
CS144 – Introduction to Computer
Networking

Instructors: Philip Levis and David Mazières

CAs: Roger Liao and Samir Selman

Section Leaders: Saatvik Agarwal, Juan Batiz-Benet,
and Tom Wiltzius

cs144-staff@scs.stanford.edu

http://cs144.scs.stanford.edu/

http://cs144.scs.stanford.edu/


Networks class

• Goal: Teach the concepts underlying networks
- How do networks work? What can one do with them?

- Give you experience using and writing protocols

- Give you tools to understand new protocols & applications

- Not: train you on all the latest “hot” technologies

• Prerequisites:
- CS110 or equiv; class assumes good knowledge of C, some

socket programming helpful (e.g., CS110 web server)



Administrivia

• All assignments are on the web page

• Text: Kurose & Ross, Computer Networking: A
Top-Down Approach, 4th or 5th edition

- Instructors working from 4th edition, either OK

- Don’t need lab manual or Ethereal (used book OK)

• Syllabus on web page
- Gives which textbook chapters correspond to lectures

(Lectures and book topics will mostly overlap)

- Extra (not required) questions for further understanding

- Papers sometimes, to make concepts more concrete
(Read the papers before class for discussion)

- Subject to change! (Reload before checking assignments)



Administrivia 2

• Send all assignment questions to newsgroup
- Someone else will often have the same question as you

- Newsgroup su.class.cs144 dedicated to class

- For information on accessing Usenet, see
http://www.stanford.edu/services/usenet/

• Send all staff communication to cs144-staff list
- Goes to whole staff, so first available person can respond

- CCing list ensures we give students consistent information

- Also, some of us get lots of email. . . much easier for us to
prioritize a specific mailing list

news:su.class.cs144
http://www.stanford.edu/services/usenet/


Grading

• Exams: Midterm & Final

• Homework
- 5 lab assignments implemented in C

• Grading
- Exam grade = max (final, (final + midterm)/2)

- Final grade will be computed as:

(1− r)
(

exam + lab
2

)
+ r ·max(exam, lab)

- r may vary per student, expect average to be ∼ 1/3

• Possible ideas for computing r

- Maybe a problem set, other kind of lab, or pop quizzes



Labs

• Labs are due by the beginning of class
- Lab 1: Stop & wait

- Lab 2: Reliable transport

- Lab 3: Static routing

- Lab 4: NAT

- Lab 5: Dynamic routing

• All assignments due at start of lecture
- Free extension to midnight if you come to lecture that day



Late Policy

• No credit for late assignments w/o extension

• Contact cs144-staff if you need an extension
- We are nice people, so don’t be afraid to ask

• Most likely to get an extension when all of the
following hold:
1. You ask before the original deadline,

2. You tell us where you are in the project, and

3. You tell us when you can finish by.



Topics

• Network programming (sockets, RPC)

• Network (esp. Internet) architecture
- Switching, Routing, Congestion control, TCP/IP, Wireless

networks

• Using the network
- Interface hardware & low-level implementation issues,

Naming (DNS), Error detection, compression

• Higher level issues
- Encryption and Security, caching & content distribution,

Peer-to-peer systems



Networks
• What is a network?

- A system of lines/channels that interconnect

- E.g., railroad, highway, plumbing, communication,
telephone, computer

• What is a computer network?
- A form of communication network—moves information

- Nodes are general-purpose computers

• Why study computer networks?
- Many nodes are general-purpose computers

- You can program the nodes

- Very easy to innovate and develop new uses of network

- Contrast: Old PSTN – all logic is in the core



Building blocks

• Nodes: Computers, dedicated routers, . . .

• Links: Coax, twisted pair, fibers, radio . . .
(a) point-to-point

(b) multiple access – every node sees every packet

(a)

(b)
…



From Links to Networks

• To scale to more nodes, use switching
- nodes can connect multiple other nodes, or

- Recursively, one node can connect multiple networks



Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address



OSI layers

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

• Layers typically fall into 1 of 7 categories



Layers
• Physical – sends individual bits

• Data link – sends frames, handles access control to
shared media (e.g., coax)

• Network – delivers packets, using routing

• Transport – demultiplexes, provides reliability &
flow control

• Session – can tie together multiple streams (e.g.,
audio & video)

• Presentation – crypto, conversion between
representations

• Application – what end user gets, e.g., HTTP (web)



Addressing

• Each node typically has unique address
- (or at least is made to think it does when there is shortage)

• Each layer can have its own addressing
- Link layer: e.g., 48-bit Ethernet address (interface)

- Network layer: 32-bit IP address (node)

