Administrivia

- Last project due Friday
- **Final Exam**
 - Friday, March 21, 12:15-3:15pm
 - Open book, covers all 17 lectures
 (including topics already on the midterm)
- **Televised final review session Friday**
 - Bring questions on lecture material
- **Extra office hours next week**
 - Reload class home page for details
Outline

1. Confining code with legacy OSes
2. Virtual machines
3. Implementing virtual machines
4. Binary translation
5. Hardware-assisted virtualization
6. Memory management optimizations
7. Final remarks
Confining code with legacy OSe

- Often want to confine code on legacy OSes

- Analogy: Firewalls

 - Your machine runs hopelessly insecure software
 - Can’t fix it—no source or too complicated
 - Can reason about network traffic

- Can we similarly block unrusted code within a machine
 - Have OS limit what the code can interact with
Using chroot

- chroot (char *dir) “changes root directory”
 - Kernel stores root directory of each process
 - File name “/” now refers to dir
 - Accessing “..” in dir now returns dir

- Need root privs to call chroot
 - But subsequently can drop privileges

- Ideally “Chrooted process” wouldn’t affect parts of the system outside of dir
 - Even process still running as root shouldn’t escape chroot

- In reality, many ways to cause damage outside dir
Escaping chroot

- Re-chroot to a lower directory, then chroot . .
 - Each process has one root directory, so chrooting to a new directory can put you above your new root
- Create devices that let you access raw disk
- Send signals to or ptrace non-chrooted processes
- Create setuid program for non-chrooted proc. to run
- Bind privileged ports, mess with clock, reboot, etc.
- Problem: chroot was not originally intended for security
 - FreeBSD jail, Linux vserver have tried to address problems
System call interposition

- Why not use *ptrace* or other debugging facilities to control untrusted programs?
- Almost any “damage” must result from system call
 - delete files → unlink
 - overwrite files → open/write
 - attack over network → socket/bind/connect/send/recv
 - leak private data → open/read/socket/connect/write …
- So enforce policy by allowing/disallowing each syscall
 - Theoretically much more fine-grained than chroot
 - Plus don’t need to be root to do it
- Q: Why is this not a panacea?
Limitations of syscall interposition

- Hard to know exact implications of a system call
 - Too much context not available outside of kernel (e.g., what does this file descriptor number mean?)
 - Context-dependent (e.g., /proc/self/cwd)

- Indirect paths to resources
 - File descriptor passing, core dumps, “unhelpful processes”

- Race conditions
 - Remember difficulty of eliminating TOCCTOU bugs?
 - Now imagine malicious application deliberately doing this
 - Symlinks, directory renames (so “…” changes), …

- See [Garfinkel] for a more detailed discussion
Outline

1. Confining code with legacy OSes
2. Virtual machines
3. Implementing virtual machines
4. Binary translation
5. Hardware-assisted virtualization
6. Memory management optimizations
7. Final remarks
Review: What is an OS

- **OS is software between applications and reality**
 - Abstracts hardware to make applications portable
 - Makes finite resources (memory, # CPU cores) appear much larger
 - Protects processes and users from one another
What if...

- The process abstraction looked just like hardware?

```
- emacs
- gcc
- OS
- Virtual hardware
- Lower-level OS (VMM)
- Hardware

- firefox
- OS
- Virtual hardware
```
How do process abstraction & HW differ?

<table>
<thead>
<tr>
<th>Process</th>
<th>Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-privileged registers and instructions</td>
<td>All registers and instructions</td>
</tr>
<tr>
<td>Virtual memory</td>
<td>Both virtual and physical memory, MMU functions, TLB/page tables, etc.</td>
</tr>
<tr>
<td>Errors, signals</td>
<td>Trap architecture, interrupts</td>
</tr>
<tr>
<td>File system, directories, files, raw devices</td>
<td>I/O devices accessed using programmed I/O, DMA, interrupts</td>
</tr>
</tbody>
</table>
Virtual Machine Monitor

