
Outline

1 Networking overview

2 Systems issues

3 OS networking facilities

4 Implementing networking in the kernel

1 / 39

Networks

• What is a network?
- A system of lines/channels that interconnect

- E.g., railroad, highway, plumbing, communication, telephone,
computer

• What is a computer network?
- A form of communication network—moves information

- Nodes are general-purpose computers

• Computer networks are particularly interesting
- You can program the nodes

- Very easy to innovate and develop new uses of network

- Contrast: Telephone network—can’t program most phones, need
FCC approval for new devices, etc.

2 / 39

Inter-process communication

Host

HostHost

Channel

Application

Host

Application

Host

• Want abstraction of inter-process (not just inter-node)
communication

• Goal: two different applications, running on different
computers, can exchange data as if they had a pipe
between them.

3 / 39

The 7-Layer and 4-Layer Models

4 / 39

Physical Layer

• Computers send bits over physical links
- E.g., Coax, twisted pair, fiber, radio, . . .

- Bits may be encoded as multiple lower-level “chips”

• Two categories of physical links
- Point-to-point networks (e.g., fiber, twisted pair):

- Shared transmission medium networks (e.g., coax, radio):

. Any message can be seen by all nodes

. Allows broadcast/multicast, but introduces contention

• One implication: speed of light matters!
- ∼ 300, 000 km/sec in a vacum, slower in fiber

SF
≥∼15 msec−−−−−−−−−−−−−→ NYC Moore’s law does not apply!

5 / 39

Link Layer, Indirect Connectivity

• Rarely have direct physical connection to destination

• Instead, communications usually “hop” through
multiple devices

source switch destination

- Allows links and devices to be shared for multiple purposes

- Must determine which bits are part of which messages intended
for which destinations

• Packet switched networks
- Pack a bunch of bytes together intended for same destination

- Slap a header on packet describing where it should go

6 / 39

Link Layer: Ethernet
• Originally designed for shared medium (coax), now

generally not shared medium (switched)
• Vendors give each device a unique 48-bit MAC address

- Specifies which card should receive a packet

• Ethernet switches can scale to switch local area networks
(thousands of hosts), but not much larger

• Packet format:
Dest
addr

64 48 32

CRCPreamble Src
addr

Type Body

1648

- Preamble helps device recognize start of packet

- CRC allows card to ignore corrupted packets

- Body up to 1,500 bytes for same destination

- All other fields must be set by sender’s OS
(NIC cards tell the OS what the card’s MAC address is,
Special addresses used for broadcast/multicast)

7 / 39

Why Ethernet is insufficient

• Ethernet Limits
A

Bridge

B C

X Y Z

Port 1

Port 2

- 2,500m diameter

- 100 nodes

• Can bridge multiple Ethernets
- First time you see destination

address, send packet to all segments

- Then learn where devices are, and
avoid forwarding useless packets

• A switch is like a bridge with n > 2 ports
- Widely used within organizations

- But could never scale to the size of the Internet

• Moreover, need to communicate across networks
- E.g., laptop w. DSL or wireless contacting server w. Ethernet

8 / 39

Network Layer: Internet Protocol (IP)

• IP used to connect multiple networks
- Runs over a variety of physical networks

- Most computers today speak IP

• Every host has a unique 4-byte IP address
- (Or at least thinks it has, when there is address shortage)

- E.g., www.ietf.org→ 132.151.6.21

• Packets are routed based on destination IP address

D

S- Address space is structured to make
routing practical at global scale

- E.g., 171.66.*.* goes to Stanford

- So packets need IP addresses in addition
to MAC addresses

9 / 39

UDP and TCP

• UDP and TCP most popular protocols on IP
- Both use 16-bit port number as well as 32-bit IP address

- Applications bind a port & receive traffic to that port

• UDP – unreliable datagram protocol
- Exposes packet-switched nature of Internet

- Sent packets may be dropped, reordered, even duplicated (but
generally not corrupted)

• TCP – transmission control protocol
- Provides illusion of a reliable “pipe” between two processes on

two different machines

- Masks lost & reordered packets so apps don’t have to worry

- Handles congestion & flow control

10 / 39

Uses of TCP

• Most applications use TCP
- Easier interface to program to (reliability)

- Automatically avoids congestion (don’t need to worry about
taking down network)

• Servers typically listen on well-known ports
- SSH: 22

- Email: 25

- Finger: 79

- Web / HTTP: 80

• Example: Interacting with www.stanford.edu
- Browser resolves IP address of www.stanford.edu (171.67.216.15)

- Browser connects to TCP port 80 on 171.67.216.15

- Over TCP connection, browser requests and gets home page

11 / 39

Principle: Packet Switching

• A packet is a self contained unit of data which contains
information necessary for it to reach its destination

• Packet switching: independently for each arriving
packet, compute its outgoing link. If the link is free,
send it. Otherwise, queue it for later (or drop).

