarily use new. It is a wrapper around new that also records line-
number information, making it easy to debug memory leaks and other problems. vNew is
simply a call to New cast to void. Use it to avoid compiler warnings when you ignore the
pointer returned by New. You should still use new for per-class allocators and placement new
(don’t worry if you don’t know what these are).

26

libasync also provides three classes for reporting errors to the user, warn, fatal, and panic.
warn simply prints a message to the termial, much like the C++ standard library’s cerr. For
example, one might say:

int n = write (fd, buf, nbytes);

if (n < 0 && errno != EAGAIN) {

warn << "could not write to socket: "

<< strerror (errno) << "\n";

// ...

}

Unlike cerr, however, warn is asynchronous. warn also makes efforts to accumulate and write
data to the terminal in chunks with reasonable boundaries. Thus, when several processes
write to the same terminal using warn, the combined output is considerably easier to read
than if they had both used cerr. fatal is like warn, except it prepends the word “fatal: ”
and exits after printing. panic causes a core dump after printing the message. It should be
used for assertion failures, when the occurrence of an event indicates a bug in the program.

6.2 The suio class

The suio class maintains arrays of iovec structures and helps deal with the annoyance of
short writes. The suio class has the following core methods:

• void print (const void *base, size_t len);

suio::print adds len bytes of data stored at base to the end of the array of iovec

structures maintained by suio. suio may or may not copy the contents of the memory
at base. Thus, you must not under any circumstances modify the data until
it has been removed from the suio. Modifying data will cause a crash when the library
is compiled for memory debugging.

• void copy (const void *base, size_t len);

This is the same as suio::print, except it makes a copy of the data into a temporary
buffer managed by suio. Thus, one can modify the memory at base immediately after
calling suio::copy.

• void rembytes (size_t n);

Removes n bytes from the beginning of the iovec array.

• const iovec *iov () const;

Returns an array of iovec structures corresponding to all the data that has been
accumulated via suio::print calls.

• size_t iovcnt () const;

Returns the length of the array returned by suio::iov.

27

• size_t resid () const;

Returns the total number of bytes in the iovec array.

As an example, the following shows a rather convoluted function greet (), which prints
the words “hello world” to standard output. It behaves correctly even when standard output
is in non-blocking mode.

void

writewait (int fd)

{

fd_set fds;

assert (fd < FD_SETSIZE);

FD_ZERO (&fds);

FD_SET (fd, &fds);

select (fd + 1, NULL, &fds, NULL, NULL);

}

void

greet ()

{

char hello[] = "hello";

char space[] = " ";

char world[] = "world";

char nl[] = "\n";

suio uio;

uio.print (hello, sizeof (hello) - 1);

uio.print (space, sizeof (space) - 1);

uio.print (world, sizeof (world) - 1);

uio.print (nl, sizeof (nl) - 1);

while (uio.resid ()) {

writewait (1);

int n = writev (1, uio.iov (),

min<int> (uio.iovcnt (), UIO_MAXIOV));

if (n < 0 && errno != EAGAIN)

fatal << "stdout: " << strerror (errno) << "\n";

if (n > 0)

uio.rembytes (n);

}

}

Writing the contents of a suio structure in this way is so common that there is a method
output for doing it. For symmetry, there is also an input function which reads data from a

28

file descriptor into memory managed by the suio.

• int output (int fd);

suio::output writes as much of the data in a suio structure to fd as possible. It returns
1 after successfully writing some data to the file descriptor, 0 if it was unable to write
because of EAGAIN, and −1 if there was some other write error.

• int input (int fd);

Reads data from file descriptor fd and appends it to the contents of the suio. Returns
the number of bytes read, 0 on end of file, or −1 on error (including EAGAIN).

6.3 The str and strbuf classes

One complication of programming with callbacks is dealing with freeing dynamically allo-
cated memory. This is particularly true of strings. If a function takes an argument of type
char * and does something asynchronously using the string, the caller may not be allowed
to free the string until later. Keeping track of who is responsible for what strings and for
how long is tricky and error-prone.

For that reason, libasync has a special class str for reference-counted strings.6 Strings
are references to immutable character streams. Thus, for instance, the following code prints
“one is ‘one’”:

str two = "one";

str one = two;

two = "two";

warn << "one is ‘" << one << "’\n";

The strbuf structure allows one to build up a string by appending to it. The following
code illustrates the use of strbuf:

void

func (str arg)

{

strbuf sb;

sb << "arg is ‘" << arg << "’.";

str result = sb;

warn << result << "\n";

}

strbuf is a built around the suio structure. One can access the underlying suio with the
strbuf::tosuio method:

6Note that C++ has a string class, but the standard does not specify that it has to be reference counted.
Thus, a C++ string implementation can incur the overhead copying a string each time it is passed as a
function argument.