- Thin layer of software that virtualizes the hardware
 - Exports a virtual machine abstraction that looks like the hardware
Old idea from the 1960s

- See [Goldberg] from 1974

- IBM VM/370 – A VMM for IBM mainframe
 - Multiplex multiple OS environments on expensive hardware
 - Desirable when few machines around

- Interest died out in the 1980s and 1990s
 - Hardware got cheap
 - Compare Windows NT vs. _N_ DOS machines

- Today, VMs are used everywhere
 - Used to solve different problems (software management)
 - But VMM attributes more relevant now than ever
VMM benefits

- **Software compatibility**
 - VMMs can run pretty much all software

- **Can get low overheads/high performance**
 - Near “raw” machine performance for many workloads
 - With tricks can have direct execution on CPU/MMU

- **Isolation**
 - Seemingly total data isolation between virtual machines
 - Leverage hardware memory protection mechanisms

- **Encapsulation**
 - Virtual machines are not tied to physical machines
 - Checkpoint/migration
OS backwards compatibility

• Backward compatibility is bane of new OSes
 - Huge effort require to innovate but not break

• Security considerations may make it impossible
 - Choice: Close security hole and break apps or be insecure

• Example: Windows XP end of life imminent
 - Eventually hardware running WinXP will die
 - What to do with legacy WinXP applications?
 - Not all applications will run on later Windows
 - Given the number of WinXP applications, practically any OS change will break something
 if (OS == WinXP)…

• Solution: Use a VMM to run both WinXP and Win8
 - Obvious for OS migration as well: Windows → Linux
Logical partitioning of servers

- Run multiple servers on same box (e.g., Amazon EC2)
 - Ability to give away less than one machine
 Modern CPUs more powerful than most services need
 - 0.10U rack space machine – less power, cooling, space, etc.
 - Server consolidation trend: \(N \) machines \(\rightarrow \) 1 real machine

- Isolation of environments
 - Printer server doesn’t take down Exchange server
 - Compromise of one VM can’t get at data of others\(^1\)

- Resource management
 - Provide service-level agreements

- Heterogeneous environments
 - Linux, FreeBSD, Windows, etc.

\(^1\) though in practice not so simple because of side-channel attacks [Ristenpart]
Outline

1. Confining code with legacy OSes
2. Virtual machines
3. Implementing virtual machines
4. Binary translation
5. Hardware-assisted virtualization
6. Memory management optimizations
7. Final remarks
Complete Machine Simulation

- Simplest VMM approach, used by bochs

- Build a simulation of all the hardware
 - CPU – A loop that fetches each instruction, decodes it, simulates its effect on the machine state
 - Memory – Physical memory is just an array, simulate the MMU on all memory accesses
 - I/O – Simulate I/O devices, programmed I/O, DMA, interrupts

- Problem: Too slow!
 - CPU/Memory – 100x CPU/MMU simulation
 - I/O Device – < 2× slowdown.
 - 100× slowdown makes it not too useful

- Need faster ways of emulating CPU/MMU
Virtualizing the CPU

- **Observations:** Most instructions are the same regardless of processor privileged level
 - Example: `incl %eax`

- **Why not just give instructions to CPU to execute?**
 - One issue: Safety – How to get the CPU back? Or stop it from stepping on us? How about `cli/halt`?
 - Solution: Use protection mechanisms already in CPU

- **Run virtual machine’s OS directly on CPU in unprivileged user mode**
 - “Trap and emulate” approach
 - Most instructions just work
 - Privileged instructions trap into monitor and run simulator on instruction
 - Makes some assumptions about architecture
Virtualizing traps

• What happens when an interrupt or trap occurs
 - Like normal kernels: we trap into the monitor

• What if the interrupt or trap should go to guest OS?
 - Example: Page fault, illegal instruction, system call, interrupt
 - Re-start the guest OS simulating the trap

• x86 example:
 - Give CPU an IDT that vectors back to VMM
 - Look up trap vector in VM’s “virtual” IDT
 - Push virtualized %cs, %eip, %eflags, on stack
 - Switch to virtualized privileged mode
Virtualizing memory

