CS251: Cryptocurrencies and Blockchain Technologies Fall 2018

Programming Project #1

Due: 11:59pm on Mon., Oct. 15, 2018
Submit via Gradescope code: 9RZGVZ

In this assignment you will create several transactions and post them to the Bitcoin testnet
blockchain. We will provide starter code for this using python-bitcoinlib, a free, low-level Python 3
library for manipulating Bitcoin transactions.

1 Project Background

1.1 Overview of Block Explorer Results

Rather than having you download the entire testnet blockchain and run a bitcoin client on your
machine, we will be making use of an online block explorer to upload and view transactions. The
one that we will be using is called BlockCypher, which features a nice web interface as well as an
API for submitting raw transactions that the starter code uses to broadcast the transactions you
create for the exercises. After completing and running the code for each each exercise, BlockCypher
will return a JSON representation of your newly created transaction, which will be printed to your
terminal. An example transaction object along with the meaning of each field can be found at
BlockCypher’s developer API documentation at https://www.blockcypher.com/dev /bitcoin/#tx.
Of particular interest for the purposes of this project will be the hash, input, and output fields.

1.2 Anatomy of a Bitcoin Transaction

(% o .
oy Script Engine

TxInCommandl scriptSig:
TxInCommand2 TxInCommandl
TxInCommand2 w

scriptPubKey:

scriptPubKey:

Figure 1: Each TxIn references the Tx0ut of a previous transaction, and a TxIn is only valid if its
scriptSig outputs True when prepended to the Tx0ut’s scriptPubKey.

While you will not be required to write any Python code yourself aside from setting some



parameters and implementing the scriptPubKey and scriptSig scripts, an understanding of the
surrounding code and the terminology that is uses will be useful.

Bitcoin transactions are fundamentally a list of outputs, each of which is associated with an
amount of bitcoin that is “locked” with a puzzle in the form of a program called a scriptPubKey
(also sometimes called a “smart contract”), and a list of inputs, each of which references an output
of an existing tranasction and includes the “answer” to that output’s puzzle in the form of a
program called a scriptSig. Validating a scriptSig consists of appending the associated scriptPubKey
to it, running the combined script and ensuring that it outputs True. Most transactions are
“PayToPublicKeyHash” or “P2PKH” transactions, where the scriptSig is a list of the recipient’s
public key and signature, and the scriptPubKey performs cryptographic checks on those values to
ensure that the public key hashes to the recipient’s bitcoin address and the signature is valid.

Each transaction input is referred to as a TxIn, and each transaction output is referred to as
a TxOut. The situation for a transaction with a single input and single output is summarized by
Figure 1.

The sum of the bitcoin in the inputs to a transaction must not exceed the sum of the outputs
for the transaction to be valid, and the difference between the total input and total output is
implicitly taken to be a transaction fee, as a miner can modify a recieved transaction and add an
output to their address to make up the difference before including it in a block. For this project,
all transactions you create will consume one input and create one PayToPublicKeyHash output
that sends an amount of bitcoin back to the testnet faucet. For each exercise, you will want to
take the fee into account when specifying how much to send and subtract a bit from the amount
in the output you're sending from, say .001 BTC.

1.3 Script Opcodes

The opcodes of the Bitcoin stack machine are documented on the Bitcoin wiki [1], and when
composing programs for your transactions’ scriptPubKeys and scriptSigs you may specify opcodes
by using their names verbatim. For example, below is an example of a function that returns a
scriptPubKey that cannot be spent, but rather acts as storage space for an arbitrary piece of data
that someone may want to save to the blockchain using the OP_RETURN opcode.

def save_message_scriptPubKey(message):
return [OP_RETURN,
message]

Examples of some opcodes that you will likely be making use of include OP_DUP, OP_CHECKSIG,
OP_EQUALVERIFY, and OP_CHECKMULTISIG, but you will end up using additional ones as well.

2 Getting started

1. Download the starter code from the course website, navigate to the directory and run pip
install -r requirements.txt to intall the required dependencies. Make sure that you are
using Python 3.



. Make sure you’ve understood the structure of Bitcoin transactions and read the references in
the Recommended Reading section if you would like more information.