- Transport layer: 16-bit TCP port (service)

• Routing is process of delivering data to destination
across multiple link hops

• Special addresses can exist for broadcast/multicast



Hourglass

…

FTP

TCP UDP

IP

NET1 NET2 NET
n

HTTP NV TFTP

• Many application protocols over TCP & UDP

• IP works over many types of network

• This is “Hourglass” philosophy of Internet
- Idea: If everybody just supports IP, can use many different

applications over many different networks

- In practice, some claim narrow waist is now network and
transport layers, due to NAT (lecture 12)



Internet protocol
• Most computer nets connected by Internet protocol

- Runs over a variety of physical networks, so can connect
Ethernet, Wireless, people behind modem lines, etc.

• Every host hasa a unique 4-byte IP address
- E.g., www.ietf.org→ 132.151.6.21

- Given a node’s IP address, the network knows how to route
a packet (lectures 3+4)

- Next generation IPv6 uses 16-byte host addresses

• But how do you build something like the web?
- Need naming (look up www.ietf.org) – DNS (lecture 8)

- Need API for browser, server (CS110/this lecture)

- Need demultiplexing within a host—E.g., which packets
are for web server, which for mail server, etc.? (lecture 4)

aor thinks it has



Inter-process communication

Host

HostHost

Channel

Application

Host

Application

Host

• Want abstraction of inter-process (not just
inter-node) communication

• Solution: Encapsulate another protocol within IP



UDP and TCP

• UDP and TCP most popular protocols on IP
- Both use 16-bit port number as well as 32-bit IP address

- Applications bind a port & receive traffic to that port

• UDP – unreliable datagram protocol
- Exposes packet-switched nature of Internet

- Sent packets may be dropped, reordered, even duplicated
(but generally not corrupted)

• TCP – transmission control protocol
- Provides illusion of a reliable “pipe” between to processes

on two different machines (lecture 5)

- Handles congestion & flow control (lecture 6)



Uses of TCP

• Most applications use TCP
- Easier interface to program to (reliability, lecture 5)

- Automatically avoids congestion (don’t need to worry
about taking down network, lecture 6)

• Servers typically listen on well-known ports
- SSH: 22

- Email: 25

- Finger: 79

- Web / HTTP: 80

• Example: Interacting with www.stanford.edu



Programming Sockets

• Book has Java source code

• CS144 is in C
- Many books and internet tutorials

• Berkeley sockets API
- Bottom-level OS interface to networking

- Important to know and do once

- Higher-level APIs build on them



Quick CS110 review: System calls

• System calls invoke code in the OS kernel
- Kernel runs in a more privileged mode than application

- Can execute special instructions that application cannot

- Can interact directly with devices such as network card

• Higher-level functions built on syscall interface
- printf, scanf, gets, etc. all user-level code



File descriptors
• Most IO done on file descriptors

- Small integers referencing per-process table in the kernel

• Examples of system calls with file descriptors:
- int open(char *path, int flags, ...);

- Returns new file descriptor bound to file path

- int read (int fd, void *buf, int nbytes);

- Returns number of bytes read
- Returns 0 bytes at end of file, or -1 on error

- int write (int fd, void *buf, int nbytes);

- Returns number of bytes written, -1 on error
- (Never returns 0 if nbytes > 0)

- int close (int fd);

- Deallocates file descriptor (not underlying I/O resource)



Error returns
• What if syscall failes? E.g. open non-existent file?

- Returns -1 (invalid fd number)

• Most system calls return -1 on failure
- Always check for errors when invoking system calls

- Specific kind of error in global int errno
(But errno will be unchanged if syscall did not return -1)

• #include <sys/errno.h> for possible values
- 2 = ENOENT “No such file or directory”

- 13 = EACCES “Permission Denied”

• perror function prints human-readable message
- perror ("initfile");

→ “initfile: No such file or directory”



Sockets: Communication between machines

• Network sockets are file descriptors too

• Datagram sockets: Unreliable message delivery
- With IP, gives you UDP

- Send atomic messages, which may be reordered or lost

- Special system calls to read/write: send/recv,
sendto/recvfrom, and sendmsg/recvmsg (most general)

• Stream sockets: Bi-directional pipes
- With IP, gives you TCP

- Bytes written on one end read on the other

- Reads may not return full amount requested—must re-read



Socket naming

• Recall how TCP & UDP name communication
endpoints

- 32-bit IP address specifies machine

- 16-bit TCP/UDP port number demultiplexes within host

- Well-known services “listen” on standard ports: finger—79,
HTTP—80, mail—25, ssh—22

- Clients connect from arbitrary ports to well known ports

• A connection can be named by 5 components
- Protocol (TCP), local IP, local port, remote IP, remote port

- TCP requires connected sockets, but not UDP



System calls for using TCP

Client Server

socket – make socket

bind – assign address

listen – listen for clients

socket – make socket

bind* – assign address

connect – connect to listening socket

accept – accept connection

*This call to bind is optional; connect can choose address & port.