• **Basic MMU functionality:**
 - OS manages physical memory (0…MAX_MEM)
 - OS sets up page tables mapping VA \rightarrow PA
 - CPU accesses to VA should go to PA (if paging off, PA = VA)
 - Used for every instruction fetch, load, or store

• **Need to implement a virtual “physical memory”**
 - Logically need additional level of indirection
 - VM’s *Guest VA* \rightarrow VM’s *Guest PA* \rightarrow Host PA
 - Note “Guest physical” memory no longer mans hardware bits
 - Hardware is host physical memory (a.k.a. machine memory)

• **Trick: Use hardware MMU to simulate virtual MMU**
 - Point hardware at *shadow page table*
 - Directly maps Guest VA \rightarrow Host PA
Memory mapping summary

- **Guest Virtual Address**
 - Host Virtual Address
 - **Host PT**
 - Host Physical Address

- **Host Physical Address**
 - **Host PT**
 - Guest Physical Address

- **Guest Physical Address**
 - **VMM map**
 - **Guest PT**
 - Guest Virtual Address

- **Guest Virtual Address**
 - **Shadow Page Table**
 - **Host Physical Address**
Shadow page tables

- VMM responsible for maintaining *shadow PT*
 - And for maintaining its consistency (including TLB flushes)

- Shadow page tables are a cache
 - Have *true page faults* when page not in VM’s guest page table
 - Have *hidden page faults* when just misses in shadow page table

- On a page fault, VMM must:
 - Lookup guest VPN → guest PPN in guest’s page table
 - Determine where guest PPN is in host physical memory
 - Insert guest VPN → host PPN mapping in shadow page table
 - Note: Monitor can demand-page the virtual machine

- Uses hardware protection
Shadow PT issues

- Hardware only ever sees shadow page table
 - Guest OS only sees its own VM page table, never shadow PT

- Consider the following
 - Guest OS has a page table T mapping $V_U \rightarrow P_U$
 - T itself resides at guest physical address P_T
 - Another guest page table entry maps $V_T \rightarrow P_T$
 - VMM stores P_U in host physical address M_U and P_T in M_T

- What can VMM put in shadow page table?
 - Safe to map $V_T \rightarrow M_T$ or $V_U \rightarrow M_U$

- Not safe to map both simultaneously!
 - If OS writes to P_T, may make $V_U \rightarrow M_U$ in shadow PT incorrect
 - If OS reads/writes V_U, may require accessed/dirty bits to be changed in P_T (hardware can only change shadow PT)
- **Option 1**: Page table accessible at V_T, but changes won’t be reflected in shadow PT or TLB; access to V_U dangerous
- **Option 2**: V_U accessible, but hardware sets accessed/dirty bits only in shadow PT, not in guest PT at P_T/M_T
Tracing

- VMM needs to get control on some memory accesses
- Guest OS changes previously used mapping in VM PT
 - Must intercept to invalidate stale mappings in shadow PT, TLB
 - Note: OS should use inv1pg instruction, which would trap to VMM – but in practice many/most OSes are sloppy about this
- Guest OS accesses page when its VM PT is accessible
 - Accessed/dirty bits in VM PT may no longer be correct
 - Must intercept to fix up VM PT (or make VM PT inaccessible)
- Solution: Tracing
 - To track page access, make VPN(s) invalid in shadow PT
 - If guest OS accesses page, will trap to VMM w. page fault
 - VMM can emulate the result of memory access & restart guest OS, just as an OS restarts a process after a page fault
Tracing vs. hidden faults

- Suppose VMM never allowed access to VM PTs?
 - Every PTE access would incur the cost of a tracing fault
 - Very expensive when OS changes lots of PTEs

- Suppose OS allowed access to most page tables (except very recently accessed regions)
 - Now lots of hidden faults when accessing new region
 - Plus overhead to pre-compute accessed/dirty bits from shadow PT as page tables preemptively made valid in shadow PT

