
1

TinyTorrent: Implementing a Kademlia Based DHT
for File Sharing

A CS244B Project Report By

Sierra Kaplan-Nelson, Jestin Ma, Jake Rachleff
{sierrakn, jestinm, jakerach}@cs.stanford.edu

Abstract—We implemented a distributed peer-to-peer
file sharing service called TinyTorrent. Users discover
other users who store files on their system through Kadem-
lia, a well known peer-to-peer distributed hash table. In
this paper, we describe the architecture and implemen-
tation of TinyTorrent and Kademlia. Our approach and
implementation are motivated by providing a readable and
fast distributed system.

I. INTRODUCTION

Some recent papers in computer science have
focused on readability and understandability [1].
This benefits students and novice programmers
who aim to implement large, complex distributed
systems. However, when researching such systems
online, existing implementations are bloated with
unnecessary complexity and length. When readable
implementations do exist, they often are in Python,
JavaScript, or other inherently slow, non-systems
languages. We believe that it is in the best interest
of all programmers building distributed systems to
have simple, lightweight, yet performant implemen-
tations of important algorithms in fast, systems-
focused languages.

One concept in vogue the start of the 21st century
was the distributed hash table [2]. At its simplest,
this data structure supports two simple operations
for a client: put, and get. Put allows the client to
insert a key and value, and get allows the client
to get the value for a given key. Externally, it
appears like a regular hash table, but in reality, keys
are distributed across multiple machines. Through
distribution, DHTs prevent single node overload,
and have strong applications in load balancing and
content distribution [3]. During the rise of peer-
to-peer file sharing, one distributed hash table in
particular, Kademlia, became popular due to its

guarantees of performance, consistency, message
efficiency, and simple algorithm [4]. It serves as the
underlying protocol and network for BitTorrent, the
popular file sharing service.

Cursory searches for easy-to-understand and
well-architected Kademlia implementations on
Github and other repository-hosting services appear
unfruitful. Though the algorithm described in the
original paper is relatively straightforward, many
implementations online are either dense and ab-
struse or written in languages trading ease of coding
for a loss in performance. In this paper, we describe
our implementation of Simple Kademlia, a fast,
bare bones C++ library implemented with Boost
Asio and Cereal. This serves as a simple, readable
example of an integral distributed system in C++.
Further, we implement a file sharing application,
TinyTorrent, on top of SimpleKademlia. Through
TinyTorrent, we both aim to both show the power
and usefulness of SimpleKademlia, and provide a
readable yet performant Kademlia library for users
and learners to understand the complex nature of
asynchronous, threaded, network programming in
C++.

II. SYSTEM OVERVIEW

A. System Architecture

Our system consists of two parts - TinyTorrent
and SimpleKademlia. The interaction of each part
can be visualized in Figure 1.

Each node that joins the file sharing network
boots up TinyTorrent, launching both a client and
server. The user requests or publishes a file through
the client. To publish a file, the client can use the
Kademlia API to publish the file to the network.
Post-publishing, nodes connected to the Kademlia



2

Fig. 1. High level architecture of TinyTorrent service. Users interact
with a client interface (command line). The client interacts with
the Kademlia protocol using a simple API. Kademlia nodes interact
with one another through RPC messages. Clients communicates with
remote servers.

network are able to request from Kademlia the
node(s) which are hosting the desired file. To re-
quest the location of a desired file, the client uses
the Kademlia API to get the file by specifying its
name (ideally, by specifying some better identifier
of the actual data like a checksum or hash). The
client will be returned the IP address and port of
another server in the network that has that value.
The client is the only interface to Kademlia from
TinyTorrent. Once the client receives the proper IP
address and port pair from which to download the
desired file, it contacts the server to which that pair
belongs. In the case that multiple nodes are hosting
the same file, the client will possibly be returned a
list of peers to contact in case one fails.

Kademlia is structured to have its own protocol
consisting of a set of RPCs and core algorithms -
all Kademlia interactions are internal to Kademlia,
and do not respond to the client unless an API call
completes. Currently, SimpleKademlia is a library
that could run separately from TinyTorrent. This de-
cision was made to allow other application creators
to fork our SimpleKademlia code separately from
TinyTorrent and design a different application taking
advantage of a Kademlia DHT.

III. KADEMLIA DHT
The Kademlia DHT we built from scratch in

C++ maps all node IDs and keys to a 256-bit ID
space. Node IDs are computed by taking the SHA-
256 hash of a peer’s network information. Each
node in the DHT consists of a Protocol object and
a Network object (see figure 2). The protocol is
responsible for housing a portion of the DHT’s
key-value pairs and delegates I/O operations for
reading/writing to a separate thread. The network
engine is responsible for external communication

Fig. 2. Internal architecture of a Kademlia node. A node consists
of the protocol managing data and I/O operations, and the network
engine responsible for sending and receiving RPCs.

with other node’s network engines through RPC
messages. The network engine maintains at all times
a collection of outstanding sent RPCs uniquely
identified with a request ID.

