Outline

1. Paging
2. Eviction policies
3. Thrashing
4. Details of paging
5. The user-level perspective
6. Case study: 4.4 BSD
Paging

- Use disk to simulate larger virtual than physical mem
• Disk much, much slower than memory
 - Goal: Run at memory, not disk speeds

• 90/10 rule: 10% of memory gets 90% of memory accesses
 - So, keep that 10% in real memory, the other 90% on disk
 - How to identify the hot 10%?
Paging challenges

- **How to resume a process after a fault?**
 - Need to save state and resume
 - Process might have been in the middle of an instruction!

- **What to fetch from disk?**
 - Just needed page or more?

- **What to eject?**
 - How to allocate physical pages amongst processes?
 - Which of a particular process’s pages to keep in memory?
Re-starting instructions

- Hardware provides kernel w. info about page fault
 - Faulting virtual address (In %cr2 reg on x86—may see it if you modify Pintos page_fault and use fault_addr)
 - Address of instruction that caused fault
 - Was the access a read or write? Was it an instruction fetch? Was it caused by user access to kernel-only memory?

- Hardware must allow resuming after a fault

- Idempotent instructions are easy
 - E.g., simple load or store instruction can be restarted
 - Just re-execute any instruction that only accesses one address

- Complex instructions must be re-started, too
 - E.g., x86 move string instructions
 - Specify src, dst, count in %esi, %edi, %ecx registers
 - On fault, registers adjusted to resume where move left off
What to fetch

• Bring in page that caused page fault

• Pre-fetch surrounding pages?
 - Reading two disk blocks approximately as fast as reading one
 - As long as no track/head switch, seek time dominates
 - If application exhibits spacial locality, then big win to store and read multiple contiguous pages

• Also pre-zero unused pages in idle loop
 - Need 0-filled pages for stack, heap, anonymously mmapped memory
 - Zeroing them only on demand is slower
 - Hence, many OSes zero freed pages while CPU is idle
Selecting physical pages

- May need to eject some pages
 - More on eviction policy in two slides
- May also have a choice of physical pages
- Direct-mapped physical caches
 - Virtual \rightarrow Physical mapping can affect performance
 - In old days: Physical address A conflicts with $kC + A$
 (where k is any integer, C is cache size)
 - Applications can conflict with each other or themselves
 - Scientific applications benefit if consecutive virtual pages do not conflict in the cache
 - Many other applications do better with random mapping
 - These days: CPUs more sophisticated than $kC + A$
Superpages

- How should OS make use of “large” mappings
 - x86 has 2/4MB pages that might be useful
 - Alpha has even more choices: 8KB, 64KB, 512KB, 4MB

- Sometimes more pages in L2 cache than TLB entries
 - Don’t want costly TLB misses going to main memory

- Or have two-level TLBs
 - Want to maximize hit rate in faster L1 TLB

- OS can transparently support superpages [Navarro]
 - “Reserve” appropriate physical pages if possible
 - Promote contiguous pages to superpages
 - Does complicate evicting (esp. dirty pages) – demote
Outline

1 Paging

2 Eviction policies

3 Thrashing

4 Details of paging

5 The user-level perspective

6 Case study: 4.4 BSD
Straw man: FIFO eviction

• Evict oldest fetched page in system
• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 physical pages: 9 page faults
Straw man: FIFO eviction

- Evict oldest fetched page in system
- Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
- 3 physical pages: 9 page faults
- 4 physical pages: 10 page faults

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>10 page faults</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Belady’s Anomaly

- More physical memory doesn’t always mean fewer faults
Optimal page replacement

- What is optimal (if you knew the future)?
Optimal page replacement

- What is optimal (if you knew the future)?
 - Replace page that will not be used for longest period of time
- Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
- With 4 physical pages:

 1
 2
 3
 4

 4
 6 page faults
 5
LRU page replacement

- Approximate optimal with least recently used
 - Because past often predicts the future
- Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
- With 4 physical pages: 8 page faults

```
1  2  3  4
5
```

- Problem 1: Can be pessimal – example?
- Problem 2: How to implement?
LRU page replacement

- Approximate optimal with least recently used
 - Because past often predicts the future
- Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
- With 4 physical pages: 8 page faults

- Problem 1: Can be pessimal – example?
 - Looping over memory (then want MRU eviction)
- Problem 2: How to implement?
Straw man LRU implementations

- **Stamp PTEs with timer value**
 - E.g., CPU has cycle counter
 - Automatically writes value to PTE on each page access
 - Scan page table to find oldest counter value = LRU page
 - Problem: Would double memory traffic!