- Makes for complex trade-offs
 - But adaptive binary translation (later) can make this better
I/O device virtualization

• Types of communication
 - Special instruction – in/out
 - Memory-mapped I/O (PIO)
 - Interrupts
 - DMA

• Virtualization
 - Make in/out and PIO trap into monitor
 - Use tracing for memory-mapped I/O
 - Run simulation of I/O device

• Simulation
 - Interrupt – Tell CPU simulator to generate interrupt
 - DMA – Copy data to/from physical memory of virtual machine
CPU virtualization requirements

- Need protection levels to run VMs and monitors
- All unsafe/privileged operations should trap
 - Example: disable interrupt, access I/O dev, …
 - x86 problem: popfl (different semantics in different rings)
- Privilege level should not be visible to software
 - Software shouldn’t be able to query and find out it’s in a VM
 - x86 problem: movw %cs, %ax
- Trap should be transparent to software in VM
 - Software in VM shouldn’t be able to tell if instruction trapped
 - x86 problem: traps can destroy machine state
 (E.g., if internal segment register was out of sync with GDT)
- See [Goldberg] for a discussion
Outline

1. Confining code with legacy OSes
2. Virtual machines
3. Implementing virtual machines
4. Binary translation
5. Hardware-assisted virtualization
6. Memory management optimizations
7. Final remarks
Binary translation

- Cannot directly execute guest OS kernel code on x86
 - Can maybe execute most user code directly
 - But how to get good performance on kernel code?

- Original VMware solution: binary translation
 - Don’t run slow instruction-by-instruction emulator
 - Instead, translate guest kernel code into code that runs in fully-privileged monitor mode\(^2\)

- Challenges:
 - Don’t know the difference between code and data (guest OS might include self-modifying code)
 - Translated code may not be the same size as original
 - Prevent translated code from messing with VMM memory
 - Performance, performance, performance, . . .

\(^2\) actually CPL 1, so that the VMM has its own exception stack
VMware binary translator

- VMware translates kernel dynamically (like a JIT)
 - Start at guest eip
 - Accumulate up to 12 instructions until next control transfer
 - Translate into binary code that can run in VMM context

- Most instructions translated identically
 - E.g., regular movl instructions

- Use segmentation to protect VMM memory
 - VMM located in high virtual addresses
 - Segment registers “truncated” to block access to high VAs
 - gs segment not truncated; use it to access VMM data
 - Any guest use of gs (rare) can’t be identically translated

Details/examples from [Adams & Agesen]
Control transfer

- All branches/jumps require indirection

- Original:
  ```
  isPrime: mov %edi, %ecx  # %ecx = %edi (a)
  mov $2, %esi  # i = 2
  cmp %ecx, %esi  # is i >= a?
  jge prime  # jump if yes
  ...
  ```

- C source:
  ```
  int
  isPrime (int a)
  {
   for (int i = 2; i < a; i++) {
    if (a % i == 0)
     return 0;
   }
   return 1;
  }
  ```
Control transfer

- All branches/jumps require indirection

- **Original:**

isPrime: mov %edi, %ecx
 mov $2, %esi
 cmp %ecx, %esi
 jge prime

- **Translated:**

isPrime’: mov %edi, %ecx
 mov $2, %esi
 cmp %ecx, %esi
 jge [takenAddr]
 jmp [fallthrAddr]

- **Brackets ([. . .]) indicate continuations**

 - First time jumped to, target untranslated; translate on demand

 - Then fix up continuation to branch to translated code

 - Can elide [fallthrAddr] if fallthrough next translated
Non-identically translated code

- **PC-relative branches & Direct control flow**
 - Just compensate for output address of translator on target
 - Insignificant overhead

- **Indirect control flow**
 - E.g., jump through register (function pointer) or `ret`
 - Can’t assume code is “normal” (e.g., must faithfully `ret` even if stack doesn’t have return address)
 - Look up target address in hash table to see if already translated
 - “Single-digit percentage” overhead

- **Privileged instructions**
 - Appropriately modify VMM state
 - E.g., `cli` \rightarrow `vcpu.flags.IF = 0`
 - Can be faster than original!
Adaptive binary translation

- One remaining source of overhead is tracing faults
 - E.g., when modifying page table or descriptor table

- Idea: Use binary translation to speed up
 - E.g., translate write of PTE into write of guest & shadow PTE
 - Translate PTE read to get accessed & dirty bits from shadow

- Problem: Which instructions to translate?