A. Kademlia API

The Kademlia DHT offers applications a simple
API:

• node(ip, port) - Instantiate a local
Kademlia node on the given ip:port

• bootstrap(peer) - Connect to the net-
work through a pre-known peer. This peer
should be known in advance as a bootstrap
node for any node to join the Kademlia net-
work. (Explained in III-E)

• get(key, callback) - Retrieves from the
network a list of peers that contain the value
associated with the key. A client can then con-
nect to these peers to download the value. How
peers exchange values is up to the application.

• put(key) - Puts the key in the DHT, meaning
the application notifies the network of nodes it
contains the value for the key. Multiple peers
can put the same key (assuming the same
value). Subsequent calls to get(key, ...)
potentially retrieve a list of peers storing the
value.

• join() - Disconnects the Kademlia node
from the network and stops communication
with remote peers.



3

B. Routing Table

Each Kademlia node keeps track of its known
contacts in a routing table, which is a tree where
each leaf node contains a k-bucket. A k-bucket is a
list of k contacts sorted by most recently inserted. A
routing table can contain up to 256 k-buckets, which
is the number of bits in our ID’s. The procedure
of inserting into our routing table follows the same
algorithm detailed in the Kademlia paper [4]. When
inserting a new contact into a full bucket, if that
bucket contains the current node’s own id it is split
and its contents are divided amongst the two new
buckets and insertion is attempted again. Otherwise
the contact is dropped because it is not sufficiently
close to the current node. Unfortunately we did not
have time to finish the refresh buckets procedure.
The routing table can return the k or α closest
buckets to a given key.

C. Messaging Protocol

Kademlia nodes communicate by exchanging 4
types of RPCs:

• PING - verify that a node is alive
• STORE - store a key-value pair at the desti-

nation node. The recipient will record that the
sending peer contains the value for a given key.

• FIND_NODE - requests at most k nodes from
the recipient’s routing table which are closest
to the given key. This primitive RPC is used in
the general lookup algorithm.

• FIND_VALUE - returns the corresponding
value for a given key if the recipient has stored
the requested key. Otherwise, functions as a
FIND_NODE RPC.

A node is represented as NodeInfo object
which, at the very least, contains the fields [IP
address, UDP port, nodeID]. The 256-bit
node ID is the SHA-256 hash of the IP address
and port, so node IDs have a very low probabil-
ity of colliding. If duplicate node IDs is ever an
issue, nodes could also verify each other’s identity
by checking the packet’s IP header. STORE mes-
sages store NodeInfo objects as values, and both
FIND_NODE and FIND_VALUE return a vector of
NodeInfo objects.

Senders keep track of all outstanding RPCs, each
identified by a unique TID. Requests are resolved

upon receiving response messages with correspond-
ing TIDs (responses with unfamiliar TIDs are dis-
carded). The message type hierarchy is represented
polymorphically, meaning one can easily add a cus-
tom RPC by introducing a new message class and
specifying how to process requests and responses.

D. Lookup Algorithm

In order to provide get and put functionality,
Kademlia uses a lookup algorithm to locate the K
closest nodes to a key. The put function stores the
key, value pair on each of the K closest nodes. The
get function either terminates when it finds the value
or finds the K closest nodes to a key and none
of them contain the value. This lookup algorithm
leverages the FIND_NODE or FIND_VALUE RPCs
and sends out RPCs in waves, in parallel and
asynchronously [4]. The lookup procedure, origi-
nally described recursively, is described iteratively
as follows:

1) Select α contacts from the closest non-empty
k-bucket to the key being searched for. If
there are fewer than α contacts in that bucket,
Kademlia will select from buckets increasingly
farther away from the key. α represents the
number of parallel requests.

2) The initiator node sends asynchronous
FIND_NODE (or FIND_VALUE RPCs in
parallel to each of the α contacts.

3) Upon receiving each RPC response, the ini-
tiator node adds the received list of k-closest
nodes to a sorted set, sorting the nodes using
the XOR distance between a node’s ID and the
key.

4) The initiator repeatedly selects the first α con-
tacts from the list that have not been contacted
yet. FIND_NODE RPCs are sent to these con-
tacts. At most α requests are in parallel at once,
and the recursive procedure can begin before
all requests from one round have returned. The
α requests will always be to the closest nodes
the initiator has heard of.

5) The search terminates when the k closest nodes
to the key have been queried and responded,
or when all the known nodes in the network
have been queried. In the case of sending
FIND_VALUE RPCs, the search terminates as
soon as the initiator node receives a response
that the value has been found, meaning the



4

RPC response payload contains a list of peers
whom the initiator node can contact for the
data. (We were unable to implement remov-
ing a node from consideration if it does not
respond. This is in our future steps).

6) The list of K-closest nodes is passed to a
callback; for put’s, Kademlia sends the nodes
in the list STORE RPCs. For get’s, the list of
nodes is passed to a callback which calls the
user-specified callback with the list (if found)
or an empty list if the value was not found.

