CS144 - Introduction to Computer
Networking

Instructors: Philip Levis and David Mazieres
CAs: Roger Liao and Samir Selman
Section Leaders: Saatvik Agarwal, Juan Batiz-Benet,

and Tom Wiltzius

csld4d-staff@scs.stanford.edu
http://csl44.scs.stanford.edu/

http://cs144.scs.stanford.edu/

Networks class

e Goal: Teach the concepts underlying networks

How do networks work? What can one do with them?

Give you experience using and writing protocols

Give you tools to understand new protocols & applications

Not: train you on all the latest “hot” technologies

e Prerequisites:

- CS110 or equiv; class assumes good knowledge of C, some
socket programming helpful (e.g., CS5110 web server)

Administrivia
o All assignments are on the web page

o Text: Kurose & Ross, Computer Networking: A
Top-Down Approach, 4th or 5th edition
- Instructors working from 4th edition, either OK
- Don’t need lab manual or Ethereal (used book OK)

e Syllabus on web page

- Gives which textbook chapters correspond to lectures
(Lectures and book topics will mostly overlap)

- Extra (not required) questions for further understanding

- Papers sometimes, to make concepts more concrete
(Read the papers before class for discussion)

- Subject to change! (Reload before checking assignments)

Administrivia 2

e Send all assighment questions to newsgroup
- Someone else will often have the same question as you
- Newsgroup su.class.cs144 dedicated to class

- For information on accessing Usenet, see

http://www.stanford.edu/services/usenet/

e Send all staff communication to cs144-staff list
- Goes to whole staff, so first available person can respond
- CCing list ensures we give students consistent information

- Also, some of us get lots of email. .. much easier for us to
prioritize a specific mailing list

news:su.class.cs144
http://www.stanford.edu/services/usenet/

Grading

e Exams: Midterm & Final

e Homework

- 5 lab assignments implemented in C

e Grading
- Exam grade = max (final, (final + midterm)/2)

- Final grade will be computed as:

(1— 1) (exam + lab

5) + r - max(exam, lab)

- r may vary per student, expect average to be ~ 1/3

e Possible ideas for computing r

- Maybe a problem set, other kind of lab, or pop quizzes

Labs

e Labs are due by the beginning of class
Lab 1: Stop & wait
Lab 2: Reliable transport

Lab 3: Static routing
Lab 4: NAT
- Lab 5: Dynamic routing

e All assignments due at start of lecture

- Free extension to midnight if you come to lecture that day

Late Policy

e No credit for late assignments w/o extension

o Contact cs144-staff if you need an extension

- We are nice people, so don’t be afraid to ask

e Most likely to get an extension when all of the
following hold:
1. You ask before the original deadline,
2. You tell us where you are in the project, and

3. You tell us when you can finish by.

Topics

e Network programming (sockets, RPC)

e Network (esp. Internet) architecture

- Switching, Routing, Congestion control, TCP /1P, Wireless
networks

e Using the network

- Interface hardware & low-level implementation issues,
Naming (DNS), Error detection, compression

e Higher level issues

- Encryption and Security, caching & content distribution,
Peer-to-peer systems

Networks

e What is a network?
- A system of lines/channels that interconnect
- E.g., railroad, highway, plumbing, communication,
telephone, computer
e What is a computer network?
- A form of communication network—moves information

- Nodes are general-purpose computers

¢ Why study computer networks?

Many nodes are general-purpose computers

You can program the nodes

Very easy to innovate and develop new uses of network
Contrast: Old PSTN - all logic is in the core

Building blocks

e Nodes: Computers, dedicated routers, ...

e Links: Coax, twisted pair, fibers, radio ...
(a) point-to-point

(b) multiple access — every node sees every packet

]]
(a) = ==

|
|
|
[

From Links to Networks

e To scale to more nodes, use switching
- nodes can connect multiple other nodes, or

- Recursively, one node can connect multiple networks

Protocol layering

Application
TCP UDP
IP

Link Layer

e Can view network encapsulation as a stack

o A network packet from A to D must be put in link

packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

OSI layers

End host End host

One or more nodes
within the network

e Layers typically fall into 1 of 7 categories

Layers
e Physical — sends individual bits

e Data link — sends frames, handles access control to
shared media (e.g., coax)

o Network — delivers packets, using routing

e Transport — demultiplexes, provides reliability &
flow control

e Session — can tie together multiple streams (e.g.,
audio & video)

e Presentation — crypto, conversion between
representations

o Application — what end user gets, e.g., HTTP (web)