- Solution: “innocent until proven guilty” model
 - Initially always translate as much code identically as possible
 - Track number of tracing faults caused by an instruction
 - If high number, re-translate to non-identical code
 - May call out to interpreter, or just jump to new code
Outline

1. Confining code with legacy OSes
2. Virtual machines
3. Implementing virtual machines
4. Binary translation
5. Hardware-assisted virtualization
6. Memory management optimizations
7. Final remarks
Hardware-assisted virtualization

- Both Intel and AMD now have hardware support
 - Different mechanisms, similar concepts
 - This lecture covers AMD (see [AMD Vol 2], Ch. 15)
 - For Intel details, see [Intel Vol 3c]

- VM-enabled CPUs support new guest mode
 - This is separate from kernel/user modes in bits 0–1 of %cs
 - Less privileged than host mode (where VMM runs)
 - Some sensitive instructions trap in guest mode (e.g., load %cr3)
 - Hardware keeps shadow state for many things (e.g., %eflags)

- Enter guest mode with \texttt{vmrun} instruction
 - Loads state from hardware-defined 1-KiB VMCB data structure

- Various events cause EXIT back to host mode
 - On EXIT, hardware saves state back to VMCB
VMCB control bits

- **Intercept vector specifies what ops should cause EXIT**
 - One bit for each of %cr0–%cr15 to say trap on read
 - One bit for each of %cr0–%cr15 to say trap on write
 - 32 analogous bits for the debug registers (%dr0–%dr15)
 - 32 bits for whether to intercept exception vectors 0–31
 - Bits for various other events (e.g., NMI, SMI, ...)
 - Bit to intercept writes to sensitive bits of %cr0
 - 8 bits to intercept reads and writes of IDTR, GDTR, LDTR, TR
 - Bits to intercept rdtsc, rdpmc, pushf, popf, vmrun, hlt, invlpg, int, iret, in/out (to selected ports), ...

- EXIT code and reason (e.g., which inst. caused EXIT)

- Other control values
 - Pending virtual interrupt, event/exception injection
Guest state saved in VMCB

- **Saved guest state**
 - Full segment registers (i.e., base, lim, attr, not just selectors)
 - Full GDTR, LDTR, IDTR, TR
 - Guest `%cr3`, `%cr2`, and other cr/dr registers
 - Guest `%eip` and `%eflags` (%rip & `%rflags` for 64-bit processors)
 - Guest `%rax` register

- **Entering/Exiting VMM more expensive than syscall**
 - Have to save and restore large VM-state structure
Hardware vs. Software virtualization

- **HW VM makes implementing VMM much easier**
 - Avoids implementing binary translation (BT)

- **Hardware VM is better at entering/exiting kernel**
 - E.g., Apache on Windows benchmark: one address space, lots of syscalls, hardware VM does better [Adams]
 - Apache on Linux w. many address spaces: lots of context switches, tracing faults, etc., Software faster [Adams]

- **Fork with copy-on-write bad for both HW & BT**
 - [Adams] reports fork benchmark where BT-based virtualization 37× and HW-based 106× slower than native!

- **Newer CPUs support nested paging**
 - Eliminates shadow PT & tracing faults, simplifies VMM
 - Guests can now manipulate %cr3 w/o VM EXIT
 - But dramatically increases cost of TLB misses
Outline

1. Confining code with legacy OSes
2. Virtual machines
3. Implementing virtual machines
4. Binary translation
5. Hardware-assisted virtualization
6. Memory management optimizations
7. Final remarks
ESX mem. mgmt. [Waldspurger]

- Virtual machines see virtualized physical memory
 - Can let VMs use more “physical” memory than in machine

- How to apportion memory between machines?

