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| ast week

Last week, David Terei lectured about
the compilation pipeline which is
responsible for producing the executable
binaries of the Haskell code you

actually want to run.
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Today, we are going to look at an
important piece of C code (blasphemy!)
which is linked against every Haskell
program, and implements some
important functionality (without

which, your code would not run

at all!)

Y ur\(\a\o\e
executable




Why learn about the RTS?

But first, an important question to answer: why should anyone care about a giant blob
of C code that your Haskell code looks like? Isn't simply an embarrassing corner of Haskell
that we should pretend doesn't exist?
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Code becomes slower as more boxed arrays are allocated

A, Ininvestigating some weird benchmarking results in a library, | stumbled upon some

22 behavior | don't understand, though it might be really obvious. It seems that the time
taken for many operations (creating a new MutableArray , reading or modifying an
IORef ) increases in proportion to the number of arrays in memory.

One reason to study the operation of the RTS is that how

Here's the first example: the runtime system is implemented can have a very big
impact on how your code performs. For example, this SO
module Main question wonders why MutableArrays become slower as
where you allocate more of them. By the end of the talk, you'll

understand why this is not such an easy bug to fix, and what

i I
import Control.Monad the reasons for it are!

import qualified Data.Primitive as P
import Control.Concurrent

import Data.IORef

import Criterion.Main

import Control.Monad.Primitive(PrimState)
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Computer Programming: Edit

Why are Haskell ‘green threads' more efficient/ performant
than native threads? -«
Related to this paper: Page on Yale = (Mio: A High-Performance

Multicore |0 Manager for GHC) Another reason to study the RTS is to understand
) ) , _ the performance characteristics of unusual
Specifically quoting the introduction: 15y qyage features provided by the language,

. . , such as Haskell's green threads.
A naive implementation, using one

native thread (i.e. OS thread) per request would lead to the
use of a large number

of native threads, which would substantially degrade performance
due to the relatively high cost of OS context switches [22]. In
contrast, Haskell threads are lightweight

threads, which can be context switched without incurring an OS
context switch and with much lower overhead.

I've heard the anecdote that Ruby threading was so slow because
Ruby used "green threads" instead of native threads e.g. like Java.
So what makes Haskell "green threads" different from Ruby "green
threads?"

—

In theory, only the semantics of Haskell's multithreading mechanisms should matter, but in
practice, the efficiency and underlying implementation are important factors.



Perhaps after this class you will go work for some big corporation, and never write any more
Haskell. But most high-level languages you will write code for are going to are going to have
some runtime system of some sort, and many of the lessons from GHC's runtime are transferable

to those settings. I Jike tq thi at GHC's runtime is actually_far nore understandable than
many of these othqrs (w%beli in documentation!) J \/

V3 GHC/ Golang
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So, this lecture could just be a giant fact dump
about the GHC runtime system, but that would

be pretty boring. While I am going to talk about
some of the nuts and bolts of GHC's runtime, I

am also going to try to highlight some "bright ideas
which come from being the runtime for a purely
functional, lazy language. What does this buy you?
A lot, it turns out!



Let's dive right in. Here's a diagram from the GHC Trac which describes the main "architecture"
of the runtime. To summarize, the runtime system is a blob of code that interfaces between

C client code (sometimes trivial, but you can call into Haskell from C) and the actual compiled
Haskell code.

""""""""" RTS

Compiled Haskell Code



There is a lot of functionality that the RTS packs,
In a nutshell.., s mtimshstoien
[ X N )

> Stovmﬁe Manaoes (Cya(Bage Collection)

The storage er manages t emory used by a Hasketl program; most importantly
it includes the garbage collector which cleans up unused memory.

= Scheduler

The scheduler is responsible for actually running Haskell code, and multiplexing between
Haskell's green threads and managing multicore Haskell.