E. Joining the DHT
A node that wants to join the network of exist-

ing nodes does so by connecting through a well-
known peer during the bootstrap(peer) phase.
After receiving a successful PING response from
the bootstrap node, the joining node inserts the
bootstrap node into its routing table (into k-bucket
KB), and performs a lookup of its own ID. Because
the only contact in its routing table is the boot-
strap node, the joining node’s k-buckets are sub-
sequently populated with nodes between itself and
the bootstrap node. After bootstrapping, a node’s
routing table should be sufficiently populated. The
additional ”refresh” routine was left out of the
bootstrapping method due to the routing table and
k-bucket’s simplicity. The refresh routine allows the
joining node to look up a random ID for each of the
k-buckets farther away from the one housing the
bootstrap node, thereby populating all k-buckets in
its table.

IV. TINYTORRENT APPLICATION LAYER

A. Usage Overview
TinyTorrent, our client application, is built to

handle many concurrent requests. To join our file
sharing service, a user must run two processes: A
TinyTorrent Client and TinyTorrent Server. For the
sake of ease of use, the client and server are run
and forked from one program. Clients provide an
interface to the user to get and put data on the DHT
(currently this interface is an interactive command
line). The TinyTorrent client moreover initiates TCP
connections to other TinyTorrent servers to request
files.

The TinyTorrent server is simply a program that
accepts and establishes incoming TCP connections
to serve out files.

B. TinyTorrent Client
The TinyTorrent client serves as the main pro-

gram between TinyTorrent and Kademlia, using the
Kademlia API.

The TinyTorrent client’s job is to allow a TinyTor-
rent user to publish and download files. To do so, the
client reads commands from the user. When a user
decides to publish a file, she enters the command:
put filename. This simply calls the Kademlia
node’s put API, and returns to the user.

To download, a user enters the command: get
filename. To remain non-blocking during heavy
network IO, the client spins up another thread to
handle all execution. First, the client must look up
the correct list of nodes that contains the desired
file in Kademlia. Once Kademlia returns the proper
nodes, the client simply requests the file from the
server, and subsequently downloads it over TCP.
The client iteratively tries to connect to each of the
remote nodes returned by Kademlia’s get request
until it can connect and download from one of them.
If none are available, it returns without download-
ing.

C. TinyTorrent Server
The server is responsible for serving out files

to incoming requests from remote clients. When a
request comes in from a client, the server creates
a new TCP connection to store information specific
to the download from the client. The server must
immediately spin off a thread to begin reading the
desired file in from disk. The background thread
reads in the file in small chunks that it queues up for
TCP connection to process and asynchronously send
to the client as chunks are read into memory. It is
possible that a TinyTorrent user solely wants to issue
get requests and not put any data on the network.
The extra server process would not be required at
all; this would count as a small extension of the
TinyTorrent application if users could specify their
status as a downloader, uploader, or both.

V. SOFTWARE IMPLEMENTATION

The TinyTorrent client and server application and
the underlying Kademlia DHT are implemented
in C++ using Boost libraries for asynchronous
I/O and network programming (Boost Asio).
Messages are represented polymorphically for
readability and extensibility. Message serialization



5

and exchanging is done over UDP using the
Cereal serialization library. Apart from additional
third-party libraries used for hashing, concurrency,
and serialization, the underlying Kademlia DHT
is 1500 lines of C++, and the client-server
application is an additional 400 lines of C++.
Currently, the client is configured to be able to
submit concurrent requests for downloads equal to
std::thread::hardware_concurrency,
but could trivially be modified to allow a larger
number of concurrent requests.

VI. LIMITATIONS AND FUTURE WORK

In our implementation we focused on providing a
simple, correct implementation of Kademlia in C++
with a client library demonstrating its capabilities.
We had to make some assumptions to finish it within
the class time period, making it less robust. Our
major assumptions are that messages are sent suc-
cessfully and a node never goes offline. In the future,
we need to support RPC timeouts and message
retransmission.

As mentioned in the lookup procedure section, we
need to support removing nodes that do not respond
quickly from the k closest nodes.

For bootstrapping, we need to add refreshing
from bucket X to the farthest bucket.

The biggest thing we would like to add is time-
outs on the key,value pairs. This would require
a node looking through its storage and removing
outdated keys on a daily basis. It would also require
the client calling put on all its files at regular
intervals to refresh the ttl of key,value pairs.

Finally, we would also like to remove contacts
that have not responded to any requests for some
amount of time.

REFERENCES

[1] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference, USENIX
ATC’14, (Berkeley, CA, USA), pp. 305–320, USENIX Associ-
ation, 2014.

[2] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan, “Chord: A scalable peer-to-peer lookup service for
internet applications,” in Proceedings of the 2001 Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM ’01, (New York, NY,
USA), pp. 149–160, ACM, 2001.

[3] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network:
A platform for high-performance internet applications,” SIGOPS
Oper. Syst. Rev., vol. 44, pp. 2–19, Aug. 2010.

[4] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer
information system based on the xor metric,” in Revised Papers
from the First International Workshop on Peer-to-Peer Systems,
IPTPS ’01, (London, UK, UK), pp. 53–65, Springer-Verlag,
2002.