- VMware ESX has three parameters per VM:
 - min – Don’t bother running w/o this much machine memory
 - max – Amount of “physical” memory VM OS thinks exists
 - share – How much mem. to give VM relative to other VMs

- Straw man: Allocate based on share, use LRU paging
 - OS already uses LRU ⇒ double paging
 - OS will re-cycle whatever “physical” page VMM just paged out
 - So better to do random eviction

- Next: 3 cool memory management tricks
Reclaiming pages

• Idea: Have guest OS return memory to VMM
 - Then VMM doesn’t have to page memory to disk

• Normally OS just uses all available memory
 - But some memory much more important than other memory
 - E.g., buffer cache may contain old, clean buffers; OS won’t discard if doesn’t need memory… but VMM may need memory

• ESX trick: Balloon driver
 - Special pseudo-device driver in supported guest OS kernels
 - Communicates with VMM through special interface
 - When VMM needs memory, allocates many pages in guest OS
 - Balloon driver tells VMM to re-cycle its private pages
Sharing pages across VMs

- Often run many VMs with same OS, programs
 - Will result in many machine pages containing same data

- Idea: Use 1 host physical page for all copies of guest physical page (in any virtual machine)

- Keep big hash table mapping: Hash(contents) → info
 - If machine page mapped once, info is VM/PPN where mapped. In that case, Hash is only a hint, as page may have changed
 - If machine page mapped copy-on-write as multiple physical pages, info is just reference count

- Scan OS pages randomly to populate hash table

- Always try sharing a page before paging it out
Idle memory tax

• Need machine page? What VM to take it from?

• Normal proportional share scheme
 - Reclaim from VM with lowest “shares-to-pages” \((S/P) \) ratio
 - If \(A \) & \(B \) both have \(S = 1 \), reclaim from larger VM
 - If \(A \) has twice \(B \)’s share, can use twice the machine memory

• High-priority VMs might get more mem. than needed

• Solution: Idle-memory tax
 - Use statistical sampling to determine a VM’s % idle memory
 (randomly invalidate pages & count the number faulted back)
 - Instead of \(S/P \), reclaim from VM w. lowest \(S / (P(f + k(1 - f))) \).
 \(f \) = fraction of non-idle pages; \(k \) = “idle page cost” paremeter.
 - Be conservative & overestimate \(f \) to respect priorities
 (\(f \) is max of slow, fast, and recent memory usage samples)
Outline

1 Confining code with legacy OSes
2 Virtual machines
3 Implementing virtual machines
4 Binary translation
5 Hardware-assisted virtualization
6 Memory management optimizations
7 Final remarks
Final thoughts

- You are all now operating systems experts
- Use this knowledge to build better applications
 - Sometimes need to coax right behavior out of kernel
 - Should be much easier now that you know what’s going on
- Syscall interface can be an innovation barrier
 - Much harder to change kernel than user code
 - Other barriers include standardized net. protocols, servers
 - Get these wrong and many people will suffer
- Some of you will go on to design interfaces that many people are later subjected to
 - Strive to achieve both simplicity and flexibility for users
How to learn more about OSes

- **Take CS240 – Advanced Topics in Operating Systems**
 - Class will bring you up to speed on OS research
 - Read & discuss 18–25 research papers
 - By the end, should be ready to do OS research

- **Get involved in research!**

- **Lot’s of interesting OS work at Stanford**
 - Rosenblum – launched the virtual machine resurgence
 - Lam – collective system, software for mobile devices
 - Levis – seminal work on sensor nets & power management
 - Engler – tools to find OS bugs automatically
 - Boneh/Mitchell – lots of practical OS security work
 - Mazières – done multiple new OSes, FSes, and distributed systems. Applying OS ideas to browser, language security.