
Tangaroa: a Byzantine Fault Tolerant Raft

Christopher Copeland and Hongxia Zhong

Abstract— We propose a Byzantine Fault Tolerant variant of
the Raft consensus algorithm, BFTRaft, inspired by the original
Raft[1] algorithm and the Practical Byzantine Fault Tolerance
algorithm[2]. BFT Raft maintains the safety, fault tolerance,
and liveness properties of Raft in the presence of Byzantine
faults, while also aiming towards to Raft’s goal of simplicity
and understandability. We have implemented a proof-of-concept
of this algorithm in the Haskell programming language.

I. INTRODUCTION

The Raft consensus algorithm is in many ways superior to
Paxos and other consensus algorithms. In designing Raft, On-
garo and Ousterhout applied specific techniques to improve
understandability, including decomposition and state space
reduction. The simplicity of Raft leads to a number of unique
advantages for both educational purposes and as a foundation
for implementation. In order to keep the Raft algorithm
simple and understandable, Raft assumes that nodes fail only
by stopping, which rarely holds in practice unfortunately.
Malicious attacks and software errors can cause faulty nodes
to exhibit Byzantine (i.e., arbitrary) behavior and conse-
quently subvert the correctness and availability guarantees
of the Raft algorithm. We aim to enhance the original Raft
algorithm such that it becomes tolerant to Byzantine server
behaviors.

A. Byzantine servers break Raft

Leader election and log replication together provide the
safety guarantees of Raft. Raft guarantees the correctness
and availability of the system even if any minority of the
nodes in a cluster fail. In the presence of Byzantine nodes,
however, Raft’s safety and availability are compromised.

1) Leader election: In the Raft algorithm, one node is
elected as leader before the system makes any progress
in a term. If the leader fails, Raft advances the term and
elects another leader. Since any node can trigger an election
and terminate the current term at any moment, a Byzantine
node can effortlessly starve the whole system by perpetual
elections, and consequently subvert Raft’s availability.

2) Log replication: Raft uses a strong form of leader-
ship that allows the distinguished leader to take complete
responsibilty for replicating log entries. Specifically, the Raft
leader serves as a single point of contact between the client
and the rest of the system: it interprets the client requests,
instructs replicas to store and commit log entries, and finally
responds with a result. A Byzantine leader could modify a
client’s request and violate correctness. A Byzantine leader
could also instruct replicas to commit a log entry before it
has been safely recorded by a quorum of replicas, causing a
correctness violation if other nodes fail and the entry is never

replicated on a quorum of nodes. Lastly, a Byzantine leader
can trivially confuse clients by responding with arbitrary
results or simply ignore all client communications. Because
Raft does not prevent a Byzantine node from becoming a
leader, the system could provide incorrect results or appear
unavailable to clients if a Byzantine leader is ever elected.
Any node that is up to date can become leader trivially by
starting an election, even if it is still receiving heartbeats
from the current leader.

These examples suggest that Byzantine nodes can sabotage
the Raft algorithm in many ways. Moreover, even non-
malicious Byzantine nodes can easily subvert the protocol if
they do not handle RPCs in the expected way. We need a few
modifications to the Raft protocol to handle such scenarios.

B. Features of BFT Raft

In designing BFT Raft, we applied similar techniques
and decomposition in order to preserve the simplicity and
understandability of Raft, but we use several modifications
and additions that provide Byzantine fault tolerance.

1) Message signatures: BFT Raft uses digital signatures
extensively to authenticate messages and verify their in-
tegrity. For example, the leader replicates client messages
along with the client signatures. This prevents a Byzantine
leader from modifying the message contents or forging
messages. Client public keys are kept separate from replica
public keys to enforce that only clients can send new valid
commands, and only replicas can send valid Raft RPCs.

2) Client intervention: BFT Raft allows clients to inter-
rupt the current leadership if it fails to make progress. This
allows BFT Raft to prevent Byzantine leaders from starving
the system.

3) Incremental hashing: Each replica in BFT Raft com-
putes a cryptographic hash every time it appends a new entry
to its log. The hash is computed over the previous hash and
the newly appended log entry. A node can sign its last hash
to prove that it has replicated the entirety of a log, and other
servers can verify this quickly using the signature and the
hash.

