
CS251: Cryptocurrencies and Blockchain Technologies Fall 2018

Assignment #3
Due: 11:59pm on Mon., Dec. 3, 2018
Submit via Gradescope (each answer on a separate page) code: 9RZGVZ

Problem 1. Idioms of use. Consider the transaction graph in the figure below – rectangles repre-
sent transactions, empty circles represent fresh addresses, and filled in circles represent addresses
controlled by the named entity (i.e., A stands for Alice, B stands for Bob, and C stands for
Carol). An edge labeled “change” means that the end node is the change address for that trans-
action, as identified by the heuristics discussed in class. Note that not every transaction has an
identified change address.

a. Can an observer identify who was paid by Bob in the transaction marked (1)? Explain how
or explain why they cannot be identified with certainty.

b. Can an observer identity who paid Carol? Explain how or explain why she cannot be identified
with certainty.

Problem 2. Ethereum payment channel. Let’s implement a one-sided payment channel in
Ethereum using a hash function H : X → X. The scheme works as follows: to setup the
channel Alice chooses a random x ∈ X and computes y = H(n)(x) (here H(n)(x) means iterating
the function H n times starting at x, so that H(2)(x) = H(H(x))). Alice then creates a contract
with n units of currency and embeds the value y in the contract (and sends y to Bob). To pay
Bob a total of k units (for k < n), she sends Bob the value xk = H(n−k)(x). Of course, Alice can
send these k units one at a time, by sending x1 = H(n−1)(x) to Bob, then x2 = H(n−2)(x), and
so on.
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a. Write an implementation of this payment channel contract in Solidity, using the sha3 hash
function. Alice and Bob’s addresses are hard-coded into the contract, as is the value y and
the timeout when the channel expires and the contract calls selfdestruct. Your contract
should support two methods withdrawBob and withdrawAlice.

Note: unlike the Bitcoin payment channel, Alice only sends a hash value to Bob to spend a
token. She does not need to compute a signature per token, which makes this scheme well
suited for Alice running on a very low-power device. As an aside, we point out that one
can implement Alice quite efficiently – using only O(log n) storage she need only evaluate H
twice per token (amortized). See this paper https://eprint.iacr.org/2002/001 if you are
curious to see how.

b. What security property should the hash function H satisfy to ensure that Bob cannot steal
more money than Alice intended to give him?

c. As a function of n and k, how many hashes does the contract need to compute before dis-
tributing funds? How much data will Bob need to store?

d. In practice, we want to minimize the resources consumed by the contract as gas is expensive.
Since the above scheme is a linear chain, you might guess that it can be improved using a
tree structure. Describe in code or pseudocode an improved scheme using a Merkle tree that
reduces the gas cost to only O(log n) hashes. What are the storage and computation costs
(in terms of n and k) for Alice, Bob?

Problem 3. Vulnerable 3-party payment channel. Three parties, A, B, and C, are constantly
making pairwise payments and thus design a 3-party payment channel based on the revocable
hashed timelock contracts we saw in class. At each step, A gets a revokable commitment that it
can sign and submit with three outputs, one for B, one for C, and one that A can spend 48-hours
after the transaction is mined, but either B or C can spend immediately given a hash preimage
initially known only to A (and released by A to invalidate the transaction). Similarly, B and C
each gets a corresponding commitment transaction with an output that either of the other two
parties can claim given a hash preimage. Explain how two colluding parties may be able to steal
funds from the third.

Problem 4. Auditability. Two parties, A and B, share a 2-of-2 multisig cold storage address with
a large sum of Bitcoin. Each wants to be able to access the funds if the other becomes unavailable,
so they come up with the following scheme to stop hackers. They jointly sign two transactions, t1
and t2, with the following properties: t2 spends the funds in the 2-of-2 cold storage address and
makes them available under a 1-of-2 multisig scheme (so either party can spend them). However,
t2 is not valid until 48 hours after t1 has been submitted to the blockchain. During those 48 hours,
if either A or B sees t1 on the blockchain and decides the other party has been hacked, that party
can unilaterally invalidate t2, leaving the funds in the 2-of-2 multisig transaction.

Explain how to implement such a scheme in Bitcoin. Assume you have segwit and the input
sequence field can be used for relative timelocks. Also assume transaction fees are bounded, so
that t1 and t2 can be created in advance with sufficient fees to be mined. Hint: t1 should spend
only a tiny sum—its only purpose is to declare the intent to access cold storage funds.

Problem 5. Penalty-free payment channels. Design a payment channel in which there is no
penalty (or only a negligible cost) for submitting a revoked commitment—if one party attempts
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to close the channel using an old transaction, the other party simply disables that obsolete
transaction and then submits the most recent commitment transaction to close the channel
properly. Assume the same conditions as the Auditability problem (namely segwit, relative
timelocks, and bounded transaction fees). Hint: use a similar technique to the Auditability
problem.

Problem 6. Correct 3-party payment channel. How would you design a correct payment chan-
nel between three parties, A, B, and C? Assume the same conditions as the Auditability problem
and use your design for a penalty-free payment channel.

Problem 7. Ethereum mixing. Let’s implement a CoinJoin-like protocol in Ethereum that does
not rely on any external anonymity infrastructure like Tor. Assume that three parties (call them
Alice, Bob, and Carol), have established the following: Alice has a random uint160 array ka
that only she knows, Bob has a random unit160 array kb that only he knows, and Carol has a
random unit160 array kc that only she knows. These arrays are all the same length and satisfy
ka[i] ⊕ kb[i] ⊕ kc[i] = 0 for i = 0, 1, 2, . . . (the ⊕ operator is a bitwise exclusive-or). You may
assume that these arrays are as long as you need them to be. There are several cryptographic
protocols that could establish these arrays, including by means of an Ethereum contract, but you
do not need to implement that part.

a. Write Solidity code to implement a mix contract (analogous to CoinJoin) between Alice, Bob,
and Carol using these random arrays. The challenge is to enable each of the three users to
specify their desired output account, but the output account should be unlinkable to the input
account. Recall that every message/transaction sent to the contract costs gas and therefore
the account that originated the message/transaction will be known to an observer.

Your contract should require only one message from each of Alice, Bob, and Carol. You
should not assume any other infrastructure beyond the Ethereum contract and the parties
should not communicate with one another. Make sure to handle the case where one or more
participants never send their funds to the mix contract, in which case the other participants
should be refunded (at their original address). Concretely, your contact should contain ini-
tialization code and support two methods receiveFunds and abort. Once all three users call
receiveFunds the funds should be disbursed to the specified output accounts.

Hint: user Alice will choose a random number i between 0 and 7 and send to the contract
the vector msgalice =

(
ka[0], ka[1], . . . , ka[i−1], (ka[i]⊕outalice), ka[i+1], . . . , ka[7]

)
along

with the funds. Here outalice is a uint160 that is Alice’s desired output address. Bob and
Carol will do the same. In case of failure, the contract will refund the funds to the parties,
and they can try again if they wish.

b. Assuming all users honestly participate in the protocol, calculate the probability of failure
where the funds have to be refunded to the addresses from which they were sent.

c. The proposed protocol is insecure as is. Suppose Carol is the last user to call receiveFunds.
Show that she can alter the output addresses provided by the first two users and have all
the funds sent to her. We note that this attack can be prevented with appropriate use of
zero-knowledge, but you are not expected to do that here.
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