29

• suio *tosuio () const;

Returns a pointer to the suio in which the strbuf is storing accumulated data.

6.4 Reference counting

Strings are not the only data structure for which deallocation becomes tricky in asynchronous
programming. libasync therefore provides a generic mechanism for reference-counted deallo-
cation of arbitrary dynamically allocated data structures. Refcounting is a simple form of
automatic garbage collection: each time a refcounted object is referenced or goes out of scope
its reference count is incremented or decremented, respectively. If the reference count of an
object ever reaches zero, the object’s destructor is called and it is deleted. Note that unlike
real garbage collection in languages like Java, you cannot use reference-counted deallocation
on data structures with pointer cycles.

Reference counted objects are created by allocating an instance of the refcounted tem-
plate:

class foo : public bar { ... };

...

ref<foo> f = New refcounted<foo> (...);

ptr<bar> b = f;

f = New refcounted<foo> (...);

b = NULL;

Given a class named foo, a refcounted<foo> takes the same constructor arguments
as foo, except that constructors with more than 7 arguments cannot be called due to the
absence of a varargs template. A ptr<foo> p behaves like a foo *p, except that it is
reference counted: *p and p->field are valid operations on p whichever its type. However,
array subscripts will not work on a ptr<foo>. You can only allocate one reference counted
object at a time.

A ref<foo> is like a ptr<foo>, except that a ref<foo> can never be NULL. If you try
to assign a NULL ptr<foo> to a ref<foo> you will get an immediate core dump. The
statement ref<foo> = NULL will generate a compile time error.

A const ref<foo> cannot change what it is pointing to, but the foo pointed to can
be modified. A ref<const foo> points to a foo you cannot change. A ref<foo> can
be converted to a ref<const foo>. In general, you can implicitly convert a ref<A> to a
ref if you can implicitly convert an A to a B. You can also implicitly convert a ref<foo>

or ptr<foo> to a foo *. Many functions can get away with taking a foo * instead of a
ptr<foo> if they don’t eliminate any existing references.

On both the Pentium and Pentium Pro, a function taking a ref<foo> argument usually
seems to take 10-15 more cycles the same function with a foo argument. With some versions
of g++, though, this number can go as high as 50 cycles unless you compile with ’-fno-
exceptions’.

30

Sometimes you want to do something other than simply free an object when its reference
count goes to 0. This can usually be accomplished by the reference counted object’s destruc-
tor. However, after a destructor is run, the memory associated with an object is freed. If
you don’t want the object to be deleted, you can define a finalize method that gets invoked
once the reference count goes to 0. Any class with a finalize method must declare a virtual
base class of refcount. For example:

class foo : public virtual refcount {

...

void finalize () { recycle (this); }

};

Occasionally you may want to generate a reference counted ref or ptr from an ordinary
pointer. This might, for instance, be used by the recycle function above. You can do this
with the function mkref, but again only if the underlying type has a virtual base class of
refcount. Given the above definition, recycle might do this:

void

recycle (foo *fp)

{

ref<foo> fr = mkref (fp);

...

}

Note that unlike in Java, an object’s finalize method will be called every time the refer-
ence count reaches 0, not just the first time. Thus, there is nothing morally wrong with
”resurrecting” objects as they are being garbage collected.

Use of mkref is potentially dangerous, however. You can disallow its use on a per-class
basis by simply not giving your object a public virtual base class of refcount.

class foo {

// fine, no mkref or finalize allowed

};

class foo : private virtual refcount {

void finalize () { ... }

// finalize will work, but not mkref

};

If you like to live dangerously, there are a few more things you can do (but probably
shouldn’t). If foo has a virtual base class of refcount, it will also inherit the methods
refcount_inc() and refcount_dec(). You can use these to create memory leaks and
crash your program, respectively.

31

6.5 Callbacks

Using libasync to perform socket operations also entails the use of the template class callback—
a type that approximates function currying. An object of type callback<R, B1, B2> con-
tains a member R operator() (B1, B2). Thus callbacks are function objects with the first
template type specifying the return of the function and the remaining arguments specifying
the types of the arguments to pass the function.

Callbacks are limited to 3 arguments by a compile-time default. Template arguments that
aren’t specified default to void and don’t need to be passed in. Thus, a callback<int> acts
like a function with signature int fn (), a callback<int, char *> acts like a function
with signature int fn (char *), and so forth.