4) Election verification: Once a node has become leader,
its first AppendEntries RPC to each other node will contain
a quorum of RequestVoteResponse RPCs that it received
in order to become leader (this is sent before the leader
accepts any new entries from clients). Nodes first verify
that the leader has actually won an election by counting and
validating each of these RequestVoteResponses. Subsequent
AppendEntries RPCs in the same term to the same node
need not include these votes, but a node can ask for them in
its AppendEntriesResponse if necessary. This will happen if



the replica restarted and no longer believes that the current
leader won the election for that term.

5) Commit verification: In order to safely commit entries
as they are replicated, each AppendEntriesResponse RPC is
broadcast to each other node, rather than just to the leader.
Further, each node decides for itself when to increment its
commit index, rather than the leader. It does this by keeping
track of the AppendEntriesResponse RPCs received from the
other nodes, which are signed and which include the incre-
mental hash of the last entry in that node’s log. Once a node
has received a quorum of matching AppendEntriesResponse
RPCs from other nodes at a particular index, it considers
that to be the new commit index, and discards any stored
AppendEntriesResponse RPCs for previous indices.

This differs from Raft in that the leader no longer has any
special responsibility of coordinating commits. AppendEn-
triesResponse RPCs become closer to the broadcast PRE-
PARE message from PBFT. Each node can verify for itself
that a quorum of nodes have prepared up to a particular index
and have matching entries for that index and all previous
indices by checking the incremental hash.

6) Lazy Voters: A node does not grant a vote to a
candidate unless it believes the current leader is faulty. A
node comes to believe that its leader is faulty if it does
not receive an AppendEntries RPC within its own election
timeout, or it receives an UpdateLeader RPC from a client
for that leader. This prevents nodes that start unnecessary
elections from gaining the requisite votes to become leader
and starve the system.

While introducing these new rules and techniques, we
try to keep the distinguishing features of Raft as much as
possible. For example, BFT Raft also uses a relatively strong
form of leadership such that new log entries only flow from
the leader to replicas. BFT Raft also uses a randomized
election timeout. The following section explains BFT Raft’s
features in more detail.

II. BFT RAFT ALGORITHM

The BFT Raft algorithm decomposes the consensus prob-
lem into two relatively independent subproblems similar
to Raft’s decomposition: log replication (Section II.C), and
leader election (Section II.D). We designed BFT Raft to offer
the same safety guarantees as Raft, which are listed below:

Election safety: at most one leader can be elected in a
given term.

Leader Append-Only: a non-Byzantine leader never over-
writes or deletes entries in its log; it only appends new
entries.

Log Matching: if two nodes have the same incremental
hashes at the same index, then their logs are identical in all
entries up through the given index.

Leader Completeness: if a log entry is committed in a
given term, then that entry will be present in the logs of the
leaders for all higher-numbered terms.

State Machine Safety: if a non-Byzantine node has applied
a log entry at a given index to its state machine, no other
non-Byzantine node will ever apply a different log entry for
the same index.

A. BFT Raft basics
A BFT Raft cluster that tolerates f Byzantine failures

must contain at least n ≥ 3f + 1 nodes, where n− f nodes
form a quorum. BFT Raft is configured so that nodes and
clients have the public keys of each other node and client
ahead of time. BFT Raft nodes and clients always sign before
sending messages and reject messages that do not include a
valid signature. A public key cryptosystem such as RSA is
sufficient for this purpose and prevents message forgeries.
Replays are also not a problem because Raft RPCs are
idempotent. For client commands, we use a monotonically
increasing per-client identifier to detect duplicated messages.

In BFT Raft, each node is in one of the three states: leader,
follower, or candidate. Similar to Raft, BFT Raft divides
time into terms, which start with an election. The winner
of the election serves as the leader for the rest of the term.
Sometimes, an election will result in a split vote, and the
term will end with no leader.

Similar to Raft, we designed BFT Raft to maintain a high
level of coherency between nodes’ views of the current term.
In Raft, when a node receives an RPC from an outdated
peer, it will respond with the current term number in order
to update its peer. A Byzantine node can repeatedly trigger
elections, but unlike in Raft, BFT Raft nodes only update
their term number in one of three situations: (1) upon
receiving an AppendEntriesRPC that contains a quorum of
votes for the sender in a new term, (2) when responding to
a RequestVote for a higher term, or (3) when becoming a
candidate. Arbitrary RPCs with higher term numbers do not
increment a node’s term as they do in Raft.

