Topics Today

- Physical layer: chips versus bits
- Link layer and media access control (MAC)
- Ethernet
- Hubs and Switches
- MPLS

Physical layer: chips versus bits

- Physical Layer (Layer 1)
 - Responsible for specifying the physical medium
 - Category 5 cable (Cat5): 8 wires, twisted pair, RJ45 jack
 - WiFi wireless: 2.4GHz
 - Responsible for specifying the signal
 - 100BASE-T: 5-level pulse amplitude modulation (PAM-5)
 - 802.11b: Binary and quadrature phase shift keying (BPSK/QPSK)
 - Responsible for specifying the bits
 - 100BASE-T: 4-to-6 bit-to-chip encoding, 3 chip symbols
 - 802.11b: Barker code (1-2Mbps), complementary code keying (5.5-11Mbps)
Specifying the signal

- **Chips versus bits**
 - Chips: data (in bits) at the physical layer
 - Bits: data above the physical layer

- **Physical layer specifies Analog signal ↔ chip mapping**
 - On-off keying (OOK): voltage of 0 is 0, +V is 1
 - PAM-5: 000 is 0, 001 is +1, 010 is -1, 011 is -2, 100 is +2
 - Frequency shift keying (FSK)
 - Phase shift keying (PSK)
 - Don’t worry about this too much now: we’ll cover it in greater depth when we look at wireless

- **How fast can you transmit information?**
 - Depends on bandwidth and Signal/Noise ratio
 - **Shannon:** Channel capacity
 - \(C = B \log_2(1 + S/N) \)
 - \(B \) is bandwidth of line
 - \(S \) and \(N \) are average signal & noise power
 - For any transmission rate \(R < C \), can have arbitrarily low error rate
 - Example: Telephone line
 - 3 KHz b/w, 30 db S/N = \(10^{30/10} = 1000 \)
 - \(C \approx 30 \) Kbps (so 56 Kbps modems need better S/N ratio)
 - Crude intuition for Shannon
 - Sample rate \(\sim B \)
 - \(V \) voltage levels encode \(\log_2 V \) bits, so bits/sample \(\sim \log_2(1 + S/N) \)

Straw man: On-off keying

<table>
<thead>
<tr>
<th>Bits</th>
<th>0 0 1 0 1 1 1 0 1 0 0 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRZ</td>
<td></td>
</tr>
</tbody>
</table>

- To transmit 0 bit, sent 0 \(V \), to transmit 1, sent +5 \(V \)
 - A bit is a chip in this scheme
- OOK a form of Amplitude Shift Keying (ASK)
 - Bits are encoded in amplitude of the signal
 - Can also have frequency shift keying (FSK)
 - And phase shift keying (PSK)
- Also an example of non-return to zero (NRZ)
 - E.g., four 1 bits transmitted by asserting +5 \(V \) for 4 clock ticks

NRZ drawbacks

- Consecutive 1s or 0s are problematic
- Non signal could be interpreted as 0s (or vice versa)
- “Baseline wander” problem
 - Where is threshold between low and high?
 - Could compare signal to average value, but avg. will drift
- Sender and receiver need synchronized clocks
 - Otherwise, can experience “bit slip”

<table>
<thead>
<tr>
<th>Sender clock</th>
<th>1 0 0 0 1 0 1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver clock</td>
<td>+1 -1 +1 -1 +1 +1 -1 -1</td>
</tr>
</tbody>
</table>

Encoding Goals

- DC balancing (same number of 0 and 1 chips)
- Clock synchronization
- Can recover from some chip errors
- Can constrain analog signal patterns to make signal more robust
- Want near-channel capacity with negligible errors
 - But Shannon only says it’s possible, doesn’t tell us how
 - Codes could also get computationally expensive
- In practice:
 - Higher encoding \(\rightarrow \) fewer bps, more robust
 - Lower encoding \(\rightarrow \) more bps, less robust
Manchester Encoding
- Map bit 0 → chips 01, bit 1 → chips 10
 - Transmission rate now 1 bit per two clock cycles
 - Like XORing an NRZ encoding with the clock