Each callback class has two type members, ptr and ref (accessed as ::ptr and ::ref),
specifying refcounted pointers and references to the callback object respectively (see above
for a description of the refcount class)

The function wrap is used to create references to callbacks. Given a function with signa-
ture R fn (A1, A2, A3), wrap can generate the following references:

wrap (fn) → callback<R, A1, A2, A3>::ref

wrap (fn, a1) → callback<R, A2, A3>::ref

wrap (fn, a1, a2) → callback<R, A3>::ref

wrap (fn, a1, a2, a3) → callback<R>::ref

When the resulting callback is actually called, it invokes fn. The argument list it passes
fn starts with whatever arguments were initially passed to wrap and then contains whatever
arguments are given to the callback object. For example, given fn above, this code ends up
calling fn (a1, a2, a3) and assigning the return value to r:

R r;

A1 a1;

A2 a2;

A3 a3;

callback<R, A2, A3>::ptr cb;

cb = wrap (fn, a1);

r = (*cb) (a2, a3);

One can create callbacks from class methods as well as from global functions. To do this,
simply pass the object as the first parameter to wrap, and the method as the second. For
example:

struct foo {

void bar (int, char *);

callback<void, char *>::ref baz () {

return wrap (this, &foo::bar, 7);

}

};

32

Note the only way to generate pointers to class members in ANSI C++ is with fully
qualified member names. &foo::bar cannot be abbreviated to bar in the above example,
though some C++ compilers still accept that syntax.

If wrap is called with a refcounted ref or ptr to an object, instead of a simple pointer,
the resulting callback will maintain a reference to the object, ensuring it is not deleted.
For example, in the following code, baz returns a callback with a reference to the current
object. This ensures that a foo will not be deleted until after the callback has been deleted.
Without the call to mkref, if a callback happened after the reference count on a foo object
went to zero, the foo object would previously have been deleted and its vtable pointer likely
clobbered, resulting in a core dump.

struct foo : public virtual refcount {

virtual void bar (int, char *);

callback<void, char *>::ref baz () {

return wrap (mkref (this), &foo::bar, 7);

}

};

6.5.1 An example

void

printstrings (char *a, char *b, char *c)

{

printf ("%s %s %s\n", a, b, c);

}

int

main ()

{

callback<void, char *>::ref cb1 = wrap (printstrings, "cb1a", "cb1b");

callback<void, char *, char *>::ref cb2 = wrap (printstrings, "cb2a");

callback<void, char *, char *, char *>::ref cb3 = wrap (printstrings);

(*cb1) ("cb1c"); // prints: cb1a cb1b cb1c

(*cb2) ("cb2b", "cb2c"); // prints: cb2a cb2b cb2c

(*cb3) ("cb3a", "cb3b", "cb3c"); // prints: cb3a cb3b cb3c

return 0;

}

6.6 libasync routines

Libasync provides a number of useful functions for registering callbacks (fdcb, amain) as
well as performing common tasks relating to sockets (tcpconnect, inetsocket). Each of these

33

functions is prototyped in either async.h or amisc.h.

• void fdcb (int socket, char operation, callback<void>::ptr cb)

associates a callback with the specified condition (readability or writability) on socket.
The conditions may be specified by the constants selread or selwrite. Exception con-
ditions are not currently supported. To create the refcounted callback to pass to fdcb
use wrap. For instance: wrap(&read_cb, fd) produces a refcounted callback which
matches a function of the signature void read_cb(int fd);

To unregister a callback, call fdcb with the cb argument set to NULL. Note that
callbacks do not unregister once they are called and that no more than one callback
can be associated with the same condition on any one socket.

• timecb_t *delaycb (time_t sec, u_int32_t nsec, callback<void>::ref cb)

Arranges for a callback to be called a certain number of seconds and nanoseconds in
the future. Returns a pointer suitable for passing to timecb_remove.

• void timecb_remove (timecb_t *)

Removes a scheduled timer callback.

• void amain ()

Repeatedly checks to see if any registered callbacks should be triggered. amain() does
not return and must not be called recursively from a callback.

• void tcpconnect (str hostname, int port, callback<void, int>::ref cb)

creates an asynchronous connection to the specified host and port. The connected
socket will be returned as the argument to the callback specified by cb, or that argument
will be −1 to indicate an error.