BFT Raft nodes communicate using RPCs, and the con-
sensus algorithm requires four types of RPCs:

AppendEntries RPC: initiated by leaders to replicate log
entries, provide a heartbeat, and communicate a successful
election.

RequestVote RPC: initiated by candidates during elections.
SendRequest RPC: initiated by clients to request the

cluster to execute a command to its replicated state machines.
UpdateLeader RPC: initiated by clients to request change

of leadership.

B. Incremental hashing
Each node stores a cryptographic hash for each log entry,

called an incremental hash. To compute an incremental hash
at index i, the node computes the hash of the incremental
hash at index i−1 appended to the log entry at index i. The
recursive nature of incremental hashing enables it to verify
the integrety of all log entries up through index i. This gives
BFT Raft a variant of the log matching property that is robust
to Byzantine nodes that may re-order or drop entries from the
log. When two nodes agree on an incremental hash at index i,
they have identical log entries at index i and all entries prior
to i. The integrity of an entire log can be checked efficiently,
with a constant amount of work for each new entry.

C. Log replication
The BFT Raft cluster begins servicing client requests once

a leader has been elected. A client issues a SendRequest



RPC to a node it thinks is the leader to execute a command.
The SendRequest RPC also contains a signature and a
unique identifier for the command (typically a timestamp).
The signature guarantees the authenticity and integrity of
the client request, preventing Byzantine nodes from forging
client requests. The unique identifier prevents Byzantine
nodes from duplicating existing client requests. The signature
and unique identifier guarantee that each command will be
replicated at most once by each non-Byzantine node.

As in Practical Byzantine Fault Tolerance, clients need
to wait for f + 1 matching replies to each request before
exposing that result to application logic. This ensures that
at least one honest node decided that a particular result was
safely replicated to a quorum and should be externalized.
The client records all responses to the pending SendRequest
RPC. Each time a client receives a response to the pending
request, it resets the progress timeout. If a client has not
received a response over a period of time called the request
timeout, it resends the SendRequest RPC.

When a leader receives a SendRequest RPC, it sends a
signed AppendEntries RPCs in parallel to each replica. A
leader will include a quorum of signed votes to support its
authority in the current term on the first AppendEntries RPC
to each node in each term. Subsequent AppendEntries RPCs
can succeed without it once the leader sees a successful reply
from that node, indicating that the replica accepts that the
current leader won the election for the current term.

When a node receives an AppendEntries RPC, it checks
if it was from what it believes is the current leader for the
current term. If this is not the case, it can reply with an
“unconvinced” response, indicating that the leader should
send its votes again.

Replication: As in Raft, the node will check that it has a
matching log prefix, but using the incremental hash, rather
than the term of the previous entry. It then checks the
authenticity of each of the new entries for itself. If the node
has a matching previous entry and the new entries are valid,
the node will append new entries to its log and compute the
incremental hash at each new index. It will then broadcast its
AppendEntriesResponse to each other node, which contains
the incremental hash at the last new index.

Commit: When a node receives an AppendEntriesRe-
sponse, it will save it if it is for an index higher than the
node’s current commit index. Once a node receives a quorum
of matching AppendEntriesResponses for a particular index,
it is safe to commit everything up to that log entry. The
node can then apply the newly committed log entries to
its state machine and send results to the client directly.
Nodes also store the results of committed entries, so they
can be retransmitted to a client when a duplicate command
is received.

When a leader receives an AppendEntriesResponse, in
addition to storing the commit information to eventually
detect a quorum, the leader will check if the AppendEntries
RPC was successful. The node could have responded that it
needed proof of that leader’s successful election, or that it did
not have the previous entry to the new entries. If the former,

the leader will send a new AppendEntries RPC containing
the votes it got during the election, and if the latter, it will
decrement the nextIndex for that node and retry, just as in
Raft.

