Outline

- Multimedia is different
- Real Time Protocol (RTP)
- Session Description Protocol (SDP)
- Session Initiation Protocol (SIP)

Elastic vs. Inelastic Workloads

- Some applications adapt to network performance
 - Examples: file transfer, printing
 - Will perform the same task regardless of bandwidth
 - Such workloads are elastic—they adapt fine to lower performance

- Other apps have traffic performance requirements:
 - Example: video requires a certain available bandwidth
 - Workloads that fail if requirements not met are inelastic

Why is this an issue?

- Most data networks provide best effort delivery
 - Try their best to deliver your data, but no guarantees

- Traditional data applications:
 - Use protocols such as TCP to deal with data loss and unknown network available bandwidth,
 - Tend to generate data in bursts, and
 - Normally do not require any kinds of guarantees from the network

- Elastic workloads will often swamp inelastic ones
 - BitTorrent can make Skype sound terrible

- Traditional networks have not been designed with Quality Of Service (QoS) in mind

Where do things break?

- Things break when there is a contention for resources
- Service may be unacceptable for all

Example of a Network with QoS:
The Phone Network

- Before you can communicate
 - Must negotiate a channel with the network
 - If network lacks the resources, your call is not completed

- If call is completed, you “own” circuit
 - Yours for the duration of the call
 - Regardless of the additional traffic in the network

- Circuit has appropriate capacity for voice

QoS Components

- Must know traffic characteristics and requirements
 - Must describe them to the network to reserve bandwidth

- Need signaling protocol betw. nodes & net. mgmt

- The Network must implement Admission Control
 - Reject connections exceeding available bandwidth

- The Network may also implement Traffic Policing
 - Make sure traffic emitted by the nodes conform to the agreed parameters
Where to Provide?

- 1990s and early 2000s saw a lot of work on getting QoS into layer 3: Resource ReSerVation Protocol (RSVP)
 - Fine for walled garden networks, e.g., IP-telephony backbones
 - Consumer applications do not want to assume QoS support
- There's a lot more to multimedia than simple QoS
 - Session establishment, media negotiation
- Higher layers need to be involved
 - Transport: Real Time Protocol (RTP)
 - Session: Session Description Protocol (SDP)
 - Application: Session Initiation Protocol (SIP)

Outline

- Multimedia is different
- Real Time Protocol (RTP)
- Session Description Protocol (SDP)
- Session Initiation Protocol (SIP)

RTP [RFC 3550]

- Provides end-to-end delivery services for data with real-time characteristics
 - E.g. interactive audio and video
 - Services include: Source & payload type identification, Sequence numbering, Time-stamping, Delivery monitoring
- Typically used on top of UDP
 - Relies on UDP for multiplexing & checksums
- Work over other network or transport protocols
 - Lower-level must provide framing & length indication

RTP continued

- Supports data transfer to multiple destinations
 - Uses network-level multicast if available
- Does not ensure timely delivery/QoS guarantees
 - Relies on lower-layer services to do so
- Does not guarantee in-order delivery
- Does not even guarantee delivery
 - Underlying network need not be reliable
 - Underlying network need not deliver packets in sequence
 - RTP sequence numbers determine proper location of packet

Two parts to RTP

1. RTP
 - Carries data that has real time properties
2. RTCP
 - Monitors quality of service
 - Conveys information about participants in a session (for “loosely controlled” sessions)

RTP protocol framework

- RTP is not a complete protocol
 - It is a protocol framework, deliberately not complete
 - Tailored to applications through modification, not options
- Each applications needs a profile specification
 - defines set of payload type codes
 - defines mapping of payload types to payload formats
- Also need actual payload format specification
RTP Session

- Association among a set of participants communicating with RTP
- A session is defined by a particular pair of destination transport addresses
 - One network address
 - A pair of ports (one for RTP and one for RTCP)
 - May be common to all participants (as in IP multicast)
 - May be different for each (individual network address + common port address)