Socket address structures
• Socket interface supports multiple network types

• Most calls take a generic sockaddr:

struct sockaddr {

uint16_t sa_family; /* address family */

char sa_data[14]; /* protocol-specific address */

}; /* (may be longer than this) */

int connect(int fd, const struct sockaddr *, socklen_t);

• Cast sockaddr * from protocol-specific struct, e.g.:
struct sockaddr_in {

short sin_family; /* = AF_INET */

u_short sin_port; /* = htons (PORT) */

struct in_addr sin_addr; /* 32-bit IPv4 address */

char sin_zero[8];

};



Dealing with address types [RFC 3493]

• All values in network byte order (big endian)
- htonl converts 32-bit value from host to network order

- ntohl converts 32-bit value from network to host order

- ntohs/htons same for 16-bit values

• All address types begin with family
- sa family in sockaddr tells you actual type

• Unfortunately, not address types the same size
- E.g., struct sockaddr in6 is typically 28 bytes,

yet generic struct sockaddr is only 16 bytes

- So most calls require passing around socket length

- Can simplify code with new generic sockaddr storage big
enough for all types (but have to cast between 3 types now)

http://www.ietf.org/rfc/rfc3493.txt


Looking up a socket address w. getaddrinfo

struct addrinfo hints, *ai;

int err;

memset (&hints, 0, sizeof (hints));

hints.ai_family = AF_UNSPEC; /* or AF_INET or AF_INET6 */

hints.ai_socktype = SOCK_STREAM; /* or SOCK_DGRAM for UDP */

err = getaddrinfo ("www.stanford.edu", "http", &hints, &ai);

if (err)

fprintf (stderr, "%s\n", gia_strerror (err));

else {

/* ai->ai_family = address type (AF_INET or AF_INET6) */

/* ai->ai_addr = actual address cast to (sockaddr *) */

/* ai->ai_addrlen = length of actual address */

freeaddrinfo (ai); /* must free when done! */

}



Address lookup details

• getaddrinfo notes:
- Can specify port as service name or number (e.g., "80" or
"http", allows possibility of dynamically looking up port)

- May return multiple addresses (chained with ai next field)

- You must free structure with freeaddrinfo

• Other useful functions to know about
- getnameinfo – Lookup hostname based on address

- inet ntop – convert IPv4 or 6 address to printable form

- inet pton – convert string to IPv4 or 6 address



EOF in more detail

• Simple client-server application
- Client sends request

- Server reads request, sends response

- Client reads response

• What happens when you’re done?
- Client wants server to read EOF to say request is done

- But still needs to be able to read server reply – fd is not
closed!



shutdown

• int shutdown (int fd, int how);

- Shuts down a socket w/o closing file descriptor

- how: 0 = reading, 1 = writing, 2 = both

- Note: Applies to socket, not descriptor—so copies of
descriptor (through dup or fork affected)

- Note 2: With TCP, can’t detect if other side shuts for reading

• Many network applications detect & use EOF
- Common error: “leaking” file descriptor via fork, so not

closed (and no EOF) when you exit



Small request/reply protocol

request

reply

Client Server

• Small message protocols typically dominated by
latency



Large reply protocol

request

reply

Client Server

• For bulk tranfer, throughput is most important



Performance definitions

• Throughput – Number of bits/time you can sustain
at the receiver

- Improves with technology

• Latency – How long for message to cross network
- Propagation + Transmit + Queue

- We are stuck with speed of light. . .
10s of milliseconds to cross country

• Goodput – TransferSize/Latency

• Jitter – Variation in latency

• What matters most for your application?
- We’ll look at network applications next week



Today’s Lecture

• Basic networking abstractions
- Protocols

- OSI layers and the Internet Hourglass

• Transport protocols: TCP and UDP

• Review of file descriptors

• Some functions from the socket API

• Protocol performance tradeoffs

• Next lecture: Transport & reliability



Structure of Rest of Class
• IP and above (5 weeks)

- Application layers

- Network layer: IP and routing, multicast

- Transport layer: TCP and congestion control

- Naming, address translation, and content distribution

• Below IP (2 weeks)
- Network address translation (NAT)

- Link and physical layers

• Advanced topics (2 weeks)
- Multimedia

- Network coding

- Security