- Solves clock synchronization & baseline wander
- But cuts transmission rate in half

4B/5B
- Every 4 bits of data encoded in 5 chips
- 5-bit codes selected to have no more than one leading 0 and no more than two trailing 0s
 - thus, never get more than three consecutive 0s
- 16 codes used for all 4-bit sequences
- Resulting 5-bit codes are transmitted using NRZI
- Remaining codes used for other purposes
 - E.g., 11111 – line idle, 00000 – line dead, …
- Achieves 80% bit/chip efficiency

802.15.4
- Standard for low-rate wireless personal networks
 - Must tolerate high chip error rates
- Uses a 32-to-4 chip-to-bit encoding

Physical Layer Frames
- Usually minimalist: "here’s N bytes"
 - Start symbol/preamble
 - Length field
 - Payload (link layer frame)

Link Layer Responsibilities
- Single-hop addressing (e.g., Ethernet addresses)
- Media access control
 - Link-layer congestion control
 - Collision detection/collision avoidance
- Single-hop acknowledgements
Ethernet: 802.3

- Dominant wired LAN technology
 - 10BASE5 (vampire taps)
 - 10BASE-T, 100BASE-TX, 1000BASE-T

- Frame format:

<table>
<thead>
<tr>
<th>Physical</th>
<th>Link</th>
<th>Layer 3</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>SFD</td>
<td>Src</td>
<td>Dest</td>
</tr>
<tr>
<td>7 x 10101010</td>
<td>10101011</td>
<td>6 bytes</td>
<td>6 bytes</td>
</tr>
<tr>
<td>Type/Len</td>
<td>Payload</td>
<td>CRC</td>
<td>Gap</td>
</tr>
<tr>
<td>2 bytes</td>
<td>46-1500 bytes</td>
<td>4 bytes</td>
<td>96 ns, 960 ns, 9600 ns</td>
</tr>
</tbody>
</table>

Ethernet Addressing

- Each Ethernet card has a unique 48-bit ID
 - Example: www.scs.stanford.edu has 00:07:e9:0f:1f:3e
 - Example: myth15 has 00:1e:c9:2f:a2:9c

- 24-bit organizationally unique identifier, 24-bit ID
 - 0x000000-0x000009: Xerox
 - 0x0007e9: Intel (www.scs)
 - 0x001ec9: Dell (myth15)

Media Access Control (MAC)

- Control access to shared physical medium
 - E.g., who can use coax/radio when?
 - If everyone talks at once, no-one hears anything
 - This job falls to the link layer

- Prevent collisions by controlling when nodes send

- Variety of approaches
 - Time Division Multiple Access (TDMA)
 - Carrier Sense Multiple Access, Collision Detection (CSMA/CD)
 - Carrier Sense Multiple Access, Collision Avoidance (CSMA/CA)
 - Request-to-send, clear-to-send (RTS/CTS)

MAC Approaches

- Channel Partitioning
 - Divide channel into smaller “pieces,” allocate pieces to nodes

- Random Access
 - Don’t divide channel, allow conflicts
 - Recover from errors caused by conflicts

 - “Taking turns”
 - Nodes take turns, but nodes with more to send can take longer turns

- Conflicting goals: maximize use of capacity
 - One node should get 100% in absence of competition
 - Multiple nodes can each get a share, not collide

Conceptual Model of Wired Media Access

<table>
<thead>
<tr>
<th>TDMA</th>
</tr>
</thead>
</table>
| Divide time into slots
 - Each device is allowed to transmit in some number of slots

<table>
<thead>
<tr>
<th>No collisions</th>
</tr>
</thead>
</table>
| Link is fully utilized when everyone transmits:
 - 1 2 3 4 1 2 3 4 1 2 3 4

| Single node cannot use all of the capacity (\(1\)):
 - 1 1 1 1

| Can’t get full link utilization unless everyone transmits:
 - 1 4 1 4 1 2 4 1 2 |
CSMA
- Node senses the channel for activity
- Transmits if it thinks the channel is idle
- CSMA/CD: can detect if there is a collision, and back off
 - Randomized backoff time, grows exponentially
 - After C consecutive collisions, wait $\text{rand}(0, 2^C) \cdot 512$
 - Drop when C grows large (in practice)