- Makes forwarding very simple

- Allows simple sharing of links

12 / 39

Principle: Layering

• Break system functionality into a set of components

• Each component (“layer”) provides a well-defined
service

• Each layer uses only the service of the layer below it

• Layers communicate sequentially with the layers above
or below

13 / 39

The 7-Layer and 4-Layer Models

14 / 39

Principle: Encapsulation
• Stick packets inside packets
• How you realize packet switching and layering in a

system
- E.g., an Ethernet packet may encapsulate an IP packet

- An IP router forwards a packet from one Ethernet to another,
creating a new Ethernet packet containing the same IP packet

- In principle, an inner layer should not depend on outer layers (not
always true)

15 / 39

Outline

1 Networking overview

2 Systems issues

3 OS networking facilities

4 Implementing networking in the kernel

16 / 39

Unreliability of IP

• Network does not deliver packets reliably
- May drop packets, reorder packets, delay packets

- May even corrupt packets, or duplicate them

• How to implement reliable TCP on top of IP network?
- Note: This is entirely the job of the OS at the end nodes

• Straw man: Wait for ack for each packet
- Send a packet, wait for acknowledgment, send next packet

- If no ack, timeout and try again

• Problems?

- Low performance over high-delay network
(bandwidth is one packet per round-trip time)

- Possible congestive collapse of network
(if everyone keeps retransmitting when network overloaded)

17 / 39

Unreliability of IP

• Network does not deliver packets reliably
- May drop packets, reorder packets, delay packets

- May even corrupt packets, or duplicate them

• How to implement reliable TCP on top of IP network?
- Note: This is entirely the job of the OS at the end nodes

• Straw man: Wait for ack for each packet
- Send a packet, wait for acknowledgment, send next packet

- If no ack, timeout and try again

• Problems:
- Low performance over high-delay network

(bandwidth is one packet per round-trip time)

- Possible congestive collapse of network
(if everyone keeps retransmitting when network overloaded)

17 / 39

Performance: Bandwidth-delay
• Network delay over WAN will never improve much

• But throughput (bits/sec) is constantly improving

• Can view network as a pipe

Bandwidth

Delay

- For full utilization want # bytes in flight ≥ bandwidth×delay
(But don’t want to overload the network, either)

• What if protocol doesn’t involve bulk transfer?
- E.g., ping-pong protocol will have poor throughput

• Another implication: Concurrency & response time
critical for good network utilization

18 / 39

Failure

• Many more failure modes on net than w. local IPC

• Several types of error can affect packet delivery
- Bit errors (e.g., electrical interference, cosmic rays)

- Packet loss (packets dropped when queues fill on overload)

- Link and node failure

• In addition, properly delivered frames can be delayed,
reordered, even duplicated

• How much should OS expose to application
- Some failures cannot be masked (e.g., server dead)

- Others can be (e.g., retransmit lost packet)

- But masking errors may be wrong for some applications (e.g., old
audio packet no longer interesting if too late to play)

19 / 39

A little bit about TCP
• Want to save network from congestion collapse

- Packet loss usually means congestion, so back off exponentially

• Want multiple outstanding packets at a time
- Get transmit rate up to n-packet window per round-trip

• Must figure out appropriate value of n for network
- Slowly increase transmission by one packet per acked window

- When a packet is lost, cut window size in half

• Connection set up and tear down complicated
- Sender never knows when last packet might be lost

- Must keep state around for a while after close

• Lots more hacks required for good performance
- Initially ramp n up faster (but too fast caused collapse in

1986 [Jacobson], so TCP had to be changed)

- Fast retransmit when single packet lost
20 / 39

Lots of OS issues for TCP
• Have to track unacknowledged data

- Keep a copy around until recipient acknowledges it

- Keep timer around to retransmit if no ack

- Receiver must keep out of order segments & reassemble

• When to wake process receiving data?
- E.g., sender calls write (fd, message, 8000);

- First TCP segment arrives, but is only 512 bytes

- Could wake recipient, but useless w/o full message

- TCP sets “push” bit at end of 8000 byte write data

• When to send short segment, vs. wait for more data
- Usually send only one unacked short segment

- But bad for some apps, so provide NODELAY option

• Must ack received segments very quickly
- Otherwise, effectively increases RTT, decreasing bandwidth

21 / 39

Outline

1 Networking overview

2 Systems issues

3 OS networking facilities

4 Implementing networking in the kernel

22 / 39

OS interface to TCP/IP

• What interface should OS provide to TCP/IP?