D. Leader election

Like Raft, BFT Raft uses randomized timeouts to trigger
leader elections. The leader of each term periodically sends
heartbeat messages (empty AppendEntries RPCs) to maintain
its authority. If a follower receives no communication from
a leader over a randomly chosen period of time, the election
timeout, then it becomes a candidate and initiates a new
election.

In addition to the spontaneous follower-triggered elections,
BFT Raft also allows client intervention: when a client
observes no progress with a leader for a period of time called
the progress timeout, it broadcasts UpdateLeader RPCs to all
nodes, telling them to ignore future heartbeats from what the
client believes to be the current leader in the current term.
These followers will ignore heartbeat messages in the current
term and time out as though the current leader had failed,
starting a new election. The UpdateLeader RPC includes the
client’s signature and the current leader id. When a node
receives an UpdateLeader RPC with a valid client signature,
it ignores the future heartbeats from the leader of the current
term only if the leaderId matches. Otherwise, it rejects the
request and replies with the current leader.

To begin an election, a follower increments its current term
and sends RequestVote RPCs in parallel to each of the other
nodes in the cluster asking for their vote. RequestVote RPCs
themselves work similarly to Raft. The modifications come
primarily in the recipient of a RequestVote RPC.

When a node receives a RequestVote RPC with a valid
signature, it grants a vote only if all five conditions are true:
(a) the node has not handled a heartbeat from its current
leader within its own timeout (b) the new term is between
its current term + 1 and current term + H, (c) the request
sender is an eligible candidate, (d) the node has not voted for
another leader for the proposed term, and (e) the candidate
shares a log prefix with the node that contains all committed
entries.

A node always rejects the request if it is still receiving
heartbeat messages from the current leader, and it ignores
the RequestVote RPC if the proposed term has already begun
or if it is larger than current term plus the high-term water
mark H. We choose H such that it is statistically unlikely
to encounter H consecutive split votes when a leader has
actually failed (i.e., among nodes that only start elections
when necessary). Spurious elections are ignored because
votes are not granted unless a node has noticed that the leader
is unresponsive.

If a RequestVote is valid and for a new term, and the
candidate has a sufficiently up to date log, but the recipient
is still receiving heartbeats from the current leader, it will
record its vote locally, and then send a vote response if the
node itself undergoes an election timeout or hears from a
client that the current leader is unresponsive. We call this



technique lazy voting, because nodes wait until they believe
an election needs to occur before ever casting a vote. Once
a vote is sent, the node will update its term number. It
does not assume that the node it voted for won the election
however, and it will still reject AppendEntries RPCs from
the candidate if none of them contain a set of votes proving
the candidate won the election.

In a cluster with f > 1 a candidate needs to keep track
of multiple nodes that the client has told it may be faulty,
in order to prevent these nodes from alternating leadership
without a non-failed node ever becoming leader. For f = 1,
just ignoring the current leader’s RPCs is sufficient, and this
extra state can be discarded once a new leader is elected.

The candidate continues in the candidate state until one of
the three things happens: (a) it wins the election, (b) another
node establishes itself as a leader, or (c) a period of time
goes by with no winner (i.e., it experiences another election
timeout).

A candidate wins an election if it receives votes from a
quorum of the nodes. The candidate then promotes itself to
the leader state and sends heartbeat messages with the votes
and the updated term number to establish its authority and
prevent new elections. The signed votes effectively prevents
a byzantine node from arbitrarily promoting itself as the
leader of a higher term. Followers that receive this heartbeat
message will update their leaderId and term if the leader
presented enough signed votes for the matching term.

While waiting for votes, a candidate may receive an
AppendEntries RPC from another node claiming to be leader.
If the leader’s term is at least as large as the candidate’s
current term and the leader provides enough votes to support
its authority, then the candidate returns to follower state.

E. Correctness Arguments

Safety - Message signatures: All RPCs from clients and
replicas are signed by a private key known only to that
client or replica. Every node in the system can verify these
RPCs with the node’s public key. Further, client public keys
are separated from replica public keys, so replicas cannot
produce valid client commands.

Liveness - Client intervention: If a Byzantine leader
ignores all inbound requests, the cluster becomes unavail-
able to clients. BFTRaft uses client intervention to restore
availability in this situation: a client indirectly initiates a
new election if no progress can be made. With f = 1 this is
sufficient to cause a non-failed node to become leader after a
Byzantine-failed node was leader. With f > 1, replicas must
maintain additional state to ensure that Byzantine nodes do
not alternate leadership and compromise liveness.