— Bytecode Tnter preter (GHCH)

When running GHCi, GHC typechecks and translates Haskell code into a bytecode format.
This bytecode format is then interpreted by the RTS. The RTS also does the work of

ching between co 11ed ‘c<ode and bytecode.
z p NnamiC

RY'S sports a homegrown linker, used to load objects of compiled code at runtime.
Uniquely, we can also load objects that were *statically* compiled (w/o -fPIC) by linking
l‘g at Jegd-time. I hear ebook uses this in Sig

wore [(3nsac lO(\aT (\/\Qmolsact onal

A chunk of RTS code is devoted to the implementation of software tr.
memory, a compositional concurrency mechanism.

__% ) 1o The RTS, esp. the GC, has code to dump
(' o’ﬂ ‘l N j profiling information when you ask a{\d MO(‘Q. ..

for heap usage, e.g. +RTS -h

__>



In this talk, we're going to focus on the storage
n a n U\:\:Sk e\ l manager and the scheduler, as they are by far the

most 1mportant components of the RTS. Every Haskell

~ | Storage N\anaaer (Cya(Base Collection)
- Scth\u\er

— Bytecw\e Tnter pfeter (GHCY)
— D\/r\am'tc L aker

—> SO‘F{:»\INQ T(ac\sacti ona\ (‘/\QMOI7’
— P(O’Plllr\j [al\o\more...]



Here's the agenda

~ Storage /"\anaae,r
Ge{\e(aﬁona\ COpyiﬂf'j GC
Write barflecs & of omotion
Facsllel GC Cbriefly )

- Scheo\&x\er
“Threads HECs
Load\ loalat\cing] Bouv\d\ threads

MVars
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X Car’t handle cycles
PHP, Ferl, Python*®
\

Mok and Swesp [ 0
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X Needs 1o sweep eatlfe heap

Golang : Ruby
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" Most okyects die young i

—the Generstionsl Hy,oothes‘.s

If you are going to GC in a real world system, then there is basically one absolutely mandatory
performance optimization you have to apply: generational collection. You've probably heard
about it before, but the generational hypothesis states that most objects die young.



Gene(a‘t\ona] COPY]/\ﬂ CO\\QCtoF
JVM, V8 GHC

" Most ojects die young >
eSpecially in functiona) languages !

—the Generstionsl Hy,oothes‘.s

This is especially true in pure functional languages like Haskell, where we do very little
mutating a lot of allocating new objects when we do computation. (How else are you going
to compute with immutable objects?!)



Just to make sure, here's a simple example of copying
garbage collection.

EVACUATING

voot sel

\ \
Al le]cl
N

From space

A

Scevenge Po'm’tef‘

to space




EVACUATING

l

'{\('ON\ SPACe
' ‘Porward\r\g i
\ P
T to space

Scavense, Po'm’l:ef




EVACUATING

Al lejel

feom space

A

Scavense, Po'm’l:ef

to space




SCAVENGING
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The more garbage you have, the faster GC runs.




Roughly, you can think of copying GC as a process which continually cycles between
evacuating and scavenging objects.

Fyvacuate Scavenge



With this knowledge in hand, we can explain how generational copying collection works. Let's
take the same picture as last time, but refine our view of the to spaces so that there are now

to regions of memory: the nursery (into which new objects are allocated), and the first
generation.

Al le]cl

From space

Nursery
Generatlon 1

to spaces



The difference now is that when we do copying collection,
we don't move objects into the nursery: instead, we *tenure*

them into the first generation. _l—el\\).( i (\3

Nussery

Al le]cl

From space

to spaces



In generational garbage collection, we maintain an important invariant, which is that pointers
only ever go from the nursery to the first generation, and not vice versa. It's easy to see
that this invariant is upheld if all objects in your system are immutable (+1 for Haskell!)

Nursecy

AV

Gener ation 1




If this invariant is maintained, then we can do a partial garbage collection by only scanning
over things in the nursery, and assuming that the first generation is live. Such a garbage
collection is called a "minor" garbage collection. Then, less frequently, we do a major
collection involving all generations to free up garbage from the last generation.

