Project 1: Threads

Winter 2009

Jason Bau
Stanislas Polu

Based on slides from previous CA, Pr Mazieres, Pr Rosemblum

Overview

e Threads Basics

e Project goals

e Alarm Clock
e Priority Scheduling
e Advanced Scheduler (MLFQS)

e (Getting Started

BasICS

OS Structure

P1 |P2 Ips‘ |P4

Seer

Kernel

IPC Virtual Memory “Tam-)

Socket : Scheduler
TCP/IP File System

driver I driver driver

| - f - D f
Z.T'Netwo rk 'If:Qonsolé_,fi Disk

BasICS

e Thread ~ pointer to instruction & state
“execution stream in an execution context”

o Key OS Aspects:
e Maintain per-thread state '

e Pick a thread to run

. I/O or event completioo or event wait
e Switch between threads w

BasICcs

e Per thread state

typedef struct tcb {
unsigned long md_esp; [* Stack pointer of thread */
char *t_stack; /* Bottom of thread stack */
}

e Machine dependent thread switch / init

void thread_md_switch (tcb *current, tcb *next)

void thread_md _init (tcb *t, void (*fn) (void *), void *arg)

BasICS

Background: calling conventions

Call

arguments

e sp register always base of stack
return addr
- frame pointer (fp) is old sp

old frame ptr
e Local vars in stack & registers fp —= P
callee-saved

- By convention, registers divided into .
registers

caller- and callee-saved

Local vars

e Function arguments go in callee- and temps

saved regs and on stack sp —=

BasICS

1386 thread md switch

pushl Y%ebp; movl %esp,%ebp # Save frame pointer
pushl %ebx; pushl Jesi; pushl Jedi # Save callee-saved regs

movl 8(%ebp) ,%edx # Jedx = thread_current
movl 12(%ebp) ,%eax # Jieax = thread_next
movl %esp, (%edx) # Jedx->md_esp = Jesp
movl (%eax),%esp # Jesp = Yeax->md_esp

popl %edi; popl %esi; popl ’%ebx # Restore callee saved regs
popl Yebp # Restore frame pointer
ret # Resume execution

e This is literally switch code from simple thread lib
- Nothing magic happens here

e You will see very similar code in Pintos switch.S

BasICS

e Thread system overview
ready list wait lists

wait list for keyboard...

22|

wait list for hard drive...

while (1)
d
interrupt thread
save state
get next state
load state, jump to it

T1
12

BasICcs

e Context Switch

timer intr

READY

>

1O

READY

WAIT

timer intr

Project |

|. Alarm Clock

e Reimplement timer_sleep()
e Avoid busy wait (why expensive?)

e |nstead take thread off the ready list (to where?)

devices/timer.c

void timer_sleep (int64_t ticks)
{
int64_t start = timer_ticks ();
ASSERT (intr_get_level () == INTR_ON);

while (timer_elapsed (start) < ticks)
thread yield ();
}

la. Priority Scheduling

e Priority Scheduling :
e Thread L yields as H added to ready list

e Thread H wakes up first when H and L both waiting
for a lock, semaphore, or conditional variable.

e Needed before Part Il

D. Priority Donation

e Priority Inversion Problem:

e | holds lock K, running

e H comes in ready list, kicking out L (L still holds K)
e M comes in ready list

e H waits for K, M starts running

e Now M runs, then L, then H

o. Priority Donation

e Priority Donation:

e Donate H priority to L
¢ You must handle multiple donation to a same thread

e You must handle nested donations H->M->L

e Required for locks (sema, cond_vars optional)

Il. Advanced Scheduler

e BSD Scheduler
e Appendix B4.4

e Priority depends on niceness, recent_cpu, load_avg

e [ixed-Point Real Arithmetic needed

Synchronization

Threads can be interrupted anytime, use locks,
semaphore and condition variables

What happens when interrupts disabled?

Can an interrupt handler hold a lock?

Grading

e 50% Design Document

e Use Template and Example

e 509% Test Suite

e run ‘make check’ in build/

e Test scripts are in ‘pintos/src/tests’

Getting Started

e Make sure pintos is running

- set path = (/usr/class/cs140/ uname -m /bin $path)
- tar xzf /usr/class/cs140/pintos/pintos.tar.gz
- cd pintos/src/threads/

- make
- cd build/

- pintos -v -k -- run alarm-multiple

Getting Started

e How to debug ?

vine1:~/pintos/src/threads/build> pintos -v --gdb -- run alarm-multiple

Writing command line to /tmp/nWbB7R3jwN.dsk...
squish-pty bochs -q

Bochs x86 Emulator 2.2.6
Build from CVS snapshot on January 29, 2006

00000000000i[] reading configuration from bochsrc.txt
00000000000i[] Enabled gdbstub

00000000000i[] installing nogui module as the Bochs GUI
00000000000i[] using log file bochsout.txt

Waiting for gdb connection on localhost:1234

Then... from the *“SAME* machine use:

pintos-gdb kernel.o

and issue the command:

target remote localhost: 1234

Getting Starteo

e Example GDB Session

(gdb) target remote localhost: 1234
Remote debugging using localhost: 1234

(gdb) b thread_init
Breakpoint 1 at 0xc0101a65: file ../../threads/thread.c, line 114.

(gdb) c
Continuing.

Breakpoint 1, thread_init () at ../../threads/thread.c:114
114 {

(gdb)

Getting Started

e How to run the test suite?

vine1:~/pintos/src/threads> make check

e How to run an individual test?

vine1:~/pintos/src/threads> make build/tests/threads/alarm-multiple.result

vine1:~/pintos/src/threads/build> pintos -v -- run alarm-multiple

Useful Tools

e SCM
e CVS/SVN/ git

e Development tools

® Cscope, backtrace, pintos-gdb

e Data structures

e especially lists ! (pintos/src/lib/kernel/)

e Newsgroup

Advices

Read the manual
Read the code
Read the manual
Read the code
Read the manual

Read the code

Advices

e Spend a LOT of time reading manual and code
e Work early on Design Document

e |ntegrate EARLY

