Implementing Apache Spark in Haskell

Yogesh Sajanikar

March 17, 2016 (CS240H)

Abstract

This paper presents hspark, a Haskell library inspired from Apache Spark. Hspark implements a framework to enable running a distributed map-reduce job over a set of nodes. Hspark also presents a extensible DSL to specify a job by dividing it into multiple stages. Hspark translates the DSL into a set of distributed processes with the help of cloud Haskell libraries.

1 Overview

1.1 Apache Spark

Apache spark is a very popular and fast cluster computing framework. It is reported to give significant performance benefits\(^1\) above Hadoop. The jobs are specified in terms of RDD [1] (Resilient Distributed Data) in Spark. Each RDD does an atomic mapping or reduction step. When executed, an RDD along with its dependent RDDs are split into partitions. This step creates a DAG (Directed Acyclic Graph) between an RDD and its dependent RDDs. This DAG is then scheduled to run over a set of distributed nodes. The backend for execution can be either Hadoop or Mesos cluster. Use of in-memory blocks, and strategy to efficiently localize the data gives Spark a better performance.

1.2 Hspark

Hspark implements a simple and extensible DSL to specify a job. Hspark takes a configuration of cluster, and translates the job at runtime into a set of distributed tasks using distributed-process library of cloud haskell.

\(^1\)http://spark.apache.org/
2 Hspark components

Hspark has three components

- **Context** - Context provides a information about cluster.
- **RDD DSL** - Provides a way of expressing hspark job.
- **Execution** - A backend integrated with RDD and context that executes RDD with its dependencies.

2.1 Context

A context specifies the environment and configuration of the cluster. The cluster consists of set of **nodes**. Each node works as a logical unit capable of running some computations. The nodes are separated from each other through a transport layer.

The essential components of the context are

1. **Master Node** - A master node triggers the job by distributing it on slave nodes in the cluster. After the job has finished, it also collects the data from all the nodes.

2. **Slave Node** - A slave node is a worker node. A master node spawns computations on slave node(s).

2.2 RDD

RDD is implemented as a type class. The type that is produced my an RDD must be *serializable* so that it can be transported over the wire to another node.

```haskell
newtype Blocks a = Blocks { _blocks :: M.Map Int ProcessId } class Serializable b => RDD a b where

  flow :: Context -> a b -> Process (Blocks b)```

An RDD implements a method *flow* that uses a context, and triggers a process that returns *Blocks*. A process in *cloud haskell* is a lightweight action container. Each *block* is a *process id* of a process in a cluster.
A process being implemented asynchronously, flow can immediately return. The downstream application (or an RDD) must send a Fetch query to the process in a block to retrieve the data.

Each chunk of data for Block b is a list [b].

```haskell
-- pid is a process id contained in a block
-- Send a message to that PID, and wait for it.
do
 sendFetch dict pid (Fetch thispid)
 receiveWait [matchSeed dict $ \xs -> return xs]
```

### 2.2.1 Closure

Distributed-process (and hence hspark) heavily rely on closure, and StaticPointer extension provided by GHC > 7.10.x. A static pointer is implemented as a fingerprint of a closed expression that can be valid across machines, and can be dereferenced later on a different machine. [2]

An RDD accepts closure built around static values using composition, so that they can be serialized across nodes. Polymorphic types are serialized through rank1dynamic library, by building a remote table for methods.

Hspark currently implements following RDD.

#### 2.2.2 SeedRDD - Populating the data

Seed RDD simply splits up the data and populates it across all partitions, or given number of nodes.