Layer 2 Acknowledgements
- Common in wireless (more on this in wireless lecture)
- If layer 2 successfully receives a frame, it immediately sends an ACK
- Assumes $t_{\text{prop}} \ll t_{\text{trans}}$
- Hypothetical situation:
 - Let’s say a router won’t send an ACK if it drops the packet
 - Let’s say a router will keep on retrying a packet until it is ACKed
 - Do we still need end-to-end ACKs?

2-minute stretch

Collision Detect (10base2 Ethernet)
- Detect collision when average voltage spikes
 - 10base2 uses Manchester encoding
 - Has constant average voltage unless multiple transmitters
- When a node detects a collision
 - Broadcasts jam signal to ensure other nodes drop packet
- Collision detection constrains protocol
 - Imposes min. packet size (64 bytes)
 - Imposes maximum network diameter (2800 m)
 - Ensure transmission time \geq twice propagation time—why?

Violating Timing Constraints
- Without min packet size, might miss collision
Ethernet Efficiency

- One node can use full link capacity
- Assuming RX/TX turnaround time of zero
 - As $n \to \infty$, use $= \frac{1}{1+\frac{t_{prop}}{t_{trans}}}$
 - If $t_{prop} \to 0$, efficiency approaches 1
 - If $t_{trans} \to \infty$, efficiency approaches 1
 - If $t_{prop} = t_{trans}$, efficiency approaches 16%.

Ethernet Capture Effect

- Exponential backoff leads to self-adaptive use of channel
- When a node succeeds, it transmits the next packet immediately
- Result: bursts of packets from single nodes

Ethernet Speeds

- Network diameter limits:
 - 10Mbps: 2800m
 - 100Mbps: 205m
 - Gigabit: 205m!
- Gigabit Ethernet
 - Uses more of the CAT5 wires (125 MHz · 8 signals)
 - Pad with dummy data (signal extension) for CD
 (so min packet size is now 512 bytes, not bits)

Hubs and Switches

- Hub: connects multiple Ethernet segments to act like a single segment (shared collision domain, physical layer connectivity)
- Switch: store and forward between segments (single collision domains, link layer connectivity)
- Very little Ethernet today is shared
 - Means collision detection never triggered (duplex, separate RX and TX wires)
 - 10Gbps Ethernet standard does not allow shared medium

Bridges and extended LANs

- LANs have physical limitations (e.g., 208 m)
- Connect two or more LANs with a bridge
 - Operates on Ethernet addresses
 - No encapsulation required
- Ethernet switch like a multi-way bridge
Learning bridges

- Idea: Don’t forward packet if not useful
 - If you know recipient is not on that port
- Learn host's location based on source address
 - Switch builds a table when it receives packets

Table says when *not* to forward packet
- Does not need to be complete for correct behavior
- Spanning tree algorithm avoids loops

MPLS

- Multiprotocol Label Switching
- Sits between layer 2 and 3 (“layer 2.5”)
- Prepend a “label” to frame
- Switch in terms of label, rather than destination address
 - Two packets to the same destination can take different paths
 - Separating addressing from forwarding enables traffic engineering
 - Label changes from input to output

MPLS packet format

- 20-bit label
- 3 experimental bits
- 1 “bottom of stack bit”
 - Allows multiple MPLS headers to be stacked in a packet
- 5-bit TTL (since network-level TTL not used)

MLPS Architecture

- Label Edge Routers (LERs)
 - Talks to regular IP routers and MPLS-enabled ones
- Label Switch Routers (LSRs)
 - E.g., The core routers in a large backbone provider
- Label Distribution Protocol (LDP)
- Label Forwarding Information Base (LFIB)

Example MPLS (from textbook)