IPSec, TLS, and DNSSEC
Three Major Secure Protocols

- Last lecture presented mechanisms
- This lecture presents 3 examples of their use
 - Layer 3: IPSec
 - Layer 4: TLS
 - Layer 7: DNSSEC
IPSec Overview

- Layer 3: between hosts, covers both IPv4 and IPv6 [RFC 4301]
- AH: IP Authentication Header (MAY, [RFC 4302])
- ESP: Encapsulated Security Payload (MUST, [RFC 4303])
- Very comprehensive: this lecture will only cover some of the basics (no multicast, combined ESP+AH, IPv6, etc.)
IPSec Operation [RFC 4301]

- Hosts can use IPSec directly ("transport mode")
- Security gateways can tunnel traffic through IPSec ("tunnel mode")

- Security Associations (SAs) specify security services for traffic in a half-duplex "connection"
 - Bi-directional traffic requires two SAs
 - Security Parameters Index (SPI) field specifies SA in unicast traffic

- Security Association Database (SAD) maintained at each endpoint
 - Packets processed based on SA, src/dest IP address
 - SAD managed "semi-manually"
Transport Mode vs. Tunneling Mode

• Transport mode operates directly on top of IP
 - Next header is TCP, UDP, etc.
 - IPSec header interposes between IP and transport header

• Tunneling mode encapsulates entire IP packet
 - Next header is IP
 - Separate source, destination addresses
Encapsulating Security Payload [RFC 4303]

• Provides confidentiality, integrity, or both
• Next header field specifies payload
Transport vs. Tunneling

Tunneling mode (IPv4, TCP)

<table>
<thead>
<tr>
<th>dest IP address</th>
<th>Security Parameter Index</th>
<th>Sequence Number</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>pktlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prot=6</td>
<td>checksum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>src IP address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dest IP address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP header, payload</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>padding</td>
<td>plen</td>
<td>nhdr=4</td>
<td></td>
</tr>
<tr>
<td>integrity tag</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transport mode (TCP)

<table>
<thead>
<tr>
<th>dest IP address</th>
<th>Security Parameter Index</th>
<th>Sequence Number</th>
<th>src port</th>
<th>dest port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acknowledgment Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rest of TCP header, payload</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padding</td>
<td>plen</td>
<td>nhdr=6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>integrity tag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ESP Algorithm Support Complications

• Some algorithms require an initialization vector (IV), e.g. CBC

• Some algorithms integrate confidentiality and integrity (“combined mode algorithms”)
 - If confidentiality is required for integrity, need to repeat SPI and sequence number

• Algorithm can specify payload substructure (append/prepend data)
ESP details

• **Must avoid replays**
 - Keep counter for 64-bit sequence number
 - Receiver must accept some packets out of order (e.g., up to 32)
 - Only low 32 bits of sequence number in actual packet
 (would be bad if you lost 4 billion packets)

• **Support for traffic flow confidentiality (TFC)**
 - Can pad packets to fixed length
 - Can send dummy packets

• **Support for encryption without MAC… Bummer!**
 - Rationale: App might be SSL, which has MAC-only mode
 - But then attacker can mess with destination address!
Security Gateways

Host A
Protected Network
Secure Gateway
Unprotected Network
Secure Gateway
Protected Network
Host B
IPSec Complication: NAT

- Transport mode can encrypt transport header, integrity covers transport header
- NAT needs to rewrite transport header!
- NAT-T [RFC 3948], tunnel IPSec in UDP
Internet Key Exchange (IKEv2, [RFC 4306])

- Can establish SAs for IPSec
- UDP port 500, designed to work over NATs
- All messages are request/response exchanges, use Diffie-Hellman
 - Alice and Bob have secrets a, b, public values g, p
 - Alice computes $A = g^a \mod p$, Bob $B = g^b \mod p$
 - Exchange A and B, Alice computes $s = B^a \mod p$, Bob $s = A^b \mod p$
 - Both s are $g^{ab} \mod p$: shared secret
IKEv2 Exchanges

- **IKE_SA_INIT**: negotiate crypto algorithms, establish a shared secret
- **IKE_AUTH**: authenticate INIT messages, exchange certificates, establish first SA
- **CREATE_CHILD_SA**: create a new SA, renegotiate keys for an SA
- **INFORMATIONAL**: Notification, Delete, and Configuration
IPSec Overview