Synchronization Source (SSRC)

- Source of a stream of RTP packets
 - Randomly chosen 32-bit numeric identifier
 - Intended to be globally unique
 - Carried in RTP header (not dependent on network address)
- Timing & sequence number space are per-SSRC
 - Lets receiver separately handle packets from same source
 - RTCP sender/receiver reports are per SSRC
- One participant may use multiple SSRCs
 - Should use one for each stream
 - Different streams may have different media clock rates
 - Or one stream may switch encodings mid-stream
- Binding of SSRCs is provided through RTCP
 - E.g., if participant uses multiple cameras in one session

RTP Translators and Mixers

- Intermediate act as gateways at RTP layer
 - Allow RTP traffic to pass through firewalls
 - Mix and/or recode data to fit over a low bandwidth link
- Translators leave original SSRC intact
 - So sources distinct even when all packets from translator
 - Translator may change payload type or combine packets
- Mixers combine streams from multiple sources
 - Output requires new SSRC with new seq/timestamps
 - Original sources conveyed in each packet using “contributing sources” (CSRC) list

RTP Packet

- Fixed RTP packet header
- List of contributing sources (possibly empty)
- RTP Payload
 - E.g. audio samples, compressed video data, etc. . . .

RTP Data Header

<table>
<thead>
<tr>
<th>V=2</th>
<th>P</th>
<th>X</th>
<th>CC</th>
<th>M</th>
<th>PT</th>
<th>sequence number</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>synchronization source (SSRC) identifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contributing source (CSRC) identifiers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>....</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RTP Data Header details

- Padding (P, 1 bit)
 - Packet ends w. padding octets ending in padding length
 - E.g., useful when encrypting with block cipher
- Extension (X, 1 bit)
 - If set, fixed header followed by header extension
- CSRC Count (CC, 4 bits)
- Profile-specific Marker (M, 1 bit)
 - E.g., might indicate frame boundary
RTP Data Header details continued

- **Payload Type (PT, 7 bits)**
 - RFC 3551 defines some default audio/video types
 - But actual interpretation depends on profile
 - Can even define some types dynamically

- **Sequence Number (16 bits)**
 - Initial value random
 - Increments for each RTP packet (not byte) sent
 - Used by receiver to detect packet loss & misordering

- **Time Stamp (32 bits)**
 - Sampling instant of start of payload
 - Resolution depends on data format, must be sufficient for synchronization & measuring jitter

RTP Control Protocol (RTCP)

- **Uses separate port from data**
 - Save monitoring tools from sorting through data packets
 - For UDP, use even port for RTP, and n + 1 for RTCP
 (So good idea for NATs to preserve even/odd port parity)

- **Multiple RTCP messages sent in compound packets**
 - Reduces packet rate, saves bandwidth & processing cost
 - Figure out # segments based on packet length

- **Compound packets start w. reception report**
 - Losses in multicast distribution can be quickly isolated
 - Senders can adapt to current network conditions

RTCP Bandwidth Allocation

- **Application decides bandwidth needed for session**
 - Included in session announcement or inferred by scope

- **Control b/w should be fixed fraction of total**
 - RTP currently recommends 5% of total session bandwidth
 - Profile can specify some other fraction

- **RTCP b/w kept constant by varying report interval**
 - Track number of active senders and receivers
 - Senders get 25% of total RTCP b/w, receivers the rest
 - Minimum report interval 5 seconds to avoid bursts on small sessions
 - Actual interval randomized to avoid synchronization

RTCP Receiver Report (RR)

<table>
<thead>
<tr>
<th>V</th>
<th>P</th>
<th>RC</th>
<th>PT=RR=201</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>SSRC OF SENDER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSRC_1 (SSRC OF FIRST SOURCE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FRACTION LOST</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CUMULATIVE NUMBER OF PACKETS LOST</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXTENDED HIGHEST SEQUENCE NUMBER RECEIVED</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INTERARRIVAL JITTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TIME OF LAST SR (LSR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DELAY SINCE LAST SR (DLSR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>. . . ADDITIONAL RECEPTION REPORTS . . .</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>. . . PROFILE-SPECIFIC EXTENSIONS . . .</td>
<td></td>
</tr>
</tbody>
</table>

