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This is an open-book exam. You have 50 minutes to answer as many questions as pos-
sible. The number in parenthesis at the beginning of each question indicates the number of
points given to the question. Write all of your answers directly on the paper. Make your

answers as concise as possible. Sentence fragments ok.

NOTE: We will take off points if a correct answer also includes incorrect or
irrelevant information. (I.e., don’t put in everything you know in hopes of say-
ing the correct buzz word.)

Question || Points | Score
1 25
2 10
3 10
4 15
total 60
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1. Short-attention-span questions (25 points)
Answer each of the following questions and, in a sentence or two, say why your answer holds.
(5 points each).

1. When would you expect base and bounds to have better performance than page-based
virtual memory?

A large process that fits in main memory and randomly references its address space.
Page based VM will suffer many TLB faults.

2. Why could two independent processes P1 and P2 that run correctly with paging pos-
sibly deadlock when paging is disabled?

Typical hold and wait problem. Assume both P1 and P2 initially use a MB of memory,
need 8MB in total to complete, but the machine only has 8MB 1in total. They will both
be able to start, but won’t be able to finish and will stay, tying up memory.

3. If we link libraries dynamically instead of statically, how can we still warn about un-
resolved symbols at static link time?

Search the symbol table of all dynamic libraries at static link time.

4. In class, we discussed how to combine segmentation and page-based virtual memory.
Why would you expect that reversing the way we implemented this (so that segments
map virtual address ranges and page tables map segment tables) to not nearly be as
useful?

this loses use the advantage of page tables (large virtual address spaces patched together
from non-contiguous memory), while keeping the overhead of the two level scheme. In
addition, segment tables are small, so building them from pages doesn’t buy you any-
thing (and may lose because of internal frag).



2. Big time monitor fun (10 points)
Monitor M1 has called monitor M2, which has decided to wait on a condition.

1. Assume that M2 has no calls into M1 or any other monitor. What problem could
happen if we release M2’s lock, but not M1’s? (Also, please give a quick example.)

Deadlock. FExample: T1 did the nested call from M1 into M2 and is now suspended
waiting for a signal; T2 will issue the signal, but only after first calling into M1:

T2
M1.foo();
M2.some_method_that_will_signal _T1();

because we hold M1’s lock, T2 won’t be able to finish the M1 call and we will deadlock.

Points:

e You get two points for mentioning deadlock.
e You get another point if you mention that it’s M1’s lock that causing the deadlock.

e [f the solution is correct and an example is given you get full credit, however one
point may be deducted if the explanation is too vague, or there is extra, incorrect
information.

e You get only one point if your explanation resembles what deadlock is, or you
mention deadlock but has other incorrect information (such as mentioning dead-
lock and race-conditions)

2. What problem could happen if we release both M1’s lock and M2’s lock? (Also, please
give a quick example.)

We’ve violated mutual exclusion, since we allow another thread to run. This could
violate any conditions M1 was depending on.

o -1 if you mentioned that both M1 and M2’s data can be corrupted.

e -2 if there is no example, or you mentioned M2’s data can be corrupted without
mentioning M1’s data may be corrupted.

e Further points may be deducted if there is extra, incorrect information.

e Also accepted one solution of livelock if you explicitly gave the scenario of how the
locks may be required out-of-order. Any other answer with livelock without this
scenario s rejected.



3. We have a winner (10 points)

Assume we change lottery scheduling to be deterministic. As with normal lottery scheduling
we want threads to receive the CPU in proportion to the number of tickets they have. For
example, if a thread T1 has 10 tickets and T2 has 1, we would want T1 to get 10 times as
much of the CPU as T2.

1. (5 points) We track two things for each thread: (1) the number of cycles it has con-
sumed and (2) the number of tickets it has. How can we use these to calculate which
thread to run? Please give both a formula and a description of what your formula is
trying to accomplish.

calculate cycles/tickets for all threads and take the minimum, (or invert and take
mazx, though that will lead to more roundoff error.

Points:

e b points: correct ratio, correctly specificied to choose largest or smallest ratio for
all threads in system.

4 points: mized up choice of smallest/largest

3 points: used numCycles/numTickets in some sort of ratio, but didn’t explain its
use.

2 points: some sort of ratio, not correct numbers

1 points: some other incorrect algorithm (usually included

2. (5 points) Assume T1 and T2 have been running on the system for a while. If a new
thread T3 enters the system, why would it be better to set the cycles it has consumed
to the minimum of those used by T1 and T2 rather than initializing it to 07

T3 will monopolize the CPU until it “catches up” with T1 and T2. Points:

e b points: explicitly stated that T3 would completely monopolize the CPU until its
numCycles/numTickets caught up with the other threads

4 points: said T3 would be favored to run, but didn’t state it would starve threads
T1 and T2.

3 points: T3 would somehow benefit, but vague.

2 points: Said T3 would starve (opposite is true)

1 points: Something related to thread choice fairness



4. What happened? (15 points)
Assume you have implemented a simple fork/join interface:

int fork(void (*fp)(int *), int *data);
void join(void);

Where fork will create a thread that runs the procedure pointed to by fp with data as its
sole argument and join will block until all threads forked by the current thread have exited.
You plan use the world-famous fibonacci routine as your killer app. Taking the sequential
version:

int fib(int n) {
if(n <= 1)
return 1;
else
return fib(n - 1) + fib(n - 2);
}

You change it to the (clumsier) fork/join based version:

int fib_fork(int *n) {

if(*n <= 1)
*n = 1;

else
int n1 =n -1, n2 =n - 2;
fork(fib_fork, &nil);
fork(fib_fork, &n2);
join(); /* join both threads */
*n = nl + n2;

1. (5 points) Using your knowlege of the overheads of fork and join, when (if ever) would
you expect the fork-based fib routine to be faster than the sequential version? (While
you should roughly relate your answer to n and the number of processors available a
formula is not necessary.)

fork/join will have fairly high overhead compared to a fibonnacci invokation, so we’ll
need pretty high values of n, and a fair number of multiprocessors. -2 to -3 if you
mention the right intuition, but do not relate to n and number of processors.

2. (5 points) Assume you run forked threads in seperate process address spaces. What
problem will this cause for our use of n1 and n2?



They will be on the stack; so the stack addresses we pass in will mean different things in
other address spaces. You’ll either get a segfault or corrupt random parts of memory.

. (5 points) Assume you are on a uniprocessor. Since there is no parallelism you decide
to reduce fork/join overhead by changing fork to immediately call its given procedure
and join to do nothing:

int fork(void (*fp)(), int *x) { fp(x); }
void join() { }

While this hack works great for fib_fork why might you expect it to cause other more
complex programs to hang?

Because we run code sequentially, we won’t be able to run threads out of order: if
there are circular depenedencies, can now deadlock. -2 if you gave an example but did
not explicitly talk about circularity.