- Layer 3 security, transport and tunneling mode
- Tunneling mode supports security gateways
- Transport mode has trouble with NATs
- Security specified by SPI, SAs established manually or through IKE
TLS/SSL
SSL/TLS [RFC 5246] Overview

• SSL offers security for HTTP protocol
 - That’s what the padlock means in your web browser

• Authentication of server to client

• Optional authentication of client to server
 - Incompatibly implemented in different browsers
 - CA infrastructure not in widespread use

• Confidentiality of communications

• Integrity protection of communications
Purpose in more detail

• **Authentication based on certification authorities (CAs)**
 - Certifies who belongs to a public key (domain name and real name of company)
 - Example: Verisign

• **What SSL Does Not Address**
 - Privacy
 - Traffic analysis
 - Trust management
Ciphersuites: Negotiating ciphers

- Server authentication algorithm (RSA, DSS)
- Key exchange algorithm (RSA, DHE)
- Symmetric cipher for confidentiality (RC4, DES, AES)
- MAC (HMAC-MD5, HMAC-SHA)
Overview of SSL Handshake

Supported ciphers, client random

Chosen cipher, server random, certificate

Encrypted pre-master secret

Compute keys

MAC of handshake messages

Compute keys

MAC of handshake messages

From “SSL and TLS” by Eric Rescorla
SSL Handshake

- Client and server negotiate on cipher selection
- Cooperatively establish session keys
- Use session keys for secure communication
- Details
 - Multiple messages per stage
 - Get an idea of protocol in action:
 openssl s_client -connect www.paypal.com:443
Client Authentication Handshake

- Server requests that client send its certificate
- Client signs a signed digest of the handshake messages
SSL Client Certificate

Client

Supported ciphers, client random

Chosen cipher, server random, certificate

Encrypted pre-master secret

Compute keys

MAC of handshake messages

Server

certificate request

certificate, cert verify

Compute keys

MAC of handshake messages

MAC of handshake messages

From “SSL and TLS” by Eric Rescorla
Establishing a Session Key

• Server and client both contribute randomness.

• Client sends server a “pre-master secret” encrypted with server’s public key

• Use randomness and pre-master secret to create session keys:
 - Client MAC
 - Server MAC
 - Client Write
 - Server Write
 - Client IV
 - Server IV
Establishing a Session Key

From “SSL and TLS” by Eric Rescorla
Session Resumption

- Problem: Public key crypto expensive
- New TCP connection, reuse master secret.
 - Avoids unnecessary public key cryptography.
- Combines cached master secret with new randomness to generate new session keys.
- Works even when the client IP changes (servers cache on session ID, clients cache on server hostname).
Example cross-layer issue

- TLS puts message format on top of TCP (control, application)
- Handshake through control messages before application data
- Virtual hosts: single web server that responds differently for different requested hosts (in HTTP request)
- What’s the problem?
2-minute break
Example cross-layer issue

- TLS puts message format on top of TCP (control, application)
- Handshake through control messages before application data
- Virtual hosts: single web server that responds differently for different requested hosts (in HTTP request)
- What’s the problem?
DNS Review

- Domain Name System: resource records (RRs) bind values to names
- Designed to be highly scalable, distributed administration
Structure of a DNS message [RFC 1035]

+---------------------+
| Header |
+---------------------+

+---------------------+
| Question | the question for the name server |
+---------------------+

+---------------------+
| Answer | RRs answering the question |
+---------------------+

+---------------------+
| Authority | RRs pointing toward an authority |
+---------------------+

+---------------------+
| Additional | RRs holding additional information |
+---------------------+

• Same message format for queries and replies
 - Query has zero RRs in Answer/Authority/Additional sections
 - Reply includes question, plus has RRs

• Authority allows for delegation

• Additional for glue + other RRs client might need
DNS software architecture

- Two types of query
 - Recursive
 - Non-Recursive

- Apps make recursive queries to local DNS server (1)

- Local server queries remote servers non-recursively (2, 4, 6)
 - Aggressively caches result
 - E.g., only contact root on first query ending .umass.edu
DNS Vulnerabilities

