Lecture 11: Wireless Networking

Outline

• Wireless physical layer challenges
 - Signal, noise, modulation
 - A little bit of EE goes a long way

• Wireless link layers
 - Hidden terminals, exposed terminals
 - CSMA/CA
 - RTS/CTS

• Wireless routing and throughput

Ethernet: 802.3

• Dominant wired LAN technology
 - 10BASE5 (vampire taps)
 - 10BASE-T, 100BASE-TX, 1000BASE-T

• Frame format:

<table>
<thead>
<tr>
<th>Payload</th>
<th>SFD</th>
<th>Type/Len</th>
<th>Src</th>
<th>Dest</th>
<th>CRC</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>46-1500 bytes</td>
<td>7 x 10101010</td>
<td>10101011</td>
<td>6 bytes</td>
<td>6 bytes</td>
<td>2 bytes</td>
<td>4 bytes</td>
</tr>
</tbody>
</table>

Physical Layer (Layer 1)

• Responsible for specifying the physical medium
 - Category 5 cable (Cat5): 8 wires, twisted pair, RJ45 jack
 - WiFi wireless: 2.4GHz

• Responsible for specifying the signal
 - 100BASE-T: 5-level pulse amplitude modulation (PAM-5)
 - 802.11b: Binary and quadrature phase shift keying (BPSK/QPSK)

• Responsible for specifying the bits
 - 100BASE-T: 4-to-6 bit-to-chip encoding, 3 chip symbols
 - 802.11b: Barker code (1-2Mbps), complementary code keying (5.5-11Mbps)

Wireless is Different

• Variable: signal attenuates over space

• Interference: other RF sources can interfere with signal

• Multipath: signal can self-interfere

• Distributed: nodes cannot detect collisions

• To address these differences, wireless link layers use slightly different mechanisms

• Also, can't just abstract away the physical and link layers: need a brief introduction to underlying EE

Attenuation Over Space

• Signal weakens as distance from transmitter increases

• Reflections, obstructions, etc. complicate the attenuation

• Depending on the antenna, not uniform in all directions

• Much more complex than the wired model
Interference

- In unlicensed bands (e.g., 802.11), there are lots of transmitters
 - 802.11 cards
 - 802.15.1 (Bluetooth)
 - 802.15.4 (ZigBee)
 - 2.4GHz phones
 - Microwave ovens
- This interference can be stronger or weaker than the signal, and can prevent successful reception

Analog Signals

Specifying the Signal: Modulation

<table>
<thead>
<tr>
<th></th>
<th>1 0 1</th>
<th>1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Off Keying (OOK)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude Shift Keying (ASK)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modulation, Continued

<table>
<thead>
<tr>
<th></th>
<th>1 0 1</th>
<th>1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Shift Keying (FSK)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Shift Keying (PSK)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I/Q Modulation

- I: in-phase, Q: quadrature
- Sum of two sines is a sine
- Show what the carrier looks like compared to a simple, unmodulated signal
- Use I/Q because this is how it’s actually done in hardware

Example measurements from 16-QAM

Signal, Noise, and Interference

- Signal: energy of desired transmission
- Noise/Noise floor: energy of hardware thermal effects
- Interference: energy of other transmitters
- Usually measured in dBm/dBW: 0dBm = 1mW, 0dBW = 30dBm = 1W
 - Note dB is a logarithmic scale: 10dBm = 10mW, 20dBm = 100mW

Signal Plus Noise
SINR

- Signal to Interference-and-Noise Ratio
- Measured in dB: \(\frac{|S|}{|N+I|} \)
 - \(S = -50\text{dBm}, N+I = -95\text{dBm}, \text{SINR} = 45\text{dB} \)
 - \(S = -89\text{dBm}, N+I = -93\text{dBm}, \text{SINR} = 4\text{dB} \)
- SINR is particularly critical in wireless because of attenuation over space

Bit Error Rates

- There is a theoretical limit on how much information a channel can carry (Shannon limit)
- Bit error rate depends on the SINR and the modulation
- This is why wireless link layers use more complex chip/bit encoding
 - If signal is strong (high SINR), have few chip errors, can use low encoding
 - If signal is weak (low SINR), have many chip errors, use higher encoding to recover from errors

Variable Bit Rates

- 802.11b supports 1, 2, 5.5, and 11Mbps
- 2, 5.5Mbps and 11Mbps are QPSK
- To support this, the signal field says what the data rate is
 - 00001010: 1Mbps (11 chips/bit, barker code)
 - 00010100: 2Mbps (11 chips/bit, barker code)
 - 00110111: 5.5Mbps (2 chips/bit, CCK)
 - 01101110: 11Mbps (1 chip/bit, CCK)
- So the header is still at 1Mbps, even if the data is at 11Mbps

Collisions are not so simple

- If A transmits first, B can still decode its packet
- If C transmits first, A will corrupt its packet and B can’t decode C’s packet
- What if AB and BC are both -60dB?
- Signal strength matters: this is the RF capture effect

802.11 Packet Loss Rates
802.11 Packet Loss Rates (at 11Mbps)

- How does this affect TCP?