• int inetsocket (int type, int_16 port, u_int32_t addr)

creates a socket, but unlike tcpconnect does not connect it. inetsocket does, however,
bind the socket to the specified local port and address. type should be SOCK STREAM

for a TCP socket, and SOCK DGRAM for a UDP socket. inetsocket does not put the socket
into non-blocking mode; you must call make async yourself.

• void make_async (int s)

sets the O NONBLOCK flag for the socket s and places the socket in non-blocking mode.

• void close_on_exec (int fd)

sets the close-on-exec flag of a file descriptor. When this flag is true, any process
created by calling exec will not inherit file descriptor fd.

34

• void tcp_nodelay (int fd)

sets the TCP NODELAY socket option to true. This command allows TCP to keep
more than one small packet of data outstanding at a time. See the tcp(4) manual page
or RFC0896.

6.7 multifinger.C

Using libasync, the multifinger example can be implemented in approximately 100 lines of
C++ code.

Multifinger begins by registering as many callbacks for finger requests as possible (that
number is limited by a conservative estimate of how many file descriptors are available).
As each request completes, the done() function registers additional callbacks. A global
variable, ncon, tracks the number of pending transactions: when ncon reaches 0 the program
terminates by calling exit.

For each transaction, the multifinger client moves through a series of states whose bound-
aries are defined by system calls that potentially return EAGAIN. The code progresses through
these states by “chaining” callbacks: for instance, when the write of the username is com-
plete, the write cb unregisters the write conditioned callback and registers a callback for
readability on the socket.

#include "async.h"

#define FD_MAX 64

#define NCON_MAX FD_MAX - 8

#define FINGER_PORT 79

char **nexttarget;

char **lasttarget;

void launchmore ();

struct finger {

static int ncon;

const str user;

const str host;

int fd;

strbuf buf;

static void launch (const char *target);

finger (str u, str h);

~finger ();

void connected (int f);

void senduser ();

void recvreply ();

};

int finger::ncon;

35

void

finger::launch (const char *target)

{

if (const char *at = strrchr (target, ’@’)) {

str user (target, at - target);

str host (at + 1);

vNew finger (user, host);

}

else

warn << target << ": could not parse finger target\n";

}

finger::finger (str u, str h)

: user (u), host (h), fd (-1)

{

ncon++;

buf << user << "\r\n";

tcpconnect (host, FINGER_PORT, wrap (this, &finger::connected));

}

void

finger::connected (int f)

{

fd = f;

if (fd < 0) {

warn << host << ": " << strerror (errno) << "\n";

delete this;

return;

}

fdcb (fd, selwrite, wrap (this, &finger::senduser));

}

void

finger::senduser ()

{

if (buf.tosuio ()->output (fd) < 0) {

warn << host << ": " << strerror (errno) << "\n";

delete this;

return;

}

if (!buf.tosuio ()->resid ()) {

buf << "[" << user << "@" << host << "]\n";

fdcb (fd, selwrite, NULL);

fdcb (fd, selread, wrap (this, &finger::recvreply));

}

}

void

finger::recvreply ()

{

36

switch (buf.tosuio ()->input (fd)) {

case -1:

if (errno != EAGAIN) {

warn << host << ": " << strerror (errno) << "\n";

delete this;

}

break;

case 0:

buf.tosuio ()->output (1);

delete this;

break;

}

}

finger::~finger ()

{

if (fd >= 0) {

fdcb (fd, selread, NULL);

fdcb (fd, selwrite, NULL);

close (fd);

}

ncon--;

launchmore ();

}

void

launchmore ()

{

while (nexttarget < lasttarget && finger::ncon < NCON_MAX)

finger::launch (*nexttarget++);

if (nexttarget == lasttarget && !finger::ncon)

exit (0);

}

int

main (int argc, char **argv)

{

make_sync (1);

nexttarget = argv + 1;

lasttarget = argv + argc;

launchmore ();

amain ();

}

7 Finding out more

This document outlines the system calls needed to perform network I/O on UNIX systems.
You may find that you wish to know more about the workings of these calls when you are
programming. Fortunately these system calls are documented in detail in the Unix manual

37

pages, which you can access via the man command. Section 2 of the manual corresponds
to system calls. To look up the manual page for a system call such as socket, you can
simply execute the command “man socket.” Unfortunately, some system calls such as write
have names that conflict with Unix commands. To see the manual page for write, you must
explicitly specify section two of the manual page, which you can do with “man 2 write”
on BSD machines or “man -s 2 write” on System V. If you are unsure in which section of
the manual to look for a command, you can run “whatis write” to see a list of sections in
which it appears.

38