- Results cached: cache poisoning
- UDP, no session to guess
- Responses spoofable, can structure content to generate many opportunities
- Chance, but networks are always faster and one poisoned cache can be disastrous
DNSSEC [RFC 4034]

• Security extensions for DNS (new RRs):
 - DNSKEY: public key for zone
 - RRSIG: signature for a set of RRs
 - NSEC: next authoritative name
 - DS: identifying digest of DNSKEY (stored in parent zone)

• Provides integrity and authentication, not confidentiality
DNSSEC Example: www.berkeley.edu

- `dig . DNSKEY | grep -Ev '(\$|;)' > root.keys`
- `dig +sigchase +trusted-key=./root.keys
 www.berkekey.edu`
Proof of Non-Existence

• Problem: spoofed host name, maybe don’t want to sign RR

• NSEC record allows a client to verify a node does not exist

• Contains next valid name

• `dig +sigchase +trusted-key=./root.keys wws.berkekey.edu`

• `dig +sigchase +trusted-key=./root.keys wzw.berkekey.edu`

• See a problem?
Hashed Denial of Existence [RFC 5155]

• NSEC record allows an adversary to enumerate a domain

• NSEC3 record: rather than next host name, contains hash of next host name

• Couldn’t find anyone serving NSEC3...
Question 1: How do resolvers validate root DNSKEY?
Question 2: Who has the root zone private key?
Certificates
What does CA mean by certificate?

- That a public key belongs to someone authorized to represent a hostname?
- That a public key belongs to someone who is associated in some way with a hostname?
- That a public key belongs to someone who has lots of paper trails associated to a company related to a hostname?
- That the CA has no liability, or $100,000, or $250,00?
- >100-page Certification Practice Statement (CPS)
How to get a Verisign certificate

- Get DBA license from city call ($20)
 - No on-line check for name conflicts… can I do business as Microsoft?
- Letterhead from company ($0)
- Notarized document (need driver’s license) ($0)
- E.g., pay Verisign ($399–$1,499/year)

Conclusions:
- Easy to get a fraudulent certificate
- Maybe not so easy to avoid prosecution afterwards

But that’s only Verisign’s policy
- Many CAs can issue certificates
So many CAs...

<table>
<thead>
<tr>
<th>Certificate Name</th>
<th>Security Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c) 2005 TÜRKTRUST Bilgi İletişim ve Biliş...</td>
<td></td>
</tr>
<tr>
<td>AC Camerfirma SA CIF A82743287</td>
<td></td>
</tr>
<tr>
<td>AddTrusT AB</td>
<td></td>
</tr>
<tr>
<td>America Online Inc.</td>
<td></td>
</tr>
<tr>
<td>AOL Time Warner Inc.</td>
<td></td>
</tr>
<tr>
<td>AS Sertifitseerimiskeskus</td>
<td></td>
</tr>
<tr>
<td>Autoridad de Certificacion Firmaprofesional ...</td>
<td></td>
</tr>
<tr>
<td>Baltimore</td>
<td></td>
</tr>
<tr>
<td>beTRUSTed</td>
<td></td>
</tr>
<tr>
<td>Bypass AS-983163327</td>
<td></td>
</tr>
<tr>
<td>Certplus</td>
<td></td>
</tr>
<tr>
<td>certSIGN</td>
<td></td>
</tr>
<tr>
<td>Chunghwa Telecom Co., Ltd.</td>
<td></td>
</tr>
<tr>
<td>CNNIC</td>
<td></td>
</tr>
<tr>
<td>COMBO CA limited</td>
<td></td>
</tr>
</tbody>
</table>
CA Convenience vs. Security

• How convenient is a Verisign certificate?
 - Need fee + cooperation from Stanford IT to get one here
 - Good for credit cards, but shuts out many other people

• How trustworthy is a Verisign certificate?
 - In mid-March 2001, VeriSign, Inc., advised Microsoft that on January 29 and 30, 2001, it issued two… [fraudulent] certificates…. The common name assigned to both certificates is “Microsoft Corporation.”

 VeriSign has revoked the certificates…. However… it is not possible for any browser’s CRL-checking mechanism to locate and use the VeriSign CRL.

 – Microsoft Security Bulletin MS01-017
How Do You Revoke a Certificate?