• Inspired by pipes (int pipe (int fds[2]);)
- Allow Inter-process communication on one machine

- Writes to fds[1] will be read on fds[0]

- Can give each file descriptor to a different process (w. fork)

• Idea: Provide similar abstraction across machines
- Write data on one machine, read it on the other

- Allows processes to communicate over the network

• Complications across machines
- How do you set up the file descriptors between processes?

- How do you deal with failure?

- How do you get good performance?

23 / 39

Sockets

• Abstraction for communication between machines

• Datagram sockets: Unreliable message delivery
- With IP, gives you UDP

- Send atomic messages, which may be reordered or lost

- Special system calls to read/write: send/recv

• Stream sockets: Bi-directional pipes
- With IP, gives you TCP

- Bytes written on one end read on the other

- Reads may not return full amount requested—must re-read

24 / 39

Socket naming

• TCP & UDP name communication endpoints by
- 32-bit IP address specifies machine

- 16-bit TCP/UDP port number demultiplexes within host

• A connection is thus named by 5 components
- Protocol (TCP), local IP, local port, remote IP, remote port

- TCP requires connected sockets, but not UDP

• OS keeps connection state in protocol control block
(PCB) structure

- Keep all PCB’s in a hash table

- When packet arrives (if destination IP address belongs to host),
use 5-tuple to find PCB and determine what to do with packet

25 / 39

System calls for using TCP

Client Server
socket – make socket
bind – assign address
listen – listen for clients

socket – make socket
bind* – assign address
connect – connect to listening socket

accept – accept connection

*This call to bind is optional; connect can choose address & port.

26 / 39

Client interface

struct sockaddr_in {
short sin_family; /* = AF_INET */
u_short sin_port; /* = htons (PORT) */
struct in_addr sin_addr;
char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);
bzero (&sin, sizeof (sin));
sin.sin_family = AF_INET;
sin.sin_port = htons (13); /* daytime port */
sin.sin_addr.s_addr = htonl (IP_ADDRESS);
connect (s, (sockaddr *) &sin, sizeof (sin));

27 / 39

Server interface

struct sockaddr_in sin;
int s = socket (AF_INET, SOCK_STREAM, 0);
bzero (&sin, sizeof (sin));
sin.sin_family = AF_INET;
sin.sin_port = htons (9999);
sin.sin_addr.s_addr = htonl (INADDR_ANY);
bind (s, (struct sockaddr *) &sin, sizeof (sin));
listen (s, 5);

for (;;) {
socklen_t len = sizeof (sin);
int cfd = accept (s, (struct sockaddr *) &sin, &len);
/* cfd is new connection; you never read/write s */
do_something_with (cfd);
close (cfd);

}

28 / 39

Using UDP

• Call socket with SOCK DGRAM, bind as before

• New system calls for sending individual packets
- int sendto(int s, const void *msg, int len, int flags,

const struct sockaddr *to, socklen t tolen);

- int recvfrom(int s, void *buf, int len, int flags,

struct sockaddr *from, socklen t *fromlen);

- Must send/get peer address with each packet

• Can use UDP in connected mode
- connect assigns remote address

- send/recv syscalls, like sendto/recvfrom w/o last 2 args

29 / 39

Outline

1 Networking overview

2 Systems issues

3 OS networking facilities

4 Implementing networking in the kernel

30 / 39

Socket implementation

• Need to implement layering efficiently
- Add UDP header to data, Add IP header to UDP packet, . . .

