• Project 1 due Friday 12pm
 - blah, blah, blah, …

• Please attend section Friday 12:30pm, Gates B-03
1. Paging
2. Eviction policies
3. Thrashing
4. Details of paging
5. The user-level perspective
6. Case study: 4.4 BSD
- Use disk to simulate larger virtual than physical mem
Disk much, much slower than memory
 - Goal: run at memory speed, not disk speed
80/20 rule: 20% of memory gets 80% of memory accesses
 - Keep the hot 20% in memory
 - Keep the cold 80% on disk
• Disk much, much slower than memory
 - Goal: run at memory speed, not disk speed
• 80/20 rule: 20% of memory gets 80% of memory accesses
 → Keep the hot 20% in memory
 - Keep the cold 80% on disk
- Disk much, much slower than memory
 - Goal: run at memory speed, not disk speed
- 80/20 rule: 20% of memory gets 80% of memory accesses
 - Keep the hot 20% in memory
 - Keep the cold 80% on disk
Paging challenges

• How to resume a process after a fault?
 - Need to save state and resume
 - Process might have been in the middle of an instruction!

• What to fetch from disk?
 - Just needed page or more?

• What to eject?
 - How to allocate physical pages amongst processes?
 - Which of a particular process’s pages to keep in memory?
Re-starting instructions

- Hardware provides kernel with information about page fault
 - Faulting virtual address (In %cr2 reg on x86—may see it if you modify Pintos page_fault and use fault_addr)
 - Address of instruction that caused fault
 - Was the access a read or write? Was it an instruction fetch? Was it caused by user access to kernel-only memory?
- Hardware must allow resuming after a fault
- Idempotent instructions are easy
 - E.g., simple load or store instruction can be restarted
 - Just re-execute any instruction that only accesses one address
- Complex instructions must be re-started, too
 - E.g., x86 move string instructions
 - Specify src, dst, count in %esi, %edi, %ecx registers
 - On fault, registers adjusted to resume where move left off
What to fetch

- Bring in page that caused page fault
- Pre-fetch surrounding pages?
 - Reading two disk blocks approximately as fast as reading one
 - As long as no track/head switch, seek time dominates
 - If application exhibits spacial locality, then big win to store and read multiple contiguous pages
- Also pre-zero unused pages in idle loop
 - Need 0-filled pages for stack, heap, anonymously mmapped memory
 - Zeroing them only on demand is slower
 - Hence, many OSes zero freed pages while CPU is idle
Selecting physical pages

- May need to eject some pages
 - More on eviction policy in two slides
- May also have a choice of physical pages
- Direct-mapped physical caches
 - Virtual \rightarrow Physical mapping can affect performance
 - In old days: Physical address A conflicts with $kC + A$ (where k is any integer, C is cache size)
 - Applications can conflict with each other or themselves
 - Scientific applications benefit if consecutive virtual pages do not conflict in the cache
 - Many other applications do better with random mapping
 - These days: CPUs more sophisticated than $kC + A$
Superpages

- How should OS make use of “large” mappings
 - x86 has 2/4MB pages that might be useful
 - Alpha has even more choices: 8KB, 64KB, 512KB, 4MB

- Sometimes more pages in L2 cache than TLB entries
 - Don’t want costly TLB misses going to main memory

- Or have two-level TLBs
 - Want to maximize hit rate in faster L1 TLB

- OS can transparently support superpages [Navarro]
 - “Reserve” appropriate physical pages if possible
 - Promote contiguous pages to superpages
 - Does complicate evicting (esp. dirty pages) – demote
1 Paging
2 Eviction policies
3 Thrashing
4 Details of paging
5 The user-level perspective
6 Case study: 4.4 BSD
Straw man: FIFO eviction

- Evict oldest fetched page in system
- Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
- 3 physical pages: 9 page faults
Straw man: FIFO eviction

- Evict oldest fetched page in system
- Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
- 3 physical pages: 9 page faults
- 4 physical pages: 10 page faults

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 page faults
Belady’s Anomaly

- More physical memory doesn’t always mean fewer faults
• What is optimal (if you knew the future)?
What is optimal (if you knew the future)?
- Replace page that will not be used for longest period of time

Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

With 4 physical pages:

1 4
2
3
4 5

6 page faults
LRU page replacement

• Approximate optimal with *least recently used*
 - Because past often predicts the future
• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With 4 physical pages: 8 page faults

![Page Replacement Diagram](image)

• Problem 1: Can be pessimal – example?