Addressing

e Each node typically has unique address

- (or at least is made to think it does when there is shortage)

e Each layer can have its own addressing

- Link layer: e.g., 48-bit Ethernet address (interface)
- Network layer: 32-bit IP address (node)
- Transport layer: 16-bit TCP port (service)

e Routing is process of delivering data to destination
across multiple link hops

e Special addresses can exist for broadcast/multicast

Hourglass

y A Ay Oy 4
FT HTTP NV TFTP

i

P
TCP ubP

N —

P

NET, NET, NET,

e Many application protocols over TCP & UDP
e IP works over many types of network

e This is “Hourglass” philosophy of Internet

- Idea: If everybody just supports IP, can use many different
applications over many different networks

- In practice, some claim narrow waist is now network and
transport layers, due to NAT (lecture 12)

Internet protocol

e Most computer nets connected by Internet protocol

- Runs over a variety of physical networks, so can connect
Ethernet, Wireless, people behind modem lines, etc.

e Every host has® a unique 4-byte IP address
- E.g., www.ietf.org — 132.151.6.21

- Given a node’s IP address, the network knows how to route
a packet (lectures 3+4)

- Next generation IPv6 uses 16-byte host addresses

e But how do you build something like the web?
- Need naming (look up www.ietf.org) — DNS (lecture 8)

- Need API for browser, server (C5110/this lecture)

- Need demultiplexing within a host—E.g., which packets
are for web server, which for mail server, etc.? (lecture 4)

aor thinks it has

Inter-process communication

Application

[]

Host Host

e Want abstraction of inter-process (not just
inter-node) communication

e Solution: Encapsulate another protocol within IP

UDP and TCP

e UDP and TCP most popular protocols on IP
- Both use 16-bit port number as well as 32-bit IP address
- Applications bind a port & receive traffic to that port

e UDP - unreliable datagram protocol
- Exposes packet-switched nature of Internet

- Sent packets may be dropped, reordered, even duplicated
(but generally not corrupted)

e TCP - transmission control protocol

- Provides illusion of a reliable “pipe” between to processes
on two different machines (lecture 5)

- Handles congestion & flow control (lecture 6)

Uses of TCP

e Most applications use TCP
- Easier interface to program to (reliability, lecture 5)

- Automatically avoids congestion (don’t need to worry
about taking down network, lecture 6)

e Servers typically listen on well-known ports
- SSH: 22
Email: 25

Finger: 79
Web / HTTP: 80

e Example: Interacting with www.stanford.edu

Programming Sockets

e Book has Java source code

e CS144 1sin C

- Many books and internet tutorials

e Berkeley sockets API

- Bottom-level OS interface to networking

- Important to know and do once

- Higher-level APIs build on them

Quick CS110 review: System calls

e System calls invoke code in the OS kernel
- Kernel runs in a more privileged mode than application
- Can execute special instructions that application cannot

- Can interact directly with devices such as network card

e Higher-level functions built on syscall interface

- printf, scanf, gets, etc. all user-level code

File descriptors

e Most IO done on file descriptors

- Small integers referencing per-process table in the kernel

e Examples of system calls with file descriptors:

- int open(char *path, int flags, ...);
- Returns new file descriptor bound to file path

int read (int fd, void *buf, int nbytes);
- Returns number of bytes read
- Returns 0 bytes at end of file, or -1 on error

int write (int fd, void *buf, int nbytes);

- Returns number of bytes written, -1 on error

- (Never returns 0 if nbytes > 0)

int close (int fd);

- Deallocates file descriptor (not underlying I/O resource)

Error returns

e What if syscall failes? E.g. open non-existent file?

- Returns -1 (invalid fd number)

e Most system calls return -1 on failure
- Always check for errors when invoking system calls

- Specitic kind of error in global int errno
(But errno will be unchanged if syscall did not return -1)

e #include <sys/errno.h> for possible values
- 2 = ENOENT “No such file or directory”
- 13 = EACCES “Permission Denied”

e perror function prints human-readable message
- perror ("initfile");

— “initfile: No such file or directory”

Sockets: Communication between machines

e Network sockets are file descriptors too

e Datagram sockets: Unreliable message delivery
- With IP, gives you UDP
- Send atomic messages, which may be reordered or lost

- Special system calls to read /write: send/recv,
sendto/recvfrom, and sendmsg/recvmsg (most general)

e Stream sockets: Bi-directional pipes
- With IP, gives you TCP
- Bytes written on one end read on the other

- Reads may not return full amount requested—must re-read

Socket naming

e Recall how TCP & UDP name communication
endpoints
- 32-bit IP address specifies machine
- 16-bit TCP/UDP port number demultiplexes within host

- Well-known services “listen” on standard ports: finger—79,
HTTP—S80, mail—25, ssh—22

- Clients connect from arbitrary ports to well known ports

e A connection can be named by 5 components
- Protocol (TCP), local IP, local port, remote IP, remote port
- TCP requires connected sockets, but not UDP

System calls for using TCP

Client Server

socket — make socket
bind — assign address
listen — listen for clients

socket — make socket

bind* — assign address

connect — connect to listening socket

accept —accept connection

*This call to bind is optional; connect can choose address & port.