Safety - Incremental hashing: A Byzantine leader can
arbitrarily forge, modify, delete, duplicate, or reorder client
requests in the Raft algorithm. BFT Raft uses cryptographic
signatures to prevent Byzantine leaders from forging or mod-
ifying client requests, but a Byzantine node could still reorder
valid requests, and cause one ordering to be replicated on
one set of nodes, and another ordering on a different set.
With incremental hashing, nodes can be certain that both the

contents and ordering of other node’s logs match their own,
and commit log entries safely with an agreed-upon ordering.

Liveness - Election verification: A Byzantine node can
starve the whole cluster by claiming to be a leader of a
higher term number than the current leader. This is avoided
by requiring new leaders to prove to other nodes that they
won an election in their first AppendEntries RPC to each
node in a new term.

Safety - Commit verification: A Byzantine node can decide
to arbitrarily increase the commit index of other nodes before
log entries have been sufficiently replicated, thus causing
safety violations when nodes fail later on. BFT Raft shifts
the commit responsibility away from the leader, and every
node can verify for itself that a log entry has been safely
replicated to a quorum of nodes and that this quorum agrees
on an ordering.

Liveness - Lazy voters: Even if nodes cannot convince
other nodes to follow them without an election, Raft is
still susceptible to nodes starting new elections when they
are not necessary. BFT Raft solves this problem by having
nodes only cast votes when they would otherwise become a
candidate. This way, a quorum of votes signifies both that a
node has a sufficiently up to date log to lead the cluster, but
also that a quorum of nodes believed that a new term was
necessary to make progress.

III. IMPLEMENTATION

We have implemented a proof-of-concept of this algo-
rithm in Haskell. The code is available under an open-
source license from https://github.com/chrisnc/
tangaroa. To begin the implementation we started with
the basic Raft algorithm as described by Ongaro [1]. We
aimed to make this design as modular as possible, and so
we provide ways for other application programmers to supply
their own transport and message serialization functions. This
is done using a simple dependency injection via a Reader
monad transformer. The core Raft implementation is agnostic
to all details about how nodes can be contacted and named,
what messages actually look like, and what the possible state
machine commands and results are. Importantly, the transport
and serialization functions can be swapped independently of
the state machine commands and results.

For our proof-of-concept, we let nodes be identified by an
IP address and UDP port number pair, and we serialized mes-
sages using the Show and Read typeclasses. These choices
were made for simplicity and debuggability. Serializing to
human-readable strings made commands easy to inspect with
network utility programs like Wireshark and Netcat. In the
BFT Raft implementation, we found it was necessary to have
a more compact serialization format, so we also use Haskell’s
DeriveGeneric mechanism and the binary package to
automatically generate serialization functions for the various
RPCs in the implementation.

Most of the core Raft logic is implemented in a custom
monad that consists of a Reader and State monad
transformer on top of the IO monad. Working in the IO
monad is necessary in many of Raft’s core behaviors, which

https://github.com/chrisnc/tangaroa
https://github.com/chrisnc/tangaroa


involve sending network packets and writing persistent state
to disk. In a few places we do call out to pure functions
where convenient. The Reader transformer is used to store
things like cluster configuration, public keys of other replicas
and clients, as well as the node’s private key. The Reader
transformer is also where all of the swappable functions for
serializing and sending messages, reading/writing persistent
state, applying commands to the state machine, etc. are
accessed. This allows the core Raft logic to refer to these
abstractly.

The State transformer is used to maintain the volatile
state of the Raft algorithm (as well as an in-memory copy of
the persistent state). This includes things like the current role,
term, commit index, etc. Candidate- and leader-specific state
is also stored here. The State transformer also contains a
reference to a timer thread, which can be started, stopped,
and reset as needed to trigger election or heartbeat events.

The implementation makes extensive use of the lens
package to provide concise manipulation of and access
to nested structures in the Raft state and configura-
tion. The implementation uses a handful of compiler ex-
tensions as well; the most important of these being:
DeriveGeneric, GeneralizedNewtypeDeriving,
and RecordWildCards.