- **Keep doubly-linked list of pages**
 - On access remove page, place at tail of list
 - Problem: again, very expensive

- **What to do?**
 - Just approximate LRU, don’t try to do it exactly
Clock algorithm

- Use accessed bit supported by most hardware
 - E.g., Pentium will write 1 to A bit in PTE on first access
 - Software managed TLBs like MIPS can do the same

- Do FIFO but skip accessed pages

- Keep pages in circular FIFO list

- Scan:
 - page’s A bit = 1, set to 0 & skip
 - else if A = 0, evict

- A.k.a. second-chance replacement
Clock alg. (continued)

- Large memory may be a problem
 - Most pages referenced in long interval
- Add a second clock hand
 - Two hands move in lockstep
 - Leading hand clears A bits
 - Trailing hand evicts pages with A=0
- Can also take advantage of hardware Dirty bit
 - Each page can be (Unaccessed, Clean), (Unaccessed, Dirty), (Accessed, Clean), or (Accessed, Dirty)
 - Consider clean pages for eviction before dirty
- Or use \(n \)-bit accessed \(count \) instead just A bit
 - On sweep: \(count = (A \ll (n - 1)) | (count \gg 1) \)
 - Evict page with lowest \(count \)
Other replacement algorithms

- Random eviction
 - Dirt simple to implement
 - Not overly horrible (avoids Belady & pathological cases)

- **LFU** (least frequently used) eviction
 - Instead of just A bit, count # times each page accessed
 - Least frequently accessed must not be very useful (or maybe was just brought in and is about to be used)
 - Decay usage counts over time (for pages that fall out of usage)

- **MFU** (most frequently used) algorithm
 - Because page with the smallest count was probably just brought in and has yet to be used

- Neither LFU nor MFU used very commonly
Naïve paging

- Naïve page replacement: 2 disk I/Os per page fault
Page buffering

- **Idea:** reduce # of I/Os on the critical path

- **Keep pool of free page frames**
 - On fault, still select victim page to evict
 - But read fetched page into already free page
 - Can resume execution while writing out victim page
 - Then add victim page to free pool

- **Can also yank pages back from free pool**
 - Contains only clean pages, but may still have data
 - If page fault on page still in free pool, recycle
Page allocation

- Allocation can be *global* or *local*

- Global allocation doesn’t consider page ownership
 - E.g., with LRU, evict least recently used page of any proc
 - Works well if P1 needs 20% of memory and P2 needs 70%:

 ![Diagram of processes P1 and P2]

 - Doesn’t protect you from memory pigs
 (imagine P2 keeps looping through array that is size of mem)

- Local allocation *isolates* processes (or users)
 - Separately determine how much mem. each process should have
 - Then use LRU/clock/etc. to determine which pages to evict
 within each process
Outline

1. Paging
2. Eviction policies
3. Thrashing
4. Details of paging
5. The user-level perspective
6. Case study: 4.4 BSD
Thrashing

- Processes require more memory than system has
 - Each time one page is brought in, another page, whose contents will soon be referenced, is thrown out
 - Processes will spend all of their time blocked, waiting for pages to be fetched from disk
 - I/O devs at 100% utilization but system not getting much useful work done

- What we wanted: virtual memory the size of disk with access time the speed of physical memory

- What we have: memory with access time of disk
Reasons for thrashing

- Access pattern has no temporal locality (past ≠ future)

 (90/10 rule has broken down)

- Hot memory (10% absorbing most accesses) does not fit

- Each process fits individually, but too many for system

 - At least this case is possible to address
Multiprogramming & Thrashing

- Must shed load when thrashing
Dealing with thrashing

• **Approach 1: working set**
 - Thrashing viewed from a caching perspective: given locality of reference, how big a cache does the process need?
 - Or: how much memory does the process need in order to make reasonable progress (its working set)?
 - Only run processes whose memory requirements can be satisfied