- De-encapsulate Ethernet packet so IP code doesn’t get confused by
Ethernet header

• Don’t store packets in contiguous memory
- Moving data to make room for new header would be slow

• BSD solution: mbufs [Leffler]
(Note [Leffler] calls m nextpkt by old name m act)

- Small, fixed-size (256 byte) structures

- Makes allocation/deallocation easy (no fragmentation)

• BSD Mbufs working example for this lecture
- Linux uses sk buffs, which are similar idea

31 / 39

mbuf details

ext.size

ext.buf

pkt.rcvif
pkt.len

m flags
m type
m type
m data
m len
m nextpkt
m next

ext.free
m dat

108
bytes

optional

• Pkts made up of multiple mbufs
- Chained together by m next

- Such linked mbufs called chains

• Chains linked w. m nextpkt

- Linked chains known as queues

- E.g., device output queue

• Most mbufs have ≈230 data
bytes (depends on pointers)

- First in chain has pkt header

• Cluster mbufs have more data
- ext header points to data

- Up to 2 KB not collocated w. mbuf

- m dat not used

• m flags or of various bits
- E.g., if cluster, or if pkt header used32 / 39

Adding/deleting data w. mbufs

• m data always points to start of data
- Can be m dat, or ext.buf for cluster mbuf

- Or can point into middle of that area

• To strip off a packet header (e.g., TCP/IP)
- Increment m data, decrement m len

• To strip off end of packet
- Decrement m len

• Can add data to mbuf if buffer not full

• Otherwise, add data to chain
- Chain new mbuf at head/tail of existing chain

33 / 39

mbuf utility functions

• mbuf *m copym(mbuf *m, int off, int len, int wait);

- Creates a copy of a subset of an mbuf chain

- Doesn’t copy clusters, just increments reference count

- wait says what to do if no memory (wait or return NULL)

• void m adj(struct mbuf *mp, int len);

- Trim |len| bytes from head or (if negative) tail of chain

• mbuf *m pullup(struct mbuf *n, int len);

- Put first len bytes of chain contiguously into first mbuf

• Example: Ethernet packet containing IP datagram
- Trim Ethernet header w. m adj

- Call m pullup (n, sizeof (ip hdr));

- Access IP header as regular C data structure

34 / 39

Socket implementation

• Each socket fd has associated socket structure with:
- Send and receive buffers

- Queues of incoming connections (on listen socket)

- A protocol control block (PCB)

- A protocol handle (struct protosw *)

• PCB contains protocol-specific info. E.g., for TCP:
- Pointer to IP TCB w. source/destination IP address and port

- Information about received packets & position in stream

- Information about unacknowledged sent packets

- Information about timeouts

- Information about connection state (setup/teardown)

35 / 39

protosw structure

• Goal: abstract away differences between protocols
- In C++, might use virtual functions on a generic socket struct

- Here just put function pointers in protosw structure

• Also includes a few data fields
- type, domain, protocol – to match socket syscall args, so know

which protosw to select

- flags – to specify important properties of protocol

• Some protocol flags:
- atomic – exchange atomic messages only (like UDP, not TCP)

- addr – address given w. messages (like unconnected UDP)

- connrequired – requires connection (like TCP)

- wantrcvd – notify socket of consumed data (e.g., so TCP can
wake up a sending process blocked by flow control)

36 / 39

Network interface cards

• Each NIC driver provides an ifnet data structure
- Like protosw, tries to abstract away the details

• Data fields:
- Interface name (e.g., “eth0”)

- Address list (e.g., Ethernet address, broadcast address, . . .)

- Maximum packet size

- Send queue

• Function pointers
- if output – prepend header, enqueue packet

- if start – start transmitting queued packets

- Also ioctl, timeout, initialize, reset

37 / 39

Input handling
protocol

A
protocol

B

input
queue

input
queue

interface 1 interface 2 interface 3

• NIC driver determines packet protocol
• Enqueues packet for appropriate protocol handler

- If queue full, drop packet (can create livelock [Mogul])

• Posts “soft interrupt” for protocol-layer processing
- Runs at lower priority than hardware (NIC) interrupt

. . . but higher priority than process-context kernel code
38 / 39

Routing
• An OS must route all transmitted packets

- Machine may have multiple NICs plus “loopback” interface

- Which interface should a packet be sent to, and what MAC
address should packet have?

• Routing is based purely on the destination address
- Even if host has multiple NICs w. different IP addresses

- (Though OSes have features to redirect based on source IP)

• OS maintains routing table
- Maps IP address & prefix-length→ next hop

• Use radix tree for efficient lookup
- Branch at each node in tree based on single bit of target

- When you reach leaf, that is your next hop

• Most OSes provide packet forwarding
- Received packets for non-local address routed out another if

39 / 39

