What

- Intra-domain routing protocols (IGP)
 - Last time
 - OSPF – link state
 - IS-IS: like OSPF but not on IP
 - RIP – distance vector

- Inter-domain (EGP)
 - Today
 - Border Gateway Protocol v4
 - Path vector routing protocol: list possible paths
 - No other EGP’s today... why?
Why not just use OSPF everywhere?
 e.g., hierarchies of OSPF areas
Why not just use OSPF everywhere?
 - e.g., hierarchies of OSPF areas
 - **Hint**: scaling is not the only limitation
Why not just use OSPF everywhere?
 e.g., hierarchies of OSPF areas

 Hint: scaling is not the only limitation

BGP is a policy control and information hiding protocol

intra == trusted, inter == untrusted
Why Study BGP?

- Critical protocol: makes the Internet run
 - Only widely deployed EGP
- Active area of problems!
 - Efficiency
 - Cogent vs. Level3: Internet partition
 - Pakistan accidentally took down YouTube
 - Spammers use prefix hijacking
Outline

- History (very briefly!)
- Function
- Properties
- Policies
- Example
- Problems and proposed solutions
Why border gateway protocol?

Historical distinction:

1. rfc1105: BGPv1 1989: "directional" routing
2. rfc1163: BGPv2 1990:
3. rfc1267: BGPv3 1991
4. rfc1654: BGPv4 (proposed) 1994
5. rfc1771: BGPv4 (actual) 1995: CIDR support
 - rfc1772-1774 additional info
Abstract each AS down to a single node

Exchange prefix-reachability with all neighbors

“I can reach prefix 171.67.0.0/14 through AS’es 15444 3549 174 46749 32”

Select a single path by routing policy

Critical: learn many paths, propagate only one!

Add your ASN to advertised paths
BGP Example

AS 1
1.2.0.0/16

Only 1 Router Per AS (for now)
BGP Example

1.2.0.0/16: AS 1

Only 1 Router Per AS (for now)
BGP Example

AS 1
1.2.0.0/16

AS 2
1.2.0.0/16: AS 2 1

AS 3

AS 4

AS 5
1.2.0.0/16: AS 5 1

Only 1 Router Per AS (for now)
BGP Example

Only 1 Router Per AS (for now)
Only 1 Router Per AS (for now)
BGP Implications

- Explicit AS path == loop free!
 - Except under churn, IGP/EGP mismatch, etc.
- Not all ASes know all paths
- AS abstraction – loss of efficiency
- Shortest AS path not guaranteed
- Scaling
 - 32K ASes
 - 300K+ prefixes
Transport Details

1. Border routers must directly connect
2. Connect tcp port 179
3. Negotiate features
4. Full information exchange – expensive!
5. Exchange periodic updates indefinitely

Session resets are expensive (both in CPU and to the entire network!) and should be avoided.
- Destination prefix: 171.67.0.0/14
- AS Path: ASN 15444 3549 174 46749 32
- Next Hop IP: just like in RIPv2
- Knobs for traffic engineering
 - Metric, Weight, LocalPath, MED, Communities
 - Lots of voodoo
RouteViews Project:
http://www.routeviews.org/

1. telnet route-views.linx.routeviews.org
2. show ip bgp 171.67.0.0/14 longer-prefixes
 - note that all paths are learned internally
 - not a production device
1. Next-Hop reachable?
2. Prefer highest weight
3. Prefer highest local-pref
4. Prefer locally originated routes
5. Prefer routes with shortest AS path length
Prefer path with lowest origin type
Prefer route with lowest MED value
Prefer eBGP over iBGP
Prefer routes with lowest cost to egress point
 • hot-potato routing
Tie-braking rules
 • e.g., lowest router-id, oldest route
Why was that route selected?
Why are there two routes to Stanford?
External vs. Internal BGP

Only 1 Router Per AS (for now)
External vs. Internal BGP

AS 1
1.2.0.0/16

iBGP keeps AS consistent

AS 2

AS 3
Multiple Peering Points!