Nursecy

N A

Genecation 1.

Minor GC
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~The. more Sarba\c)e you have.,
the faster it funs

—[(ee Memory 1S contl3u0US

The key points.



Having contiguous memory to allocate from is a big deal:

" it means that you can perform allocations extremely
m k—eXlt ( ) efficiently. To allocate in Haskell, you only need to do an
ent r‘y . addition and a compare.
Hp = Hp + 16;

(if (Hp > HpLim) goto gc;)

v::164 = I64[R1l] + 1;

I64[Hp - 8] = GHC Types I con info;
I64[Hp + 0] = v::1I64;

R1 = Hp;

Sp = Sp + 8;

jump (I64([Sp + 0]) ();

gc: HpAlloc = 16;
jump stg gc enter 1 ();



What, dt ity ? Q@
Z

— Write Barriers

— Para”el Ga('oage Collection

I promised you I would talk about the unique benefits we get for writing an RTS
for Haskell code, and now's the time. I'm going to talk how Haskell's purity can
be used to good effect.



Nursecy

/\/fk

Gener ation 1

To talk about write barriers, we have to first go back to our picture of generations in
the heap, and recall the invariant we imposed, which is that pointers are only allowed to
flow from the nursery to the first generation, and not vice versa.



Nursecy
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When mutation comes into the picture, there's a problem: we can mutate a pointer in
an old generation to point to an object in the nursery.



If we perform a minor garbage collection, we may
wrongly conclude that an object is dead, and clear it out

Ae B

Nursecy

/\/?k

Gener ation 1

Minor GC



At which point we'll get a
segfault if we try to follow
the mutated pointer. r-\

Nursecy

/\/ﬁ@/

Gener ation 1




The canonical fix for this in any generational garbage

collection is introducing what's called a "mutable set", Mu‘tak\e Se‘b

which tracks the objects which (may) have references
from older generations, so that they can be preserved
on minor GCs

Nursecy

/\/?K

Gener ation 1




There is a big design space in how to build your mutable sets, with differing trade offs.
If garbage collection is black magic, the design of your mutable set mechanism probably
serves as the bulk of the problem.

\/\/hy IS Sef\erationgl GC
had. ¢ ThiS.




For example, if you're Java, your programmers are modifying pointers on the heap
ALL THE TIME, and you really, really, really need to make sure adding something to
the mutable set is as fast as possible. So if you look at, say, the JVM, there are
sophisticated card marking schemes to minimize the number of extra instructions
that need to be done when you mutate a pointer.

\/\/hy IS Sef\erationgl GC
hard in Java ¢ This.




Haskell doesn't have many
of these optimizations (simplifying
its GC and code generation)...

(1 JC\/ to the rescue prrmis

—Mutation s rare

Idiomatic Haskell code doesn't mutate. Most executing code is computing or
allocating memory. This means that slow mutable references are less of a "big deal."

— TORefs ae slow anywa

Perhaps this is not a good excuse, but IORefs are Z Iready’ pretty sure, because their
current implementation imposes a mandatory indirection. "You didn't want to use
them anyway."

"LBE'I(\QSS S 4a Special kmo\
o'F MuJ(a'b oNn

Now, it is patently not true that Haskell code does not, under the hood, do mutation:
in fact, we do a lot of mutation, updating thunks with their actual computed values.
But there's a trick we can play in this case.




Nursecy

Gener ation 1

thunk




Nursecy

Genecation 1. nd

imnutable now

Once we evaluate a thunk, we mutate it to point to the true value precisely once. After this
point, it is immutable.



R omstion

Nursery

£
Generat'\or\ 1

imnutable now

Since it is immutable, result cannot possibly become dead until ind becomes dead. So, although
we must add result to the mutable set, upon the next GC, we can just immediately promote it
to the proper generation.