RTCP Sender Report (SR)

<table>
<thead>
<tr>
<th>V</th>
<th>P</th>
<th>RC</th>
<th>PT=SR=200</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>SSRC OF SENDER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NTP TIMESTAMP, MOST SIGNIFICANT WORD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NTP TIMESTAMP, LEAST SIGNIFICANT WORD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RTP TIMESTAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SENDER S PACKET COUNT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SENDER S OCTET COUNT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>. . . RECEPTION REPORTS . . .</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>. . . PROFILE-SPECIFIC EXTENSIONS . . .</td>
<td></td>
</tr>
</tbody>
</table>

RTCP Source Description (SDES)

<table>
<thead>
<tr>
<th>V</th>
<th>P</th>
<th>SC</th>
<th>PT=SDES=202</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>SSRC / CSRC_1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SDES ITEMS FOR SSRC / CSRC_1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>. . . ADDITIONAL SDES CHUNKS . . .</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LENGTH</td>
<td>USER AND DOMAIN NAME . . .</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LENGTH</td>
<td>COMMON NAME OF SOURCE . . .</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LENGTH</td>
<td>EMAIL ADDRESS OF SOURCE . . .</td>
</tr>
</tbody>
</table>
Canonical End-Point Identifiers

<table>
<thead>
<tr>
<th>CNAME=1</th>
<th>length</th>
<th>user and domain name</th>
<th>...</th>
</tr>
</thead>
</table>

- SDES that must appear in every compound packet
- CNAME identifies each participant uniquely
 - Stays constant even if SSRC changes (by conflict or restart)
 - Binds streams from multiple media tools to same source
 - For monitoring, intended to be human-readable as well
 - Translators should translate RFC 1918 addresses to ensure global uniqueness

Analyzing RTCP Reports

- Cumulative counts for long- and short-term analysis
 - Subtract any two reports to get activity over interval
 - NTP timestamps in reports allow you to compute rates
 - Monitoring tools needn’t understand data encodings
- Sender reports give utilization information
 - Average packet rate and average data rate over any interval
 - Monitoring tools can compute this without seeing the data
- Receiver reports give loss and round-trip information
 - Extended sequence number conveys # packets expected
 - Packets lost and packets expected give long term loss rate
 - Fraction lost field gives short-term loss rate
 - LSR and DLSR give senders ability to compute round-trip time

RTP Profiles

- Provide interpretation of generic fields
 - Mapping from payload type number to encodings
 - Use of marker bits
 - Frequency of timestamp counter
- Other items which may be specified in a profile
 - RTP header extensions
 - Additional RTCP packet types
 - RTCP report interval
 - Use of security/encryption
- No support for parameter negotiation, membership control
 - Protocols such as SDP and SIP handle this

Outline

- Multimedia is different
- Session Description Protocol (SDP)
- Real Time Protocol (RTP)
- Session Initiation Protocol (SIP)

SDP [RFC 4566]

- Originally designed for multimedia multicast
 - Session directory tool advertises multimedia conferences
 - Must communicate the conference addresses
 - Must communicate app-specific information necessary for participation.
- SDP is designed to convey such information
- Can use multiple transport protocols including:
 - SAP (Session Announcement Protocol)
 - Email using MIME extensions
 - HTTP

Session Information conveyed by SDP

- Session name and purpose
- Time(s) the session is active
 - Arbitrary list of start/stop times
 - Repeat times (e.g., every Tuesday at 2:45pm)
- The media that constitute the session
 - Type (audio, video), format, protocol
 - Network (possibly multicast) address, protocol, port
- Other useful info:
 - Bandwidth required
 - Contact information for a responsible person
 - etc.
Session Descriptions

