
Implementing Apache Spark in Haskell

Yogesh Sajanikar

March 17, 2016 (CS240H)

Abstract

This paper presents hspark, a Haskell library inspired from Apache
Spark. Hspark implements a framework to enable running a dis-
tributed map-reduce job over a set of nodes. Hspark also presents
a extendible DSL to specify a job by dividing it into multiple stages.
Hspark translates the DSL into a set of distributed processes with
the help of cloud Haskell libraries.

1 Overview

1.1 Apache Spark

Apache spark is a very popular and fast cluster computing framework. It is
reported to give significant performance benefits1 above Hadoop. The jobs
are specified in terms of RDD [1] (Resilient Distributed Data) in Spark. Each
RDD does an atomic mapping or reduction step. When executed, an RDD
along with its dependent RDDs are split into partitions. This step creates a
DAG (Directed Acyclic Graph) between an RDD and its dependent RDDs.
This DAG is then scheduled to run over a set of distributed nodes. The
backend for execution can be either Hadoop or Mesos cluster. Use of in-
memory blocks, and strategy to efficiently localize the data gives Spark a
better performance.

1.2 Hspark

Hspark implements a simple and extensible DSL to specify a job. Hspark
takes a configuration of cluster, and translates the job at runtime into a set
of distributed tasks using distributed-process library of cloud haskell.

1http://spark.apache.org/

1

https://github.com/yogeshsajanikar/hspark
http://haskell-distributed.github.io/
http://spark.apache.org/
http://hadoop.apache.org/
http://spark.apache.org/

2 Hspark components
Hspark has three components

• Context - Context provides a information about cluster.

• RDD DSL - Provides a way of expressing hspark job.

• Execution - A backend integrated with RDD and context that executes
RDD with its dependencies.

2.1 Context

A context specifies the environment and configuration of the cluster. The
cluster consists of set of nodes. Each node works as a logical unit capable
of running come computations. The nodes are separated from each other
through a transport layer.

The essential components of the context are

1. Master Node - A master node triggers the job by distributing it on
slave nodes in the cluster. After the job has finished, it also collects
the data from all the nodes.

2. Slave Node - A slave node is a worker node. A master node spawns
computations on slave node(s).

2.2 RDD

RDD is implemented as a type class. The type that is produced my an RDD
must be serializable so that it can be transported over the wire to another
node.

newtype Blocks a = Blocks { _blocks :: M.Map Int ProcessId }

class Serializable b => RDD a b where

flow :: Context -> a b -> Process (Blocks b)

An RDD implements a method flow that uses a context, and triggers a
process that returns Blocks. A process in cloud haskell is a lightweight action
container. Each block is a process id of a process in a cluster.

2

A process being implemented asynchronously, flow can immediately re-
turn. The downstream application (or an RDD) must send a Fetch query
to the process in a block to retrieve the data.

Each chunk of data for Block b is a list [b].

-- pid is a process id contained in a block
-- Send a message to that PID, and wait for it.
do

sendFetch dict pid (Fetch thispid)
receiveWait [matchSeed dict $ \xs -> return xs]

2.2.1 Closure

Distributed-process (and hence hspark) heavily rely on closure, and Stat-
icPointer extension provided by GHC > 7.10.x. A static pointer is im-
plemented as a fingerprint of a closed expression that can be valid across
machines, and can be dereferenced later on a different machine. [2]

An RDD accepts closure built around static values using composition, so
that they can be serialized across nodes. Polymorphic types are serialized
through rank1dynamic library, by building a remote table for methods.

Hspark currently implements following RDD.

2.2.2 SeedRDD - Populating the data

Seed RDD simply splits up the data and populates it across all partitions,
or given number of nodes.

seedRDD :: Context
-> Maybe Int -- ^ Number of partitions
-> Static (SerializableDict [a])
-> Closure [a] -- ^ Input data
-> SeedRDD a

2.2.3 MapRDD/MapRDDIO - Mapping with a function

A MapRDD is takes a parent RDD, and a function (b -> c) that maps RDD
of type a to RDD of type b

-- | Create map RDD from a function closure and base RDD
mapRDD :: (RDD a b, Serializable c) =>

Context -- ^ Context
-> a b -- ^ Parent RDD

3

https://hackage.haskell.org/package/rank1dynamic-0.3.2.0

-> Static (SerializableDict [c])
-> Closure (b -> c)

-- ^ Transformation
-> MapRDD a b c

-- ^ Map representing transformation (b -> c)

A MapRDDIO is similar to MapRDD except that it takes an IO action
(b -> IO c).