. Implement code for the exercises below, using the Bitcoin test network (testnet) to test your

code (as well as offline testing). You can obtain testnet coins for free from https://coinfaucet.eu/en/bte-
testnet/. It is courteous to send the testnet coins back to the faucet after you are done
experimenting with them, and each exercise ends with returning the coins to the faucet.

. You must implement each transaction specified in the exercies below by writing a scriptPub-
Key script that locks a certain amount of bitcoin as part of a first transaction as well as
a scriptSig script that redeems the first transaction and sends it back to the faucet. You
will not receive credit unless you explicitly write your scripts at the opcode level (no calling
python-bitcoinlib functions to do it for you).

. You can use the transaction hashes to track your transactions on a block explorer tool such
as https://live.blockcypher.com/btec-testnet/.

Setup

. Generate a testnet private key and address with keygen.py. Copy and paste the private key
in the appropriate place in config.py.

. Go to the faucet, paste in the address, and get some testnet BTC (note that faucets will
often rate-limit requests for coins based on Bitcoin address and IP address, so try not to lose
your bitcoin too often).
configpy-andnete Note the transactlon hash the faucet prov1des as you will need it for the
next step. Viewing the transaction in a block explorer will also let you know which output of
the transaction corresponds to your address, and you will need this information for the next
step as well.

. The faucet will give you one spendable output, but we would like to have multiple outputs
to spend, at least 3 per exercise and preferably more in case we accidentally lock some with
invalid sripts. Edit the parameters at the bottom of split_test_coins.py, where txid
is the transaction hash of the faucet transaction from the previous step, utxo_id is 0 if
your output was first in the faucet transaction and 1 if it was second, and n is the number
of outputs you want your test coins split evenly into, and run the program with python
split_test_coins.py. A perfect run through this assignment would require n = 3, one for
each exercise, but if you anticipate accidentally locking an output due to a faulty script a
couple times per exercise then you might want to set n to something higher like 8 so that you
don’t have to wait to access the faucet again or have to try with a different Bitcoin address.

. If it’s successful, you should get back some information about the transaction. Note the
transaction hash, as each exercise will be spending an output from this transaction and will
refer to it using this hash.



4 Exercises

To publish each transaction created for the exercises, edit the parameters at the bottom of the
file to specify which transaction output the solution should be run with along with the amount
to send in the transation. Note the transaction hash of the created transaction and write it to
transactions.py. If the scripts you write aren’t valid, an exception will be thrown before they’re
published.

After completing each exercise, look up the transaction hash in a blockchain explorer to verify
whether the transaction was picked up by the network. Make sure that all your transactions have
been posted successfully before submitting their hashes.

Exercise 1. Open exl.py and complete the scripts labelled with TODOs to redeem an output you
own and send it back to the faucet with a standard PayToPublicKeyHash transaction.

Exercise 2. (a) Generate a transaction that can be redeemed by the solution (z,y) to the following
system of two linear equations:

x 4+ y = (first half of your suid) and x — y = (second half or your suid)

[to ensure that an integer solution exists, please change the last digit of the two numbers on
the right hand side so the numbers are both even or both odd]. (b) Redeem the transaction.
The redemption script should be as small as possible. That is, a valid scriptSig should consist
of simply pushing two integers x and y to the stack. Make sure you use OP_ADD and OP_SUB
in your scriptPubKey.

Exercise 3. (a) Generate a multi-sig transaction involving four parties such that the transaction
can be redeemed by the first party (bank) combined with any one of the 3 others (customers)
but not by only the customers or only the bank.

(b)
Redeem the transaction and make sure that the scriptPubKey is as small as possible. You
can use any legal combination of signatures to redeem the transaction but make sure that all
combinations would have worked.

5 Submitting your code

For all exercises, submit the source code as well as the transaction hashes. Your transaction hashes
should be in a file called transactions.py. and listed one per line in the same order as the
exercises. Please create a single .tar or .zip file that includes all your deliverables for all three
exercises. Submit via Gradescope as explained at the top of this document.

6 Recommended Reading
1. Bitcoin Script: https://en.bitcoin.it/wiki/Script
2. Bitcoin Transaction Format: https://en.bitcoin.it/wiki/Transaction

3. https://privatekeys.org/2018/04/17/anatomy-of-a-bitcoin-transaction/



