Project 2--User Programs

Jason Bau
CS140 Winter ‘09

Slides Acknowledgements to previous CS140 TAs




User Program /Process

» What happens in Unix shell when!?

mythl3:~/> cp —-r pintos

2
3
4.
5

Shell handles user input

fork() and execve(“cp”,“-r pintos .”)

cp accesses file system to perform copy
cp prints messages (if any) to stdout

Cp exits

Q: What is shell doing in the mean time!?

Q: Which lines require system calls?

CS140 Fall ’09 -- Project #2 1/23/2009



Kernel/User Differentiation

Is gcc emacs

» 3 CS140 Fall 09 -- Project #2 1/23/2009



Pintos — without shell

» Tests for proj2 in userprog are user processes
How do they get run? On disk—details later

» threads/init.c
run_actions() -> run_task()
process_wait(process_execute (task));

» userprog/process.c process_execute()
creates thread running start_process()
thread loads executable file
sets up user virtual memory (stack, data, code)

starts executing user process @ _start (...)

4 CS140 Fall ’09 -- Project #2 1/23/2009



User vs. Kernel Virtual Memory

Kernel
virtual
memory

User
virtual
memory

4GB e User code cannot

address above
PHYS BASE

User stack PHYS_BASE User can only access
mapped addresses
 User access to

T unmapped address 2>
Uninit data page fault.
Init data * Kernel can page fault

User code if it accesses unmapped

user address

0

CS140 Fall ’09 -- Project #2 1/23/2009



Starting User Process

» lib/user/entry.c

volid start (int argc, char *argvl[])
exlt (main (argc, argv));

J

» Pass process start arguments on user stack

Arg |
Arg 0
ReturnValue € Stack Pointer (esp)

l

6 CS140 Fall ’09 -- Project #2 1/23/2009

{



Starting User Process

» lib/user/entry.c

volid start (int argc, char *argv[]) {
exlt (main (argc, argv));

J

» Pass process start arguments on user stack

What are types of
argv argc and argv!?
argc (Especially argv)

ReturnValue € Stack Pointer (esp)

l

7 CS140 Fall ’09 -- Project #2 1/23/2009




Setting up Starting Arguments

PHYS BASE “\0” ¢
cp —-r pintos . “os\0”
“Pint” e
argc _ 4 u_r\on P
argv[0]= “cp” CP\Q_ <
argv'1'= cc_r» ar‘gv_-3_-_
argv|[2]= “pintos” argv%
ar '3'= « » arng
ST E argv[0]
: . argv
Pictured without 4
all alignment |
elements Return Value «—— Stack Pointer

v

8 CS140 Fall ’09 -- Project #2 1/23/2009



Project 2 Assignment

» Argument passing

Already covered

» System calls
List in assighment page
We'll discuss shortly

» Process exit messages

» Denying writes to in-use executable files

9 CS140 Fall ’09 -- Project #2 1/23/2009



System Calls

» Push args same as normal function calls
» Stack pointer at syscall number

» Execute internal interrupt
int instruction

» Calling thread data available
syscall_handler(struct intr_frame *f)
Use to pass args to handler, AND ?2?

To return value to user process

10 CS140 Fall ’09 -- Project #2 1/23/2009



System Calls—File System

» You are writing syscall interface for this project

» You do NOT need to change Pintos file system code for
this project
» Users deal with file descriptors (ints)
Pintos file system uses struct file *
You design mapping
» File system is not thread-safe (proj 4).
Use coarse synchronization to protect it

I CS140 Fall ’09 -- Project #2 1/23/2009



System Calls—File System

» Reading from the keyboard and writing to the console are
special cases

» fd STDOUT FILENO
Can use putbuf (..) or putchar (..)

In src/lib/kernel/console.c

» fd STDIN_FILENO

Can use input getc(..)

In src/devices/input.h

12 CS140 Fall ’09 -- Project #2 1/23/2009



System Calls—Processes
» int wait (pid_t pid)

Parent must block until the child process pid exits
Returns exit status of the child

Must work if child has ALREADY exited

Must fail if it has already been called on child

» void exit (int status)
Exit with status and free resources

Process termination message

Communicate with wait so parent can retrieve your exit
status

13 CS140 Fall ’09 -- Project #2 1/23/2009



System Calls—Processes

» pid_t exec(const char *cmd_line)

Like unix fork () + execve ()
Creates a child process

This must not return until new process has been successfully
created (or has failed)

Generally, these three syscalls require most design +
implementation time. Do them well.

14 CS140 Fall ’09 -- Project #2 1/23/2009



System Calls—Security

» How does system recover from null-pointer segfault in
user program!?

Kill user process, schedule others, and life goes on

» How does system recover from null-pointer segfault in
kernel?

It (basically) doesn’t!

15 CS140 Fall ’09 -- Project #2 1/23/2009



Protecting the Kernel from Users

» Verify user-passed mem reference before use
Buffers
Strings
Pointers
» Check mem reference (two available techniques)
Is passed address in user memory!?
Is it mapped!?
pagedir_get page() in userprog/pagedir.c
Modify page fault handler in userprog/exception.c
Size of reference a consideration!?
» Kill the user program it passed illegal address
Remember to release any resources held

6 CS140 Fall ’09 -- Project #2 1/23/2009



Utilities—Making Disks

» User code must be on virtual hard disk

cd pintos/src/userprog

make
pintos-mkdisk fs.dsk 2 [* Create 2MB disk*/
pintos -f -q /* Format the disk */

pintos -p ../examples/echo -a echo -- -q
[* put a prog on the disk */

pintos -q run ‘echo X’ /* run the program */

|7 CS140 Fall ’09 -- Project #2 1/23/2009



Utilities—Making Disks

» Recommend making a backup disk w/programs in case
yours gets trashed

» User code examples in src/examples

» You can write your own user code for test,
but don’t NEED to.

18 CS140 Fall ’09 -- Project #2 1/23/2009



Getting Started

» Make a disk and add some simple programs
Run make in src/examples

Maybe some of the first tests (args-*)

» Temporarily setup stack to avoid page faulting
esp = esp - 12;

» Basic syscall handler
Which syscall to dispatch

Reading from user memory address
» Skeleton exit system call body
» Handle write() syscall to STDOUT_FILENO

» Change process_wait() to infinite loop to instead of exit

19 CS140 Fall ’09 -- Project #2 1/23/2009



Utilities—debugging user code

» Start pintos—-gdb as usual
» add-symbol-file program.o

» Set breakpoints, etc, in user code

Kernel names take precedence over user code

To change:
pintos—-gdb userprog
Then add-symbol-file kernel.o

20 CS140 Fall ’09 -- Project #2 1/23/2009