• Problem 2: How to implement?
LRU page replacement

- Approximate optimal with *least recently used*
 - Because past often predicts the future
- Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
- With 4 physical pages: 8 page faults

```
1 5
2
3 5 4
4 3
```

- Problem 1: Can be pessimal – example?
 - Looping over memory (then want MRU eviction)
- Problem 2: How to implement?
Straw man LRU implementations

- Stamp PTEs with timer value
 - E.g., CPU has cycle counter
 - Automatically writes value to PTE on each page access
 - Scan page table to find oldest counter value = LRU page
 - Problem: Would double memory traffic!

- Keep doubly-linked list of pages
 - On access remove page, place at tail of list
 - Problem: again, very expensive

- What to do?
 - Just approximate LRU, don’t try to do it exactly
Clock algorithm

- Use accessed bit supported by most hardware
 - E.g., Pentium will write 1 to A bit in PTE on first access
 - Software managed TLBs like MIPS can do the same

- Do FIFO but skip accessed pages

- Keep pages in circular FIFO list

- Scan:
 - page’s A bit = 1, set to 0 & skip
 - else if A = 0, evict

- A.k.a. second-chance replacement
Clock algorithm

- Use accessed bit supported by most hardware
 - E.g., Pentium will write 1 to A bit in PTE on first access
 - Software managed TLBs like MIPS can do the same
- Do FIFO but skip accessed pages
- Keep pages in circular FIFO list
- Scan:
 - page’s A bit = 1, set to 0 & skip
 - else if A = 0, evict
- A.k.a. second-chance replacement
Clock algorithm

- Use accessed bit supported by most hardware
 - E.g., Pentium will write 1 to A bit in PTE on first access
 - Software managed TLBs like MIPS can do the same

- Do FIFO but skip accessed pages

- Keep pages in circular FIFO list

- Scan:
 - page’s A bit = 1, set to 0 & skip
 - else if A = 0, evict

- A.k.a. second-chance replacement
Clock algorithm (continued)

- Large memory may be a problem
 - Most pages referenced in long interval

- Add a second clock hand
 - Two hands move in lockstep
 - Leading hand clears A bits
 - Trailing hand evicts pages with $A=0$

- Can also take advantage of hardware Dirty bit
 - Each page can be (Unaccessed, Clean), (Unaccessed, Dirty), (Accessed, Clean), or (Accessed, Dirty)
 - Consider clean pages for eviction before dirty

- Or use n-bit accessed $count$ instead just A bit
 - On sweep: $count = (A \ll (n - 1)) | (count \gg 1)$
 - Evict page with lowest $count$
Clock algorithm (continued)

- Large memory may be a problem
 - Most pages referenced in long interval
- Add a second clock hand
 - Two hands move in lockstep
 - Leading hand clears A bits
 - Trailing hand evicts pages with A=0
- Can also take advantage of hardware Dirty bit
 - Each page can be (Unaccessed, Clean), (Unaccessed, Dirty), (Accessed, Clean), or (Accessed, Dirty)
 - Consider clean pages for eviction before dirty
- Or use n-bit accessed *count* instead just A bit
 - On sweep: $count = (A \ll (n-1)) \mid (count \gg 1)$
 - Evict page with lowest *count*
Clock algorithm (continued)

- Large memory may be a problem
 - Most pages referenced in long interval
- Add a second clock hand
 - Two hands move in lockstep
 - Leading hand clears A bits
 - Trailing hand evicts pages with A=0
- Can also take advantage of hardware Dirty bit
 - Each page can be (Unaccessed, Clean), (Unaccessed, Dirty), (Accessed, Clean), or (Accessed, Dirty)
 - Consider clean pages for eviction before dirty
- Or use \(n \)-bit accessed \(\text{count} \) instead just A bit
 - On sweep: \(\text{count} = (A \ll (n - 1)) | (\text{count} \gg 1) \)
 - Evict page with lowest \(\text{count} \)
Other replacement algorithms

