Access control

• Interface-based access control
 – Restrict by MAC address (like Stanford)

• Network-based access control
 – Restrict by incoming IP or domain

• Can be defeated
 – Put your network card in promiscuous mode and forge the source MAC address or IP address
 – Poison ARP caches with fake IP to MAC mappings that point to your MAC address
Spoofing TCP Source

- Send SYN with forged source IP
- SYN-ACK goes to that forged IP, but DoS him with syn flooding so he won’t RST your connection
- Then guess the ACK seq # and send the guy data anyway
- Another way: desynchronize a real stream so that the real source can never send data; then you can inject data at will
- Related: see 3rd review session for numbers on a TCP RST attack
Denial of Service Attacks

• TCP SYN flood
 – OS allocates connection state upon getting a SYN packet
 – After a certain amount of incomplete SYNs, memory is used up and no new connections can be made
 – Solution: Defer state setup and use SYN cookies

• Indirection attacks
 – Make some request to a service that has a big payload as a response, with the target’s IP as a spoofed source IP
 – Big payload goes to source == more amplification

• More powerful if you own a botnet and can ask for thousands of computers to do the attack, creating a DDoS (distributed denial of service)
Browser Level: Same Origin Principle

- Used in the browser, especially JavaScript
- A script running on a webpage on one domain cannot query or modify the properties of a webpage running on another domain
 - Otherwise, I could write a webpage that loads an IFRAME set to facebook.com
 - You are already logged into Facebook, so the IFRAME loads your Facebook cookie
 - I ask for that document’s cookie and get your Facebook cookie
 - I become you on Facebook, and post something horrible
 - ???
 - Profit!!!
- Vulnerable to DNS attacks, since it is domain based
- Many other vulnerabilities, but too many to cover in this class (i.e., cross-site scripting)
Other Attacks

- **DNS**
 - Faulty glue records can poison cache

- **ICMP Redirect**
 - Allows you to change a host’s routing table

- **RIP/BGP attacks**
 - No real authentication
 - You can advertise paths to networks you have no routes to with 0 cost
 - Now everyone routes through you and you
Cryptography

- **Symmetric-key cryptography**
 - Encrypt(Key, Plaintext) = Cipher
 - Decrypt(Key, Cipher) = Plaintext

- **Public key cryptography**
 - Encrypt(Key, Plaintext) = Cipher
 - Decrypt(Key^{-1}, Cipher) = Plaintext
 - Some function to generate the public/private key pair

- **Hash functions (MD5, SHA1, ...)**
 - Take a large message and hash it to a number in a fixed-sized range of values
 - Example: MD5 hashes arbitrary-length message into 128 bits
 - Lets us know if a message has been modified in transit to a good probability
 - Append shorter hash (MAC) of message to the message, then transmit
 Send (Encrypt(Key, Message) + Hash of that encrypted msg)
Symmetric Key Cryptography

• One-time pad
 – $E(K, P) = K \text{ XOR } P = C$
 – $D(K, C) = K \text{ XOR } C = P$
 – Downside: hard to distribute key, key can’t be reused, key length must be same as message

• Stream ciphers
 – Generate pseudo-random pad from a shorter key, then XOR as above

• Block ciphers
 – ECB mode: encrypt each block independently of other blocks
 – CBC (cipher-block chaining): output of each block depends on feedback from previous block
 – Which is preferable?