AS 4

AS 5
Customer/Provider:

- Customers pay for connectivity
- e.g., Stanford pays Cogent
- Customer is a stub, provider is a transit
 - Amount and cost structure can vary wildly
- Many customers are multi-homed
 - Stanford also connects to Calren/Internet2
- Typical policy: prefer routes from customers
Peers:

- ASes agree to exchange traffic for free
 - Penalties/renegotiate if imbalance
- Tier 1 ISPs have no default route: all peer with each other
- You are Tier $i + 1$ if you have a default route to a Tier i
BGP Relationship Drama

Cogent vs. Level3

- Level3 and Cogent were peers
- In 2005, Level3 decided to start charging Cogent
- Cogent said No
- Internet partition: Cogent’s customers couldn’t get to Level3’s customers
 - other ISPs were affected as well
- They came to a new, undisclosed agreement 3 weeks later
BGP Problems and Solutions

1. Security
2. Convergence
3. Scaling (route reflectors)
4. Traffic engineering - AS preprending
5. Multiple stable solutions - BGP "Wedgies"
Anyone can source a prefix announcement
 BGP is not very secure :-(

YouTube’s prefix is 208.65.152.0/22

To block YouTube (by government directive), a PieNET advertised 208.65.152.0/23 and 208.65.152.128/23 (longest prefix match)

Spammers steal unused IP space to hide

Secure BGP is currently being deployed
Given a change, how long until the network re-stabilizes?

- ... depends on the change: sometimes never.
- Open research problem: “tweak and pray”
- Distributed setting is challenging

Easier: does there exist a stable configuration?

- Distributed: open research problem
- Centralized: NP-Complete problem!

[Griffin-Sigcomm99]
Scaling iBGP: Route Reflectors

AS 1
1.2.0.0/16

Multiple Peering Points!

iBGP keeps AS consistent
Scaling iBGP: Route Reflectors

iBGP Mesh == $O(n^2)$ mess
Scaling iBGP: Route Reflectors

Solution: Route Reflectors
$O(n*k)$
Traffic Engineering

- “Route-map” programs to set weights
- Route filtering: input and output
- More specific routes: longest prefix
- AS prepending: “32 32 32 32”
- Imprecise science
A Common config:

- Prefer customer routes over non-customer
- Then prefer shortest AS path
Backup Route

1.2.0.0/16: AS 1 1 1 1

AS 1
1.2.0.0/16

1.2.0.0/16: AS 1

AS 5
rfc4264: BGP Wedgies

Backup Route

1.2.0.0/16: AS 1 1 1 1 1

AS 1
1.2.0.0/16

AS 2

AS 3

AS 4

AS 5 1

AS 5
RFC 4264: BGP Wedgies

1.2.0.0/16: AS 1 1 1 1

Backup Route

AS 1
1.2.0.0/16

AS 2

AS 3

AS 4

AS 5

AS 4 5 1
Backup Route

1.2.0.0/16: AS 1 1 1 1

AS 1
1.2.0.0/16

AS 2

AS 3 4 5 1

AS 4

AS 5
RFC 4264: BGP Wedgies

Backup Route

1.2.0.0/16: AS 1 1 1 1

1.2.0.0/16
Backup Route

1.2.0.0/16: AS 1 1 1 1

Link Failure!
Backup Route

1.2.0.0/16: AS 1 1 1 1

AS 1
1.2.0.0/16

AS 2

AS 3

AS 4

AS 5
Backup Route

1.2.0.0/16: AS 1 1 1 1

AS 1
1.2.0.0/16

Stable

AS 2

AS 3

AS 4

AS 5
Backup Route

1.2.0.0/16: AS 1 1 1 1

Link Restored
Backup Route

1.2.0.0/16: AS 1 1 1 1

1.2.0.0/16
Backup Route

1.2.0.0/16: AS 1 1 1 1

AS 1
1.2.0.0/16

AS 2

AS 3

AS 4

AS 5
Backup Route

1.2.0.0/16: AS 1 1 1 1
Backup Route

1.2.0.0/16: AS 1 1 1 1

AS 1
1.2.0.0/16

AS 2

Wedged!

AS 3
AS 3 prefers routes from AS 2

AS 4

AS 5
Conclusion

- BGP is critical
- BGP polices make it complex
- Slides (will be) available online
- Questions: rob.sherwood@stanford.edu