- **Random eviction**
 - Dirt simple to implement
 - Not overly horrible (avoids Belady & pathological cases)

- **LFU** (least frequently used) eviction
 - Instead of just A bit, count # times each page accessed
 - Least frequently accessed must not be very useful (or maybe was just brought in and is about to be used)
 - Decay usage counts over time (for pages that fall out of usage)

- **MFU** (most frequently used) algorithm
 - Because page with the smallest count was probably just brought in and has yet to be used

- Neither LFU nor MFU used very commonly
Naïve paging

- Naïve page replacement: 2 disk I/Os per page fault
Page buffering

- Idea: reduce # of I/Os on the critical path
- Keep pool of free page frames
 - On fault, still select victim page to evict
 - But read fetched page into already free page
 - Can resume execution while writing out victim page
 - Then add victim page to free pool
- Can also yank pages back from free pool
 - Contains only clean pages, but may still have data
 - If page fault on page still in free pool, recycle
• Allocation can be *global* or *local*

• Global allocation doesn’t consider page ownership
 - E.g., with LRU, evict least recently used page of any proc
 - Works well if P_1 needs 20% of memory and P_2 needs 70%:
 - Doesn’t protect you from memory pigs
 (imagine P_2 keeps looping through array that is size of mem)

• Local allocation isolates processes (or users)
 - Separately determine how much memory each process should have
 - Then use LRU/clock/etc. to determine which pages to evict within each process
Outline

1. Paging
2. Eviction policies
3. Thrashing
4. Details of paging
5. The user-level perspective
6. Case study: 4.4 BSD
UNSAFE AT ANY SPEED
Thrashing

- Processes require more memory than system has
 - Each time one page is brought in, another page, whose contents will soon be referenced, is thrown out
 - Processes will spend all of their time blocked, waiting for pages to be fetched from disk
 - I/O devs at 100% utilization but system not getting much useful work done

- What we wanted: virtual memory the size of disk with access time the speed of physical memory

- What we got: memory with access time of disk
Reasons for thrashing

- Access pattern has no temporal locality (past ≠ future)

 ![Access pattern chart](chart.png)

 (80/20 rule has broken down)

- Hot memory does not fit in physical memory

 ![Memory allocation chart](chart.png)

- Each process fits individually, but too many for system

 ![Process allocation chart](chart.png)

 - At least this case is possible to address
• Must shed load when thrashing
Dealing with thrashing

- **Approach 1: working set**
 - Thrashing viewed from a caching perspective: given locality of reference, how big a cache does the process need?
 - Or: how much memory does the process need in order to make reasonable progress (its working set)?
 - Only run processes whose memory requirements can be satisfied

- **Approach 2: page fault frequency**
 - Thrashing viewed as poor ratio of fetch to work
 - PFF = page faults / instructions executed
 - If PFF rises above threshold, process needs more memory. Not enough memory on the system? Swap out.
 - If PFF sinks below threshold, memory can be taken away
• Working set changes across phases
 - Balloons during phase transitions
Calculating the working set

- Working set: all pages process will access in next T time
 - Can’t calculate without predicting future
- Approximate by assuming past predicts future
 - So working set \approx pages accessed in last T time
- Keep idle time for each page
- Periodically scan all resident pages in system
 - A bit set? Clear it and clear the page’s idle time
 - A bit clear? Add CPU consumed since last scan to idle time
 - Working set is pages with idle time $< T$
Two-level scheduler