- Compact, but entirely text-based
 - Lines of the form: `type = ⟨value⟩`
 - Facilitates embedding in various transport methods

- Begins with session-level section
 - Starts with line “texttt v=0” (version 0)
 - Contains lines that apply to all media streams
 - Ends at first “m=” line

- Followed by zero or more media-level descriptions
 - Starts with “m=...”, ends before next “m=” line
 - Can contain directives overriding session-level section

- With some transports, can concatenate sessions
 - Each “v=0” starts a new session description

Session Description Syntax

- Session description (* = optional)
 - v= protocol version
 - o= owner/creator and session number
 - s= session name
 - i=* session information
 - u=* URI of description
 - p=* phone number
 - c=* connection information—optional if in all media
 - b=* bandwidth information
 - z=* time zone adjustments
 - k=* encryption key
 - a=* zero or more session attribute lines
 - >> zero more media descriptions

Session Description Syntax continued

- Time description
 - t= time the session is active
 - z=* zero or more repeat times

- Media description
 - m= media name and transport address
 - i=* media title
 - c=* connection info.—optional defined at session level
 - b=* bandwidth information
 - k=* encryption key
 - a=* zero or more session attribute lines

- The type set is small, not extensible
 - SDP parsers must ignore unknown announcement types

- Use attributes for media-specific details

SDP Example

- Example session description:

- v=0
 o=cs144-staff 2890844526 2890842807 IN IPv4 171.16.64.4
 s=SDP Lecture
 i=A Leecture on the session description protocol
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 a=recvonly
 m=audio 3456 RTP/AVP 0
 m=video 2232 RTP/AVP 31
 m=whiteboard 32416 udp wb
 a=orient:portrait

Outline

- Multimedia is different
- Session Description Protocol (SDP)
- Real Time Protocol (RTP)
- Session Initiation Protocol (SIP)

Session Initiation Protocol [RFC 3261]

- SIP is a protocol designed to enable the invitation of users to participate in multimedia session
 - Not tied to a specific conference control scheme
 - Supports loosely or tightly controlled sessions
 - Enables user mobility by relaying and redirecting invitations to a user’s current location

- Communication is between users, not hosts
 - User identifiers define control path (whom to ask about user)
 - Data path (actual media) can be completely decoupled
Session Initiation Protocol (2)

- SIP is a control protocol for creating/modifying/terminating sessions w/ one or more participants

- Examples of sessions are:
 - Internet telephone calls
 - Internet multimedia conferences
 - Internet multimedia distribution

- Communication among members in a session may be:
 - Via multicast,
 - Via a mesh of unicast “relations”
 - Or via a combination of both

Functional Features

- Allows participants to agree on a set of compatible media types through SDP
- Supports user mobility by proxying and redirecting requests to the user’s current location.
- Can be extended with additional capabilities.
- It is not tied to any particular conference control protocol
- It is independent of the lower layer transport protocol

Call Setup

- Initial phase
 - Client tries to find address at which to contact remote user

- Subsequent phases
 - Implement request-response protocol
 - Session description is sent with an invitation to join

- Status code responses
 - Informational – request received, continuing process
 - Success – action received, understood, and accepted
 - Redirection – client must undertake further action to complete request
 - Client error – request contains bad syntax
 - Server error – server couldn’t complete valid request

Big Picture

Addressing

- SIP addresses are URLs: user@host
 - user: user name or telephone number
 - host: domain name or numeric IP address

- Examples:
 - sip:dm@scs.stanford.edu
 - sip:16505555555@sip.future-nine.com

- To send a message, a SIP client can send it to a pre-configured proxy, or use DNS:
 - Check for DNS SRV records
 - Then check for MX records
 - Finally, use an A record

Components (1)

- Clients
 - End systems
 - Send SIP requests
 - Usually also contain SIP user agent server (UAS), which listens for call requests, prompts user or executes program to determine response