Haskell programs spend a lot of time garbage collecting,

and while running the GC in parallel with the
a('al \ ()/l mutators in the program is a hard problem, we can

parallelize GC. The basic idea is that the scavenging

process (that's where we process objects which

are known to be live to pull in the things that they

point to) can be parallelized.

,L-O\e&: SPIH: heap to blocks,
and Parsllelize the Scavmg'mﬂ process




Now, here's a problem. Suppose that you have two threads busily munching away on
their live sets, and they accidentally end up processing two pointers which point to the
same object.

/

GC thread 1



In an ideal world, only one of the threads would actually evacuate the object, and the other
thread would update its pointer to point to its sole copy. Unfortunately, to do this, we'd
have to add synchronization here. That's a BIG DEAL; most accesses to the heap here

have no races and we really don't want to pay the cost of synchronization.

/
/

//
N N

L NN

GC thread 1 GC thresd 2

Needs syncWoni zation



If A is an immutable object, there's an
A ' . taL)l easy answer: just let the two threads race,
|S | MMll Ceos and end up with duplicates of the object!

After all, you can't observe the difference.

N N
IEEL RN

GC thread 1 GC thresd 2

...0bsewationally indistinguishable I
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By the way, the problem with this was each mutable array is unconditionally
\\\ added to the mutable list, so GC time was getting worse and worse.

SIEEUT VR Questons | Tage | Users | Badges | Unanswered

Code becomes slower as more boxed arrays are allocated

A, Ininvestigating some weird benchmarking results in a library, | stumbled upon some

22 behavior | don't understand, though it might &€ really obvidosg. It seems that the time
taken for many operations (creating a new(MutableArray )reading or modifying an
IORef ) increases in proportion to the num¥gr of arrays ip

Here's the first example:

module Main
where

import Control.Monad

import qualified Data.Primitive as P
import Control.Concurrent

import Data.IORef

import Criterion.Main

import Control.Monad.Primitive(PrimState)



For the second part of this lecture, [ want to talk about the scheduler.

Sckeo\u\e("



In case your final project doesn't involve any concurrency, it's worth briefly recapping
the user visible interface for threads.

Haskell threads

e Haskell implements user-level threads in control.concurrent

o Threads are lightweight (in both time and space)

o Use threads where in other languages would use cheaper constructs
o Runtime emulates blocking OS calls in terms of non-blocking ones

o Thread-switch can happen any time GC could be invoked

e forkio call creates a new thread:
forkI0 :: I0 () -> IO ThreadId -- creates a new thread
¢ A few other very useful thread functions:
throwTo :: Exception e => Threadld -> e -> I0 ()
killThread :: ThreadId -> I0 () -- = flip throwTo ThreadKilled

threadDelay :: Int -> I0 () -- sleeps for # of usec
myThreadId :: I0 ThreadId



The scheduler mediates the loop between running Haskell code, and getting kicked
back to the RTS (where we might run some other Haskell code, or GC, etc...)

StoRun
RN

scheduler Haskell code

N

Sty Return




mk exit()
entry: set 1o zeto

Hp = Hp + 16; ,
if (Hp > goto gc;

v::164 = I64[R1] + 1;

I64[Hp - 8] = GHC Types I con info;
I64[Hp + 0] = v::1I64;

R1 = Hp;

Sp = Sp + 8;

jump (I64[5p + 0]) ();

gc: HpAlloc = 16;
jump stg gc enter 1 ();
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So, what is a thread anyway? Very simply, a thread is just another
heap object! There are a number of metadata associated with
a thread, but the most important data is the stack (which

is also heap allocated.) GHC uses segmented stacks, so

if you run out of space in one stack it can just allocate
another stack and link them up.

StTS0- o B
stackoby e :
. J \——7

¢ — curfent, SP

' culfent SP

S'tg, unde(-Flow flame
.\_/

‘FOO..'\A‘FO
Cheap allocsted) 2%




In a single-threaded Haskell program, these TSO objects are managed by a thread queue.