- Divide processes into *active* & *inactive*
 - Active – means working set resident in memory
 - Inactive – working set intentionally not loaded
- Balance set: union of all active working sets
 - Must keep balance set smaller than physical memory
- Use long-term scheduler [recall from lecture 4]
 - Moves procs active \rightarrow inactive until balance set small enough
 - Periodically allows inactive to become active
 - As working set changes, must update balance set
- Complications
 - How to chose idle time threshold T?
 - How to pick processes for active set
 - How to count shared memory (e.g., libc.so)
1. Paging
2. Eviction policies
3. Thrashing
4. Details of paging
5. The user-level perspective
6. Case study: 4.4 BSD
Some complications of paging

- What happens to available memory?
 - Some physical memory tied up by kernel VM structures

- What happens to user/kernel crossings?
 - More crossings into kernel
 - Pointers in syscall arguments must be checked (can’t just kill process if page not present—might need to page in)

- What happens to IPC?
 - Must change hardware address space
 - Increases TLB misses
 - Context switch flushes TLB entirely on old x86 machines (But not on MIPS… Why?)
Some complications of paging

- What happens to available memory?
 - Some physical memory tied up by kernel VM structures

- What happens to user/kernel crossings?
 - More crossings into kernel
 - Pointers in syscall arguments must be checked
 (can’t just kill process if page not present—might need to page in)

- What happens to IPC?
 - Must change hardware address space
 - Increases TLB misses
 - Context switch flushes TLB entirely on old x86 machines
 (But not on MIPS… Why? MIPS tags TLB entries with PID)
64-bit address spaces

- Recall x86-64 only has 48-bit virtual address space

- What if you want a 64-bit virtual address space?
 - Straight hierarchical page tables not efficient
 - But software TLBs (like MIPS) allow other possibilities

- Solution 1: Hashed page tables
 - Store Virtual \rightarrow Physical translations in hash table
 - Table size proportional to physical memory
 - Clustering makes this more efficient [Talluri]

- Solution 2: Guarded page tables [Liedtke]
 - Omit intermediary tables with only one entry
 - Add predicate in high level tables, stating the only virtual address range mapped underneath + # bits to skip
Outline

1. Paging
2. Eviction policies
3. Thrashing
4. Details of paging
5. The user-level perspective
6. Case study: 4.4 BSD
Recall typical virtual address space

- Dynamically allocated memory goes in heap
- Top of heap called **breakpoint**
 - Addresses between breakpoint and stack all invalid
Early VM system calls

- OS keeps “Breakpoint” – top of heap
 - Memory regions between breakpoint & stack fault on access
- char *brk (const char *addr);
 - Set and return new value of breakpoint
- char *sbrk (int incr);
 - Increment value of the breakpoint & return old value
- Can implement malloc in terms of sbrk
 - But hard to “give back” physical memory to system
Memory mapped files

- Other memory objects between heap and stack
mmap system call

- void *mmap (void *addr, size_t len, int prot, int flags, int fd, off_t offset)
 - Map file specified by fd at virtual address addr
 - If addr is NULL, let kernel choose the address

- prot – protection of region
 - OR of PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE

- flags
 - MAP_ANON – anonymous memory (fd should be -1)
 - MAP_PRIVATE – modifications are private
 - MAP_SHARED – modifications seen by everyone
More VM system calls

- int msync(void *addr, size_t len, int flags);
 - Flush changes of mmapped file to backing store
- int munmap(void *addr, size_t len);
 - Removes memory-mapped object
- int mprotect(void *addr, size_t len, int prot);
 - Changes protection on pages to or of PROT_
- int mincore(void *addr, size_t len, char *vec);
 - Returns in vec which pages present
Exposing page faults

```c
struct sigaction {
    union {
        /* signal handler */
        void (*sa_handler)(int);
        void (*sa_sigaction)(int, siginfo_t *, void *);
    };
    sigset_t sa_mask; /* signal mask to apply */
    int sa_flags;
};

int sigaction (int sig, const struct sigaction *act, struct sigaction *oact)
```