```haskell
seedRDD :: Context
 -> Maybe Int -- ^ Number of partitions
 -> Static (SerializableDict [a])
 -> Closure [a] -- ^ Input data
 -> SeedRDD a
```

#### 2.2.3 MapRDD/MapRDDIO - Mapping with a function

A MapRDD is takes a parent RDD, and a function (b -> c) that maps RDD of type a to RDD of type b

```haskell
-- | Create map RDD from a function closure and base RDD
mapRDD :: (RDD a b, Serializable c) =>
 Context -- ^ Context
 -> a b -- ^ Parent RDD
```
A `MapRDDIO` is similar to `MapRDD` except that it takes an IO action \((b \rightarrow \text{IO } c)\).

### 2.2.4 ReduceRDD - Reducing with a combining function and a partition

A `ReduceRDD` works a parent RDD that produces key value pair \((k,v)\). Hence `ReduceRDD` and its RDD instance are designed as,

```haskell
data ReduceRDD a k v b

-- | Constraint parent to produce a key-value pair.
instance (Ord k, Serializable k, Serializable v, RDD a (k,v)) => RDD (ReduceRDD a k v) (k,v) where

reduceRDD :: (RDD a (k,v), Ord k, Serializable k, Serializable v) => Context
 -> a (k,v) -- ^ Base RDD
 -> Static (OrdDict k)
 -- ^ Key must be orderable
 -> Static (SerializableDict [(k,v)])
 -> Closure (v -> v -> v)
 -- ^ Combining values for a key
 -> Closure (k -> Int)
 -- ^ Choosing a partition for a key
 -> ReduceRDD a k v (k,v)
```

Reducing a data with a combining function is done in two stages [3] :

- **Stage 1: Local Reduction** The data is locally reduced using combining function. Local reduction results in a reducing serialization overhead over the network.

- **Stage 2: Shuffled Reduction** Each process is mapped to a partition number. The partition number is sent to the processes producing `Stage 1`. Each `Stage 1` process responds by delivering only those keys which belong to a given partition.

`Stage 2` further does the reduction using combining function.
2.3 Execution Strategy

**Hspark** implements following strategy to allocate partitions to node, and do further processing.

- **Partitioning Data** - Each partition of data is assigned to a node in the cluster. If number of partitions are larger than the number of worker nodes, the nodes are wrapped over.

- **Mapping Jobs Allocation** - The mapping jobs is done on the same node where its parent block is present.

- **Reduction Job** - The number of partitions in the reduction are kept same as the parent RDD.

- **Storage** - The processes are also responsible for the storing the results of the computation.

The execution plans for a simple seed-map-reduce job looks like following.

3 Limitations and Future Scope

- Does not handle exceptions well. Hence, **hspark** is yet to achieve the *resiliency*.

- It should be possible to implement a execution strategy driven by context, where a failed process can be restarted in case of a network failure.
• When the mapping processes share the same node, the data is still serialized (not reused). It may be possible to model it through share MVar in such a way that the processes working on the same node can resolve directly to the data.

• Processes are spawned on demand without any monitoring. Monitors should be added to detect failures, and propagate.

• The closures are used to spawn processes. And hence, the task allocation has to be done by RDD itself. Instead, it is proposed that RDD should evaluate to a DAG of closures (rather than a blocks of processes).

  Each graph node in the closure DAG would represent a process that can be spawned on any of the node in the cluster. This will put Context in the total control, and also will give an ability to restore a node by looking at a lineage of any graph node and re-processing the closure.

These points should be considered only when the library has stabilized.

• Benchmarking on the known data and against Apache Spark.

• Using different backends for distributed-process

4 Sample Code

Sample hspark code is provided here.

\[
\text{do}
\]
\[
\text{sc <- createContextFrom remoteTable master slaves}
\]
\[
\text{-- Create RDD with 2 partitions}
\]
\[
\text{let partitions = Just 2}
\]
\[
\text{dt = [1..100]}
\]
\[
\text{-- Seed the data with}
\]
\[
\text{seed = seedRDD sc partitions dict ($(mkClosure 'input) dt)}
\]
\[
\text{-- Map the data}
\]
\[
\text{maps = mapRDD sc seed dict square}
\]
\[
\text{-- Reduce with a combiner}
\]
\[
\text{reduce = reduceRDD sc maps odict dict combiner partitioner}
\]
\[
\text{-- Compute, will trigger seed, maps, reduce}
\]
\[
\text{result <- collect sc reduce}
\]
5 Source Repository

The repository is maintained at git-hub at https://github.com/yogeshsajanikar/hspark. Any suggestions and contributions are always welcome.

References