S\(\g\e-ﬂ\( eadeoh opecat'loa

cap overflow ¢

h
"tlme(‘ :;
— I

- The lifecycle of the scheduler loop
is we pop a TSO off the queue and
start running it. Eventually, it
gets preempted (either by running
out of memory, getting flagged

by the timer, or blocking) in which
8CL\QA(A LOO Pcase we pop out and run the GC or

head to the next thread queue.




Multi-theaded opestion  ~-N3
S —

v \

T sUK
o8 O O
threads u \_} \_J

Multithreaded operation simply involves allocating one of these schedule loops
to each operating system core you want to run. We refer to a scheduler loop as a
HEC.

L

Scheduler

\ooPs

(HEC)




A useful interpretation of HECs

is that they are locks: a CPU

core can take out a lock on a HEC
in which case no other cores can
use it.

HECs afe locks

\




Because garbage collection cannot run

concurrently with Haskell code, the GC
C 'tB,KQ/S a OCkS process takes out locks on all HECs to

ensure they
v

are not running.
J . ?*

J
1

»




One problem with running multiple scheduler loops
is that their respective event queues can get
unbalanced.

Work imbalance

v v

o1

o\
- I e
/)



If a core runs out of work to do, it releases
the HEC and goes to sleep.

Work imbalance

X

i <
o\
-
_/




Every time we come around the schedule loop,
a core does a quick check to see if there

\/\/0(‘ K i'mt)a‘ an & are any free HECs. If there are, it snarfs them
up, and then distributes some of its own work to

those queues. No heavy synchronization necessary!

v v
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Work imbalance
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This scheme is not

very fair, and you

won't get very good
latency guarantees from
it, but it is great for
throughput.



Here's how bound threads are implemented with
HECs.

Bound. theads

B 5

g
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Bound. theads

Ngis




Bound. theads

? T80 |

-l
S




Bound. theads

You want to avoid running : *

ordinary TSOs on bound
threads, since they are the ONLY
thread that can service TSOs

bound to that thread. \J




Let's talk about how MVars are implemented.

MVars

q_MVAR *_iAfo
head
tail

value




MVars

YUN
clo.eue,

MVars essentially contian another thread queue,
the "blocked on this MVar" thread queue. When you block on an
MVar, a TSO is removed from the main run queue and put on the

MVar

queue.

Blocked on MVar?

N

Y

\

e

W

blocked on MVar
queue

=™

Fun fact: If the Mvar becomes SNL’QSQO the
thieads in its queve die too



Scheduler in a nutshell
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, StacK S

Put(ify = most code thresdsate
by default
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The Glasgow Haskell Compiler

Login Help/Guide

m Timeline Roadmap Browse Source Vier

Commentary / Rts

GHC Trac H ) .
= G'iicRe;g;e GHC Commentary: The Runtime System

St GHC's runtime system is a slightly scary beast: 50,000 lines of C and C--

seems at first glance to be completely obscure. What on earth does the

Joining In - !

Working on GHC highlights:

Mailing Lists & IRC

The GHC Team e It includes all the bits required to execute Haskell code that aren't
itself. For example, the RTS contains the code that knows how to r:

Documentation call error , code to allocate Array# objects, and code to implerr

Status Reports

Repositories e It includes a sophisticated storage manager, including a multi-gene

Building Guide with copying and compacting strategies.

Commentary

Debugging e It includes a user-space scheduler for Haskell threads, together wit
Haskell threads across multiple CPUs, and allowing Haskell threads

View Tickets

All Bugs separate OS threads.

All Tasks , ] . o

All Feature Req's ® There's a byte-code interpreter for GHCi, and a dynamic linker for |

My Tickets ) ) ) ) )

Tickets I Created e Heap-profiling (of various kinds), time-profiling and code coverage

By Milestone included.
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