- Can specify function to run on SIGSEGV
 (Unix signal raised on invalid memory access)
Example: OpenBSD/i386 siginfo

```
struct sigcontext {
  int sc_gs; int sc_fs; int sc_es; int sc_ds;
  int sc_edi; int sc_esi; int sc ebp; int sc ebx;
  int sc edx; int sc ecx; int sc eax;
  
  int sc_eip; int sc cs; /* instruction pointer */
  int sc_eflags; /* condition codes, etc. */
  int sc esp; int sc ss; /* stack pointer */
  
  int sc_onstack; /* sigstack state to restore */
  int sc_mask; /* signal mask to restore */
  
  int sc_trapno;
  int sc_err;
};
```

- Linux uses `ucontext_t` – same idea, just uses nested structures that won’t all fit on one slide
VM tricks at user level

- Combination of `mprotect/sigaction` very powerful
 - Can use OS VM tricks in user-level programs [Appel]
 - E.g., fault, unprotect page, return from signal handler

- Technique used in object-oriented databases
 - Bring in objects on demand
 - Keep track of which objects may be dirty
 - Manage memory as a cache for much larger object DB

- Other interesting applications
 - Useful for some garbage collection algorithms
 - Snapshot processes (copy on write)
1. Paging
2. Eviction policies
3. Thrashing
4. Details of paging
5. The user-level perspective
6. Case study: 4.4 BSD
Each process has a `vmspace` structure containing
- `vm_map` – machine-independent virtual address space
- `vm_pmap` – machine-dependent data structures
- statistics – e.g. for syscalls like `getrusage()`

`vm_map` is a linked list of `vm_map_entry` structs
- `vm_map_entry` covers contiguous virtual memory
- points to `vm_object` struct

`vm_object` is source of data
- e.g. vnode object for memory mapped file
- points to list of `vm_page` structs (one per mapped page)
- `shadow objects` point to other objects for copy on write

1See library.stanford.edu for off-campus access
4.4 BSD VM data structures

- vm_map
 - vm_map_entry
 - vm_map_entry
 - vm_map_entry
 - vm_map_entry
 - shadow
 - object
 - vm_page
 - vm_page
 - vm_page
 - vm_page
 - vnode/object
 - vm_page
 - vnode/object
 - vm_page
 - vnode/object
 - vm_page
 - vm_page
 - vm_page
 - vnode/object
 - vm_page
 - vm_page
 - vm_page
 - vm_page
 - vm_page
 - vm_page
Pmap (machine-dependent) layer

- Pmap layer holds architecture-specific VM code
- VM layer invokes pmap layer
 - On page faults to install mappings
 - To protect or unmap pages
 - To ask for dirty/accessed bits
- Pmap layer is lazy and can discard mappings
 - No need to notify VM layer
 - Process will fault and VM layer must reinstall mapping
- Pmap handles restrictions imposed by cache
Example uses

- **vm_map_entry structs for a process**
 - r/o text segment → file object
 - r/w data segment → shadow object → file object
 - r/w stack → anonymous object

- **New vm_map_entry objects after a fork:**
 - Share text segment directly (read-only)
 - Share data through two new shadow objects
 (must share pre-fork but not post-fork changes)
 - Share stack through two new shadow objects

- **Must discard/collapse superfluous shadows**
 - E.g., when child process exits
What happens on a fault?

- Traverse `vm_map_entry` list to get appropriate entry
 - No entry? Protection violation? Send process a SIGSEGV
- Traverse list of [shadow] objects
- For each object, traverse `vm_page` structs
- Found a `vm_page` for this object?
 - If first `vm_object` in chain, map page
 - If read fault, install page read only
 - Else if write fault, install copy of page
- Else get page from object
 - Page in from file, zero-fill new page, etc.
Paging in day-to-day use

- Demand paging
 - Read pages from `vm_object` of executable file
- Copy-on-write (`fork`, `mmap`, etc.)
 - Use shadow objects
- Growing the stack, BSS page allocation
 - A bit like copy-on-write for `/dev/zero`
 - Can have a single read-only zero page for reading
 - Special-case write handling with pre-zeroed pages
- Shared text, shared libraries
 - Share `vm_object` (shadow will be empty where read-only)
- Shared memory
 - Two processes `mmap` same file, have same `vm_object` (no shadow)