• **Approach 2: page fault frequency**
 - Thrashing viewed as poor ratio of fetch to work
 - PFF = page faults / instructions executed
 - If PFF rises above threshold, process needs more memory. Not enough memory on the system? Swap out.
 - If PFF sinks below threshold, memory can be taken away
• Working set changes across phases
 - Balloons during transition
Calculating the working set

- **Working set:** all pages process will access in next T time
 - Can’t calculate without predicting future

- **Approximate by assuming past predicts future**
 - So working set \approx pages accessed in last T time

- **Keep idle time for each page**

- **Periodically scan all resident pages in system**
 - A bit set? Clear it and clear the page’s idle time
 - A bit clear? Add CPU consumed since last scan to idle time
 - Working set is pages with idle time $< T$
Two-level scheduler

- Divide processes into *active* & *inactive*
 - Active – means working set resident in memory
 - Inactive – working set intentionally not loaded

- **Balance set: union of all active working sets**
 - Must keep balance set smaller than physical memory

- **Use long-term scheduler [recall from lecture 4]**
 - Moves procs active \rightarrow inactive until balance set small enough
 - Periodically allows inactive to become active
 - As working set changes, must update balance set

- **Complications**
 - How to chose idle time threshold T?
 - How to pick processes for active set
 - How to count shared memory (e.g., libc.so)
Outline

1. Paging
2. Eviction policies
3. Thrashing
4. Details of paging
5. The user-level perspective
6. Case study: 4.4 BSD
Some complications of paging

- **What happens to available memory?**
 - Some physical memory tied up by kernel VM structures

- **What happens to user/kernel crossings?**
 - More crossings into kernel
 - Pointers in syscall arguments must be checked
 (can’t just kill process if page not present—might need to page in)

- **What happens to IPC?**
 - Must change hardware address space
 - Increases TLB misses
 - Context switch flushes TLB entirely on old x86 machines
 (But not on MIPS… Why?)
Some complications of paging

- **What happens to available memory?**
 - Some physical memory tied up by kernel VM structures

- **What happens to user/kernel crossings?**
 - More crossings into kernel
 - Pointers in syscall arguments must be checked
 (can’t just kill process if page not present—might need to page in)

- **What happens to IPC?**
 - Must change hardware address space
 - Increases TLB misses
 - Context switch flushes TLB entirely on old x86 machines
 (But not on MIPS… Why? MIPS tags TLB entries with PID)
64-bit address spaces

- Recall x86-64 only has 48-bit virtual address space
- What if you want a 64-bit virtual address space?
 - Straight hierarchical page tables not efficient
 - But software TLBs (like MIPS) allow other possibilities

- Solution 1: Hashed page tables
 - Store Virtual → Physical translations in hash table
 - Table size proportional to physical memory
 - Clustering makes this more efficient [Talluri]

- Solution 2: Guarded page tables [Liedtke]
 - Omit intermediary tables with only one entry
 - Add predicate in high level tables, stating the only virtual address range mapped underneath + # bits to skip
Outline

1. Paging
2. Eviction policies
3. Thrashing
4. Details of paging
5. The user-level perspective
6. Case study: 4.4 BSD
Recall typical virtual address space

- Dynamically allocated memory goes in heap
- Top of heap called *breakpoint*
 - Addresses between breakpoint and stack all invalid
Early VM system calls

• OS keeps “Breakpoint” – top of heap
 - Memory regions between breakpoint & stack fault on access

• char *brk (const char *addr);
 - Set and return new value of breakpoint

• char *sbrk (int incr);
 - Increment value of the breakpoint & return old value

• Can implement malloc in terms of sbrk
 - But hard to “give back” physical memory to system
Memory mapped files

- Other memory objects between heap and stack
mmap system call

- void *mmap (void *addr, size_t len, int prot,
 int flags, int fd, off_t offset)
 - Map file specified by fd at virtual address addr
 - If addr is NULL, let kernel choose the address

- prot – protection of region
 - OR of PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE

- flags
 - MAP_ANON – anonymous memory (fd should be -1)
 - MAP_PRIVATE – modifications are private
 - MAP_SHARED – modifications seen by everyone
More VM system calls

- `int msync(void *addr, size_t len, int flags);`
 - Flush changes of mmapped file to backing store

- `int munmap(void *addr, size_t len)`
 - Removes memory-mapped object

- `int mprotect(void *addr, size_t len, int prot)`
 - Changes protection on pages to or of PROT...