- Proxy server
 - Proxies request to another server
 - Possibly translates and rewrites request
 - Can “fork” request to multiple servers, creating search tree
Components (2)

- **Redirect Server**
 - Redirects users to try another server (user agent may act as redirect server)

- **Location Server (or service)**
 - Used by SIP redirect or proxy server to obtain information about a user’s possible location(s)
 - May be co-located with a SIP server but the manner in which a SIP server requests location services is beyond the scope of SIP
 - May be anything (LDAP, whois, local file, result of program execution)

Methods (1)

- **There are 6 methods in SIP**

 - **Invite**
 - Invites a participant to a conference
 - Conference can be unicast, multicast, new or in existence

 - **Bye**
 - Ends a client’s participation in a call

 - **Cancel**
 - Terminates a search

 - **Options**
 - Queries a participant about their media capabilities, and finds them, but doesn’t invite

Responses (1)

- **1xx – Informational**
 - Request received, continuing to process request
 - Examples: 100 trying, 180 ringing, 181 call is being forwarded, 182 queued

- **2xx – Success**
 - Action successfully received, understood, and accepted
 - Example: 200 OK

- **3xx – Redirection**
 - Further action must be taken in order to complete the request
 - Examples: 300 multiple choices, 301 moved permanently, 302 moved temporarily, 305 use proxy

- **4xx – Client error**
 - Request contains bad syntax
 - Examples: 400 bad request, 401 unauthorized, 402 payment required

- **5xx – Server error**
 - Server failed to fulfill an apparently valid request
 - Examples: 500 internal server error, 501 not implemented, 502 bad gateway

- **6xx – Global failure**
 - The request cannot be fulfilled at any server
 - Examples: 600 busy everywhere, 604 does not exist everywhere, 606 not acceptable

Components (3)

- **Registrar**
 - A server that accepts REGISTER requests
 - Typically co-located with a proxy or redirect server
 - Allows a client to let the proxy or redirect server know at which address(es) it can be reached
Message Syntax

- **Text based**
- **Many header fields from http**
- **Some new ones**
 - Via
- **Payload may contain media description**
 - typically uses SDP, Session Description Protocol

```
INVITE sip:dm@scs.stanford.edu SIP/2.0
From: sip:pal@scs.stanford.edu
To: dm@scs.stanford.edu
Call-ID: 19990321@scs.stanford.edu
Cseq: 10 INVITE
v=0
o=Pal 12345 6789 IN IP4 171.0.1.2
s=Multimedia Networks
i=Presentation Multimedia Networks and Communication
e=pal@scs.stanford.edu
c=IN IP4 224.2.0.1/127
t=0 0
m=audio 3456 RTP/AVP 0
```

Basic Operation

- **Client sends req. to locally configured proxy**
 - Or obtains domain server IP address (using DNS)
- **Call initiator contacts SIP server for domain**
- **Location server locates receiver**
- **Call is established**
 - Initiator sends an INVITE request
 - Invited party answers (agrees)
 - Initiator receives OK indication
 - Initiator sends an ACK request

Proxy Example

```
1. INVITE
2. Redirect
3. 6, OK
4. INVITE
5. ALERT USER
6. OK
7. OK
8. ACK
```

Redirect Example

```
1. INVITE
2. Redirect
3. Redirect
4. 6, OK
5. ACK
6. INVITE
7. ALERT USER
```

Other Features

- **Multiple call acceptances**
 - Client control
 - Client selection
 - Multiparty conferencing
- **Security**
 - Encryption and authentication end-to-end
 - Uses existing mechanisms
- **Messaging**
 - SIP is behind AIM and many other IM systems
 - SIMPLE: SIP for Instant Messaging and Presence Leveraging Extensions (simple)

Services

- Call forwarding
- Hold
- Blind call transfer
- Transfer with notification
- Operator assisted transfer
- Full mesh unicast conferences
- Multicast conferences
- Authenticated Caller ID
- *66
- Local services: call waiting, mute, *69