Wireless PHY Summary
- Can’t control or limit the channel
- Need to deal with weak signals, interference, etc.
- Signal strength affects collisions
- Many different kinds of modulation: amplitude, frequency, phase
- Use robust encodings when needed, use fast speeds when possible
- Lots of intermediate packet delivery ratios

MAC Layer Responsibilities
- Arbitrate control of the channel
- One node should be able to use 100%
- Multiple nodes should get a fair share
- Want high utilization under contention

CA versus CD
- Collision detect (CD) is hard in wireless
- Local signal is much stronger than anything received
- Protocols use collision avoidance (CA) by sensing the channel
Simple MAC: CSMA/CA

- 1) Wait a small random period, check the channel
- 2) If the channel is busy, go to 1 (maybe longer wait)
- 3) Transmit packet

802.11b MAC: CSMA/CA

- Maintain a waiting counter c
- For each time step channel is idle, c =
- When $c = 0$, transmit
- If packet is not acknowledged (layer 2), pick a new, larger c
 - Use lack of layer 2 ack as collision detect

Problems with CSMA/CA

- Want to know state of channel at receiver, not transmitter
- But wireless is not transitive!
 - A hears B
 - A hears C
 - B and C may not hear each other
 - B and C can only sense their channel, but need to know if A's channel is clear

Hidden Terminal Problem

- B and C can't hear each other, A can hear both
- B and C sense a clear channel, transmit, and collide at A
- B is a *hidden terminal* to C, and C is a *hidden terminal* to B

Exposed Terminal Problem

- A transmits to B
- C hears the transmission, backs off, even if it wants to transmit to D
- C is an *exposed* terminal to A's transmission

RTS/CTS

- Request-to-send, Clear-to-send (RTS/CTS)
- Allows transmitter to check availability of channel at receiver
- Transmitter sends an RTS
- If it hears a CTS, sends data
- If not, retries RTS some time later
- If you hear a CTS for someone else, don't transmit
802.11b supports RTS/CTS
- NAV is a data structure node used to know when the channel may be clear
- NAV is in terms of time: variable bit rates, RTS, etc.

RTS/CTS Benefits
- Solves the hidden terminal problem (assuming CTS not corrupted)
- In practice, not true: a node’s CTS can collide with another node’s RTS
- In practice, can reduce but not solve the hidden terminal problem on data
- Control packets still collide
- Improves data packet delivery ratio
- Does it solve the exposed terminal problem? What about ACKs?

RTS/CTS Drawbacks
- 3 packets per packet: RTS/CTS/DATA (4-22% overhead in 802.11b)
- RTS still go through CSMA: they can be lost
- CTS losses cause lengthy retries
- 33% of IP packets are TCP ACKs: is it worth it?
- In practice, WiFi doesn’t use RTS/CTS
802.11 Association

- Terminal hears beacon from AP (scan channels), or sends a probe request.
- Terminal sends an authentication request, AP sends authentication response:
 - If security is enabled, use keys
 - Also “null” authentication
- Terminal sends association request, AP sends association response.

Association Continued

![Diagram of IEEE 802.11 association process](image)

2.4GHz Band

![2.4GHz Band Diagram](image)

Wireless Routing

- Network is much more dynamic
- Not constrained by physical topology
- Discovering and estimating links to neighbors
- Discovering and maintaining routes to nodes
- Rich area of study: we’ll just touch on link cost

Hopcount Considered Harmful

- Minimizing hopcount causes protocol to choose long links
- Links are more likely to be on edge of SNR/PRR curve:
 - Less stable
 - Require more maintenance
- One way wireless routing is different
- OLSRv2 adds the concept of link metrics
DSDV and Hopcount on Roofnet

- From DeCouto et al., “A High-Throughput Path Metric for Multi-Hop Wireless Routing.”

Variations Across Hopcounts

- From DeCouto et al., “A High-Throughput Path Metric for Multi-Hop Wireless Routing.”

Expected Transmissions (ETX)

- Proposed by DeCouto et al.
- Alternative metric: ETX, number of transmissions until you receive an ACK
- Cost of link is $\frac{P_R A B \cdot A R R_{A B}}{E T X_{A B}}$
 - $P_R A B = 75\%, A R R_{A B} = 66\%, E T X_{A B} = 2.0$
 - $P_R A B = 50\%, A R R_{A B} = 50\%, E T X_{A B} = 4.0$
- Cost of route is sum of ETX values of links on route

ETX Benefits

- From DeCouto et al., “A High-Throughput Path Metric for Multi-Hop Wireless Routing.”

Link Metrics Today

- Rough consensus that ETX/ETT is the right metric
 - Addresses intermediate links
 - Can be used across link layers
- No consensus on how to estimate the value
 - Several proposals
 - Still an active area of research
- Issue: conflates hopcount and link quality, making loops very easy (100% → 33% can look like 2 more hops)
- Issue: minimizes delay, does not maximize throughput

ETX Is Not Enough

- 802.11b supports four different bit rates
- ETX can select the route, but not the bitrate
- One packet at 11Mbps ≠ one packet at 1Mbps
- Solution: Estimated Time of Transmission (ETT)
 - Probe at different bit rates
 - Choose link bit rate based on minimum cost
Throughput Dropoff

- Only every third node can transmit, or you get the hidden terminal problem
- In TCP, data and ack packets cause the hidden terminal problem

Wireless Routing

- Maintaining consistent, distributed state on a dynamic system
- Preventing loops via serialization or source routing
- On-demand versus continuous
- ETX/ETT better metric than hopcount