Socket address structures

e Socket interface supports multiple network types

e Most calls take a generic sockaddr:

struct sockaddr {

uint16_t sa_family; /* address family */

char sa_datal[14]; /* protocol-specific address */
}; /* (may be longer than this) */

int connect(int fd, const struct sockaddr *, socklen_t);

e Cast sockaddr * from protocol-specific struct, e.g.:

struct sockaddr_in {

short sin_family; /* = AF_INET %/

u_short sin_port; /* = htons (PORT) x*/
struct in_addr sin_addr; /* 32-bit IPv4 address */
char sin_zero[8];

};

Dealing with address types [RFC 3493]

e All values in network byte order (big endian)
- htonl converts 32-bit value from host to network order
- ntohl converts 32-bit value from network to host order

- ntohs/htons same for 16-bit values

e All address types begin with family

- sa_family in sockaddr tells you actual type

e Unfortunately, not address types the same size

- E.g., struct sockaddr_in6 is typically 28 bytes,
yet generic struct sockaddr is only 16 bytes

- So most calls require passing around socket length

- Can simplity code with new generic sockaddr_storage big
enough for all types (but have to cast between 3 types now)

http://www.ietf.org/rfc/rfc3493.txt

Looking up a socket address w. getaddrinfo

struct addrinfo hints, *ai;
int err;

memset (&hints, 0, sizeof (hints));
hints.ai_family = AF_UNSPEC; /* or AF_INET or AF_INET6 */
hints.ai_socktype = SOCK_STREAM; /* or SOCK_DGRAM for UDP */

err = getaddrinfo ("www.stanford.edu", "http", &hints, &ai);

if (err)
fprintf (stderr, "/s\n", gia_strerror (err));

else {
/* ai->ai_family = address type (AF_INET or AF_INET6) */
/* ai->ai_addr = actual address cast to (sockaddr *) */

/* ai->ai_addrlen = length of actual address */
freeaddrinfo (ai); /* must free when done! x*/

Address lookup details

e getaddrinfo notes:

- Can specify port as service name or number (e.g., "80" or
"http", allows possibility of dynamically looking up port)

- May return multiple addresses (chained with ai_next field)

- You must free structure with freeaddrinfo

e Other useful functions to know about
- getnameinfo — Lookup hostname based on address
- inet_ntop — convert IPv4 or 6 address to printable form

- inet_pton — convert string to IPv4 or 6 address

EOF in more detail

e Simple client-server application
- Client sends request
- Server reads request, sends response

- Client reads response

e What happens when you're done?
- Client wants server to read EOF to say request is done

- But still needs to be able to read server reply — fd is not
closed!

shutdown

e int shutdown (int fd, int how);
- Shuts down a socket w/o closing file descriptor
- how: 0 =reading, 1 = writing, 2 = both

- Note: Applies to socket, not descriptor—so copies of
descriptor (through dup or fork affected)

- Note 2: With TCP, can’t detect if other side shuts for reading

e Many network applications detect & use EOF

- Common error: “leaking” file descriptor via fork, so not
closed (and no EOF) when you exit

Small request/reply protocol
Client Server

%
4/131}7

e Small message protocols typically dominated by

latency

Large reply protocol

Client Server

%

reply

e For bulk tranfer, throughput is most important

Performance definitions

e Throughput — Number of bits/time you can sustain
at the receiver

- Improves with technology

e Latency — How long for message to cross network
- Propagation + Transmit + Queue

- We are stuck with speed of light. ..
10s of milliseconds to cross country

e Goodput — TransferSize/Latency
e Jitter — Variation in latency

e What matters most for your application?

- We’ll look at network applications next week

Today’s Lecture

e Basic networking abstractions
- Protocols

- OSI layers and the Internet Hourglass
e Transport protocols: TCP and UDP
e Review of file descriptors

e Some functions from the socket API
e Protocol performance tradeoffs

o Next lecture: Transport & reliability

Structure of Rest of Class

e IP and above (5 weeks)
- Application layers

- Network layer: IP and routing, multicast
- Transport layer: TCP and congestion control

- Naming, address translation, and content distribution

e Below IP (2 weeks)
- Network address translation (NAT)
- Link and physical layers

e Advanced topics (2 weeks)
- Multimedia
- Network coding

- Security

