
Project 1: Threads
Winter 2009

Jason Bau
Stanislas Polu

Based on slides from previous CA, Pr Mazières, Pr Rosemblum

Overview

• Threads Basics

• Project goals
• Alarm Clock

• Priority Scheduling

• Advanced Scheduler (MLFQS)

• Getting Started

Basics

• OS Structure

• Thread ~ pointer to instruction & state
“execution stream in an execution context”

• Key OS Aspects:
• Maintain per-thread state

• Pick a thread to run

• Switch between threads

Basics

Process states

• Process can be in one of several states

- new & terminated at beginning & end of life

- running – currently executing (or will execute on kernel return)

- ready – can run, but kernel has chosen different proc. to run

- waiting – needs async event (e.g., disk operation) to proceed

• Which process should kernel run?

- if 0 runnable, run idle loop, if 1 runnable, run it

- if >1 runnable, must make scheduling decision
– p.24/45

• Per thread state

Basics

typedef struct tcb {
 unsigned long md_esp; /* Stack pointer of thread */
 char *t_stack; /* Bottom of thread stack */
}

• Machine dependent thread switch / init
void thread_md_switch (tcb *current, tcb *next)

void thread_md_init (tcb *t, void (*fn) (void *), void *arg)

Basics

Background: calling conventions

• sp register always base of stack

- frame pointer (fp) is old sp

• Local vars in stack & registers

- By convention, registers divided into

caller- and callee-saved

• Function arguments go in callee-

saved regs and on stack
and temps
Local vars

registers
callee-saved

old frame ptr

arguments
Call

sp

return addr

fp

37/45

Basics
i386 thread_md_switch

pushl %ebp; movl %esp,%ebp # Save frame pointer
pushl %ebx; pushl %esi; pushl %edi # Save callee-saved regs

movl 8(%ebp),%edx # %edx = thread_current
movl 12(%ebp),%eax # %eax = thread_next
movl %esp,(%edx) # %edx->md_esp = %esp
movl (%eax),%esp # %esp = %eax->md_esp

popl %edi; popl %esi; popl %ebx # Restore callee saved regs
popl %ebp # Restore frame pointer
ret # Resume execution

• This is literally switch code from simple thread lib

- Nothing magic happens here

• You will see very similar code in Pintos switch.S

41/45

Basics
• Thread system overview

scheduler

timer

wait list for keyboard...

wait list for hard drive...

cpu
...

...

ready list wait lists

while (1)
{

interrupt thread
save state
get next state
load state, jump to it

}

Basics

• Context Switch

T1

T2

K

timer intr IO

READY READY

WAIT

timer intr

...

Project I

I. Alarm Clock

• Reimplement timer_sleep()
• Avoid busy wait (why expensive?)

• Instead take thread off the ready list (to where?)

devices/timer.c

void timer_sleep (int64_t ticks)
{

int64_t start = timer_ticks ();
 ASSERT (intr_get_level () == INTR_ON);

 while (timer_elapsed (start) < ticks)
 thread_yield ();
}

IIa. Priority Scheduling

• Priority Scheduling :
• Thread L yields as H added to ready list

• Thread H wakes up first when H and L both waiting
for a lock, semaphore, or conditional variable.

• Needed before Part III

IIb. Priority Donation

• Priority Inversion Problem:
• L holds lock K, running

• H comes in ready list, kicking out L (L still holds K)

• M comes in ready list

• H waits for K, M starts running

• Now M runs, then L, then H

IIb. Priority Donation

• Priority Donation:
• Donate H priority to L

• You must handle multiple donation to a same thread

• You must handle nested donations H->M->L

• Required for locks (sema, cond_vars optional)

III. Advanced Scheduler

• BSD Scheduler
• Appendix B4.4

• Priority depends on niceness, recent_cpu, load_avg

• Fixed-Point Real Arithmetic needed

Synchronization

• Threads can be interrupted anytime, use locks,
semaphore and condition variables

• What happens when interrupts disabled?

• Can an interrupt handler hold a lock?

Grading

• 50% Design Document
• Use Template and Example

• 50% Test Suite
• run ʻmake checkʼ in build/

• Test scripts are in ʻpintos/src/testsʼ

Getting Started

• Make sure pintos is running
– set path = (/usr/class/cs140/`uname -m`/bin $path)
– tar xzf /usr/class/cs140/pintos/pintos.tar.gz
– cd pintos/src/threads/
– make
– cd build/
– pintos -v -k -- run alarm-multiple

Getting Started
• How to debug ?

vine1:~/pintos/src/threads/build> pintos -v --gdb -- run alarm-multiple

Writing command line to /tmp/nWbB7R3jwN.dsk...
squish-pty bochs -q
==
 Bochs x86 Emulator 2.2.6
 Build from CVS snapshot on January 29, 2006
==
00000000000i[] reading configuration from bochsrc.txt
00000000000i[] Enabled gdbstub
00000000000i[] installing nogui module as the Bochs GUI
00000000000i[] using log file bochsout.txt

Waiting for gdb connection on localhost:1234

Then... from the *SAME* machine use:
pintos-gdb kernel.o

target remote localhost:1234

and issue the command:

Getting Started

• Example GDB Session

(gdb) target remote localhost:1234
Remote debugging using localhost:1234

(gdb) b thread_init
Breakpoint 1 at 0xc0101a65: file ../../threads/thread.c, line 114.

(gdb) c
Continuing.

Breakpoint 1, thread_init () at ../../threads/thread.c:114
114 {
(gdb)

Getting Started

• How to run the test suite?
vine1:~/pintos/src/threads> make check

• How to run an individual test?
vine1:~/pintos/src/threads> make build/tests/threads/alarm-multiple.result

vine1:~/pintos/src/threads/build> pintos -v -- run alarm-multiple

Useful Tools
• SCM

• CVS / SVN / git

• Development tools
• cscope, backtrace, pintos-gdb

• Data structures
• especially lists ! (pintos/src/lib/kernel/)

• Newsgroup

Advices

• Read the manual

• Read the code

• Read the manual

• Read the code

• Read the manual

• Read the code

• ...

Advices

• Spend a LOT of time reading manual and code

• Work early on Design Document

• Integrate EARLY

