
Project 2--User Programs

Jason Bau

CS140 Winter ‗09

Slides Acknowledgements to previous CS140 TAs

User Program/Process

 What happens in Unix shell when?

myth13:~/> cp –r pintos .

1. Shell handles user input

2. fork() and execve(“cp”, “-r pintos .”)

3. cp accesses file system to perform copy

4. cp prints messages (if any) to stdout

5. cp exits

Q: What is shell doing in the mean time?

Q: Which lines require system calls?

1/23/20092 CS140 Fall ‟09 -- Project #2

Kernel/User Differentiation

1/23/20093 CS140 Fall ‟09 -- Project #2

Pintos – without shell

 Tests for proj2 in userprog are user processes

How do they get run? On disk—details later

 threads/init.c

 run_actions() -> run_task()

 process_wait(process_execute (task));

 userprog/process.c process_execute()

 creates thread running start_process()

 thread loads executable file

 sets up user virtual memory (stack, data, code)

 starts executing user process @ _start (…)

1/23/20094 CS140 Fall ‟09 -- Project #2

User vs. Kernel Virtual Memory

User stack

Uninit data

User code

Init data

• User code cannot

address above

PHYS_BASE

• User can only access

mapped addresses

• User access to

unmapped address 

page fault.

• Kernel can page fault

if it accesses unmapped

user address

User

virtual

memory

4GB

PHYS_BASE

Kernel

virtual

memory

0

1/23/20095 CS140 Fall ‟09 -- Project #2

Starting User Process

 lib/user/entry.c

void _start (int argc, char *argv[]) {

exit (main (argc, argv));

}

 Pass process start arguments on user stack

Return Value

Arg 0

Arg 1

Stack Pointer (esp)

1/23/20096 CS140 Fall ‟09 -- Project #2

Starting User Process

 lib/user/entry.c

void _start (int argc, char *argv[]) {

exit (main (argc, argv));

}

 Pass process start arguments on user stack

Return Value

argc

argv

Stack Pointer (esp)

What are types of

argc and argv?

(Especially argv)

1/23/20097 CS140 Fall ‟09 -- Project #2

Setting up Starting Arguments

cp –r pintos .

argc = 4

argv[0]= ―cp‖

argv[1]= ―-r‖

argv[2]= ―pintos‖

argv[3]= ―.‖

Pictured without
all alignment
elements Return Value

4

argv[0]

Stack Pointer

argv[1]

argv[2]

argv[3]

“cp\0”

“-r\0”

“pint”

“os\0”

“.\0”

argv

PHYS_BASE

1/23/20098 CS140 Fall ‟09 -- Project #2

Project 2 Assignment

 Argument passing

 Already covered

 System calls

 List in assignment page

 We‟ll discuss shortly

 Process exit messages

 Denying writes to in-use executable files

1/23/20099 CS140 Fall ‟09 -- Project #2

System Calls

 Push args same as normal function calls

 Stack pointer at syscall number

 Execute internal interrupt

 int instruction

 Calling thread data available

 syscall_handler(struct intr_frame *f)

 Use to pass args to handler, AND ???

 To return value to user process

1/23/200910 CS140 Fall ‟09 -- Project #2

System Calls—File System

 You are writing syscall interface for this project

 You do NOT need to change Pintos file system code for

this project

 Users deal with file descriptors (ints)

 Pintos file system uses struct file *

 You design mapping

 File system is not thread-safe (proj 4).

 Use coarse synchronization to protect it

1/23/200911 CS140 Fall ‟09 -- Project #2

System Calls—File System

 Reading from the keyboard and writing to the console are

special cases

 fd STDOUT_FILENO

 Can use putbuf(…) or putchar(…)

 In src/lib/kernel/console.c

 fd STDIN_FILENO

 Can use input_getc(…)

 In src/devices/input.h

1/23/200912 CS140 Fall ‟09 -- Project #2

System Calls—Processes

 int wait (pid_t pid)

 Parent must block until the child process pid exits

 Returns exit status of the child

 Must work if child has ALREADY exited

 Must fail if it has already been called on child

 void exit (int status)

 Exit with status and free resources

 Process termination message

 Communicate with wait so parent can retrieve your exit

status

1/23/200913 CS140 Fall ‟09 -- Project #2

System Calls—Processes

 pid_t exec(const char *cmd_line)

 Like unix fork() + execve()

 Creates a child process

 This must not return until new process has been successfully

created (or has failed)

Generally, these three syscalls require most design +

implementation time. Do them well.

1/23/200914 CS140 Fall ‟09 -- Project #2

System Calls—Security

 How does system recover from null-pointer segfault in

user program?

 Kill user process, schedule others, and life goes on

 How does system recover from null-pointer segfault in

kernel?

 It (basically) doesn‟t!

1/23/200915 CS140 Fall ‟09 -- Project #2

Protecting the Kernel from Users

 Verify user-passed mem reference before use

 Buffers

 Strings

 Pointers

 Check mem reference (two available techniques)

 Is passed address in user memory?

 Is it mapped?

 pagedir_get_page() in userprog/pagedir.c

 Modify page fault handler in userprog/exception.c

 Size of reference a consideration?

 Kill the user program it passed illegal address

 Remember to release any resources held

1/23/200916 CS140 Fall ‟09 -- Project #2

Utilities—Making Disks

 User code must be on virtual hard disk

cd pintos/src/userprog

make

pintos-mkdisk fs.dsk 2 /* Create 2MB disk*/

pintos -f -q /* Format the disk */

pintos -p ../examples/echo -a echo -- -q

/* put a prog on the disk */

pintos -q run „echo x‟ /* run the program */

1/23/200917 CS140 Fall ‟09 -- Project #2

Utilities—Making Disks

 Recommend making a backup disk w/programs in case

yours gets trashed

 User code examples in src/examples

 You can write your own user code for test,

but don‟t NEED to.

1/23/200918 CS140 Fall ‟09 -- Project #2

Getting Started

 Make a disk and add some simple programs

 Run make in src/examples

 Maybe some of the first tests (args-*)

 Temporarily setup stack to avoid page faulting

 esp = esp - 12;

 Basic syscall handler

 Which syscall to dispatch

 Reading from user memory address

 Skeleton exit system call body

 Handle write() syscall to STDOUT_FILENO

 Change process_wait() to infinite loop to instead of exit

1/23/200919 CS140 Fall ‟09 -- Project #2

Utilities—debugging user code

 Start pintos-gdb as usual

 add-symbol-file program.o

 Set breakpoints, etc, in user code

 Kernel names take precedence over user code

 To change:

 pintos-gdb userprog

 Then add-symbol-file kernel.o

1/23/200920 CS140 Fall ‟09 -- Project #2