- `int mincore(void *addr, size_t len, char *vec)`
 - Returns in vec which pages present
Exposing page faults

```c
struct sigaction {
    union {
        /* signal handler */
        void (*sa_handler)(int);
        void (*sa_sigaction)(int, siginfo_t *, void *);
    };
    sigset_t sa_mask; /* signal mask to apply */
    int sa_flags;
};

int sigaction (int sig, const struct sigaction *act, struct sigaction *oact)
```

- Can specify function to run on SIGSEGV
 (Unix signal raised on invalid memory access)
Example: OpenBSD/i386 siginfo

```c
struct sigcontext {
    int sc_gs;    int sc_fs;    int sc_es;    int sc_ds;
    int sc edi;    int sc esi;    int sc ebp;    int sc ebx;
    int sc edx;    int sc ecx;    int sc eax;

    int sc eip;    int sc cs;    /* instruction pointer */
    int sc eflags;    /* condition codes, etc. */
    int sc esp;    int sc ss;    /* stack pointer */

    int sc onstack;    /* sigstack state to restore */
    int sc mask;    /* signal mask to restore */

    int sc trapno;
    int sc err;
};
```
VM tricks at user level

- **Combination of `mprotect/sigaction` very powerful**
 - Can use OS VM tricks in user-level programs [Appel]
 - E.g., fault, unprotect page, return from signal handler

- **Technique used in object-oriented databases**
 - Bring in objects on demand
 - Keep track of which objects may be dirty
 - Manage memory as a cache for much larger object DB

- **Other interesting applications**
 - Useful for some garbage collection algorithms
 - Snapshot processes (copy on write)
Outline

1. Paging
2. Eviction policies
3. Thrashing
4. Details of paging
5. The user-level perspective
6. Case study: 4.4 BSD
Each process has a *vm space* structure containing

- *vm_map* – machine-independent virtual address space
- *vm_pmap* – machine-dependent data structures
- statistics – e.g. for syscalls like *getrusage ()*

vm_map is a linked list of *vm_map_entry* structs

- *vm_map_entry* covers contiguous virtual memory
- points to *vm_object* struct

vm_object is source of data

- e.g. *vnode* object for memory mapped file
- points to list of *vm_page* structs (one per mapped page)
- *shadow objects* point to other objects for copy on write

¹See library.stanford.edu for off-campus access
4.4 BSD VM data structures
Pmap (machine-dependent) layer

- Pmap layer holds architecture-specific VM code
- VM layer invokes pmap layer
 - On page faults to install mappings
 - To protect or unmap pages
 - To ask for dirty/accessed bits
- Pmap layer is lazy and can discard mappings
 - No need to notify VM layer
 - Process will fault and VM layer must reinstall mapping
- Pmap handles restrictions imposed by cache
Example uses

- **vm_map_entry structs for a process**
 - r/o text segment → file object
 - r/w data segment → shadow object → file object
 - r/w stack → anonymous object

- **New vm_map_entry objects after a fork:**
 - Share text segment directly (read-only)
 - Share data through two new shadow objects
 (must share pre-fork but not post-fork changes)
 - Share stack through two new shadow objects

- **Must discard/collapse superfluous shadows**
 - E.g., when child process exits
What happens on a fault?

- Traverse `vm_map_entry` list to get appropriate entry
 - No entry? Protection violation? Send process a SIGSEGV
- Traverse list of [shadow] objects
- For each object, traverse `vm_page` structs
- Found a `vm_page` for this object?
 - If first `vm_object` in chain, map page
 - If read fault, install page read only
 - Else if write fault, install copy of page
- Else get page from object
 - Page in from file, zero-fill new page, etc.