CS140
 Operating Systems and Systems Programming

Midterm Exam

July 25th, 2006

Total time $\mathbf{= 6 0}$ minutes, Total Points $\mathbf{= 1 0 0}$

Name: (please print)

> In recognition of and in the spirit of the Stanford University Honor Code, I certify that I will neither give nor receive unpermitted aid on this exam.

Signature: \qquad

- This exam is closed notes and closed book.
- No collaboration of any kind is permitted.
- You have 60 minutes to complete the exam.
- There are 8 questions totaling 100 points. Some questions have multiple parts. Read all parts before answering!
- Please check that you have all 8 pages.
- Before starting, write your initials on each page, in case they become separated during grading.
- Please print or write legibly.
- Answers may not require all the space provided.

Complete but concise answers are encouraged.

- SCPD students: If you wish to have the exam returned to you at your company, please check the box.

1	
2	
3	
4	
5	
6	
7	
8	
Total	

| SCPD? |
| :--- | :--- |

\qquad

1. [20] A processor has a 32 bit address space, and combines both segmentation and paging. 4 bits for the segment, 16 for the page, and 12 for the offset. A PTE is 4 bytes. Describe in detail what happens in the MMU and OS (use generic terms not the $x 86$ terms) when:
(a) [10] A user process does a read of address 0xC0DEDBAD and it is in memory.
(b) [5] What different/more/less happens if it is paged out to disk?
(c) [5] What different/more/less happens if it is not a valid address?
\qquad
2. [10] Briefly explaining what conditions cause a thread to move between each of the 3 states, and what causes each arrow. Label it N/A if it doesn't happen.

Arrow 1:

Arrow 2:

Arrow 3:

Arrow 4:

Arrow 5:

Arrow 6:
\qquad
3. [10] If you have an OS that's designed for a single CPU, and you want to adapt it to a multi-CPU system, describe the types of changes/additions to the software or hardware you would need to make related to the synchronization primitives (locks, etc...) and why. List three.
4. [5] What do semaphores do that condition variables not do, that means you need to be careful how you start the threads?
\qquad
5. [10] Deadlocks are bad.
(a) [5] How can you prevent them?
(b) [5] How can you detect them?
\qquad
6. [10] A system you admin is thrashing, and the users are mad. (a) [5] What are some ways to get into this mess?
(b) [5] How would you prevent it from happening in YourOS?
7. [20] Linking
(a) [15] Given the following code, list the data segment, text(code) segment, def's and ref's that the linker would create. Assume each line of code is magically 4 bytes, data is also 4 bytes.

```
extern int printf( char * , ... );
extern float func( float );
float foo;
float bar;
float myfunction()
{
    printf( "hello world" );
    foo = func( 1 );
    printf( "foo 1 = %f\n", foo );
    bar = func( foo );
    return( bar );
}
```

(b) [5] If this function was placed in a dynamic shared library, describe how it gets called.
\qquad
8. [15] Scheduling
(a) [3] What's good and bad about First Come First Served?
(b) [3] What's good and bad about Round Robin?
(c) [3] What's good and bad about STCF?
(d) [3] What's good and bad about Multi-Level Feedback Queueing?
(e) [3] What's good and bad about Lottery scheduling?
\qquad