We described the usefulness of DeriveGeneric for
automatic serialization with the binary above. If other
applications want it, they can use other packages like aeson,
cereal, which also use DeriveGeneric to provide
automatic serialization to other formats.

Because Raft uses a few different kinds of numbers with
different, mutually-exclusive uses, (log indices, term num-
bers, request IDs), we use newtype wrappers around the
latter two to cause code that uses values in an invalid context
fail to compile. The GeneralizedNewtypeDeriving
extension lets us do this trivially while still letting us treat
these values as ordinary numeric types with no additional
runtime cost. Using newtype wrappers around the different
kinds of numerical identifiers prevented at least one bug at
compile time in the course of implementing our proof-of-
concept; a log index and a term number were swapped in
the code for checking whether a node should cast a vote.

The RecordWildCards extension is used throughout
our code for easily deconstructing RPCs, which are defined
as Haskell records with several fields each. This allows the
code to be written as though each field of the RPC were
a standalone input argument, even though a function only
takes one argument for the whole record. This improved the
conciseness and readability of the implementation.

With our state machine-agnostic library, we implemented
a simple key-value store in under 100 source lines of code,
as measured by sloccount. One module defines the type
of commands available to run, (insert, get, set, delete),
and the possible results, (a value, success, failure). Another
module implements a simple client that gets commands
from standard input and prints results to standard output.
A third module implements a simple server that maintains a
map from key strings to value strings and updates the map

appropriately for each command type, producing a value for
a successful get, a success for a valid insert, set, or delete,
and a failure otherwise. This code is completely oblivious to
the details of UDP, string/binary serialization, and the Raft
algorithm itself (including whether it uses the BFT version
or not).

IV. IMPROVEMENTS AND WEAKNESSES

With more time, our implementation could be made more
flexible and robust. The current implementation does not
bound the size of messages, which is a problem for UDP, the
only transport protocol we used. We also would have liked
to generalize the BFT implementation to properly implement
handling successive client requests to ignore nodes. The
current implementation can only be considered to guaran-
tee liveness for one Byzantine failure, as two Byzantine
nodes could collude and alternate leadership while preventing
clients’ progress.

We also think that borrowing more heavily from the
techniques in PBFT would have improved the simplicity and
robustness of our design; particularly, simplifying leadership
succession using round-robin by term number would remove
a significant amount of mechanism from our leader election
process, which is very vulnerable to Byzantine behavior
without significant modifications. With round-robin leader-
ship, the possibility of split votes is avoided completely,
and we can sidestep the problem of the Byzantine nodes
alternating leadership without a non-failed node in between.

Lastly, implementing a more complex application on top
of our library would have been a useful exercise to test how
viable the total separation of the Raft algorithm from state
machine logic is in practice.

V. CONCLUSION

We have proposed a Byzantine fault tolerant extension
to the Raft consensus algorithm, with various techniques
for guarding against threats to liveness and safety that can
arise in the presence of Byzantine faults. These included
cryptographic mechanisms for proving the consistency of
logs and of vote quorums. Threats to liveness are more
complex to handle, and we need to introduce a series of
modifications that ensure that as long as no more than f
nodes are behaving arbitrarily, then the remaining nodes can
make progress. This included giving clients the power to
force an election, requiring new leaders to prove an election
victory, and delaying votes until nodes believe an election is
necessary. These modifications come at the cost of additional
complexity and overhead, but the core architecture of Raft
is mostly intact.

REFERENCES

[1] Ongaro, Diego, and John Ousterhout. “In Search of an Understandable
Consensus Algorithm.” Draft on October 7 (2013).

[2] Castro, Miguel, and Barbara Liskov. “Practical Byzantine Fault Tol-
erance.” OSDI. Vol. 99. 1999.


	Introduction
	Byzantine servers break Raft
	Leader election
	Log replication

	Features of BFT Raft
	Message signatures
	Client intervention
	Incremental hashing
	Election verification
	Commit verification
	Lazy Voters


	BFT Raft Algorithm
	BFT Raft basics
	Incremental hashing
	Log replication
	Leader election
	Correctness Arguments

	Implementation
	Improvements and Weaknesses
	Conclusion
	References