2.2.4 ReduceRDD - Reducing with a combining function and a
partition

A ReduceRDD works a parent RDD that produces key value pair (k,v). Hence
ReduceRDD and its RDD instance are designed as,

data ReduceRDD a k v b

-- | Constraint parent to produce a key-value pair.
instance (Ord k, Serializable k, Serializable v, RDD a (k,v))

=> RDD (ReduceRDD a k v) (k,v) where

reduceRDD :: (RDD a (k,v), Ord k, Serializable k, Serializable v) =>
Context

-> a (k,v) -- ^ Base RDD
-> Static (OrdDict k)

-- ^ Key must be orderable
-> Static (SerializableDict [(k,v)])
-> Closure (v -> v -> v)

-- ^ Combining values for a key
-> Closure (k -> Int)

-- ^ Choosing a partition for a key
-> ReduceRDD a k v (k,v)

Reducing a data with a combining function is done in two stages [3] :

• Stage 1: Local Reduction The data is locally reduced using combin-
ing function. Local reduction results in a reducing serialization over-
head over the network.

• Stage 2: Shuffled Reduction Each process is mapped to a partition
number. The partition number is sent to the processes producing Stage
1. Each Stage 1 process responds by delivering only those keys which
belong to a given partition.
Stage 2 further does the reduction using combining function.

4

2.3 Execution Strategy

Hspark implements following strategy to allocate partitions to node, and do
further processing.

• Partitioning Data - Each partition of data is assigned to a node in the
cluster. If number of partitions are larger than the number of worker
nodes, the nodes are wrapped over.

• Mapping Jobs Allocation - The mapping jobs is done on the same
node where its parent block is present.

• Reduction Job - The number of partitions in the reduction are kept
same as the parent RDD.

• Storage - The processes are also responsible for the storing the results
of the computation.

The execution plans for a simple seed-map-reduce job looks like following.

3 Limitations and Future Scope
• Does not handle exceptions well. Hence, hspark is yet to achieve the
resiliency.

• It should be possible to implement a execution strategy driven by con-
text, where a failed process can be restarted in case of a network failure.

5

• When the mapping processes share the same node, the data is still
serialized (not reused). It may be possible to model it through share
MVar in such a way that the proceses working on the same node can
resolve directly to the data.

• Processes are spawned on demand without any monitoring. Monitors
should be added to detect failures, and propagate.

• The closures are used to spawn processes. And hence, the task al-
location has to be done by RDD itself. Instead, it is proposed that
RDD should evaluate to a DAG of closures (rather than a blocks of
processes).

Each graph node in the closure DAG would represent a process that
can be spawned on any of the node in the cluster. This will put Context
in the total control, and also will give an ability to restore a node by
looking at a lineage of any graph node and re-processing the closure.

These points should be considered only when the library has stabilized.

• Benchmarking on the known data and against Apache Spark.

• Using different backends for distributed-process

4 Sample Code
Sample hspark code is provided here.

do
sc <- createContextFrom remoteTable master slaves
-- Create RDD with 2 partitions
let partitions = Just 2

dt = [1..100]
-- Seed the data with
seed = seedRDD sc partitions dict ($(mkClosure ’input) dt)
-- Map the data
maps = mapRDD sc seed dict square
-- Reduce with a combiner
reduce = reduceRDD sc maps odict dict combiner partitioner

-- Compute, will trigger seed, maps, reduce
result <- collect sc reduce

6

5 Source Repository
The repository is maintained at git-hub at https://github.com/yogeshsajanikar/
hspark. Any suggestions and contributions are always welcome.

References
[1] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin

Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Sto-
ica. Resilient distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI’12, pages
2–2, Berkeley, CA, USA, 2012. USENIX Association.

[2] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. Towards haskell
in the cloud. SIGPLAN Not., 46(12):118–129, September 2011.

[3] Ralf Lämmel. Google’s MapReduce Programming Model – Revisited.
Science of Computer Programming, 2008.

7

https://github.com/yogeshsajanikar/hspark
https://github.com/yogeshsajanikar/hspark

	Overview
	Apache Spark
	Hspark

	Hspark components
	Context
	RDD
	Closure
	SeedRDD - Populating the data
	MapRDD/MapRDDIO - Mapping with a function
	ReduceRDD - Reducing with a combining function and a partition

	Execution Strategy

	Limitations and Future Scope
	Sample Code
	Source Repository

