
CS251: Cryptocurrencies and Blockchain Technologies Fall 2018

Programming Project #2
Due: 11:59pm on Mon., Oct. 29, 2018
Submit via Gradescope code: 9RZGVZ

In this assignment you will create a transaction called a cross-chain atomic swap, allowing two
entities to securely trade ownership over cryptocurrencies on different blockchains. We will provide
starter code for this using python-bitcoinlib, a free, low-level Python 3 library for manipulating
Bitcoin transactions.

1 Introduction

1.1 Cross-chain Atomic Swap

In this assignment you will implement key parts of the code for a cross-chain atomic swap between
two parties, Alice and Bob. Alice has bitcoin on BTC Testnet3, the standard Bitcoin testnet that
Project 1 used. Bob has bitcoin on BCY Testnet, Blockcypher’s Bitcoin testnet which is mined
and maintained exclusively by Blockcypher. They want to trade ownership of their respective coins
securely, something that can’t be done with a simple transaction because they are on different
blockchains.

The idea here is to set up transactions around a secret x, that only one party (Alice) knows.
In these transactions only H(x) will be published, leaving x secret. Transactions will be set up in
such a way that once x is revealed, both parties can redeem the coins sent by the other party. If x
is never revealed, both parties will be able to retrieve their original coins safely, without help from
the other.

This method also works between other cryptocurrencies and altcoins, for example trading Bit-
coin for Litecoin.

1.2 How does it work?

Please refer to the Bitcoin wiki page on Atomic cross-chain trading:
https://en.bitcoin.it/wiki/Atomic cross-chain trading.
Please read the algorithm describing on a high level how the algorithm works to better under-

stand what we’ll be doing for this assignment.

2 Setup

1. Download the starter code from the course website, navigate to the directory and run pip
install -r requirements.txt to intall the required dependencies. Make sure that you are using
Python 3.

2. (a) Create BTC testnet keys for Alice and Bob. You can use keygen.py and place it into
keys.py. Please make sure to create different keys for Alice and Bob, you wouldn’t want

1

https://en.bitcoin.it/wiki/Atomic_cross-chain_trading

them to be able to forge each others’ transactions!

(b) Give Alice’s address bitcoin on BTC testnet3. You can use the same faucet from Project
1, https://coinfaucet.eu/en/btc-testnet/.

3. (a) Sign up for an account with Blockcypher to get an API token here: https://accounts.blockcypher.com/.

(b) Create BCY testnet keys for Alice and Bob and place into keys.py.

curl -X POST https://api.blockcypher.com/v1/bcy/test/addrs?token=$YOURTOKEN

(c) Give Bob’s address bitcoin on the Blockcypher testnet (BCY).

curl -d ’{"address": "BOBS_BCY_ADDRESS", "amount": 1000000}’ \

https://api.blockcypher.com/v1/bcy/test/faucet?token=$YOURTOKEN

4. Split the test coins by using split test coins.py (filling out the relevant fields in the file). This
is a good way to test that you can send bitcoin on both blockchains!

5. Fill in the variables in swap.py.

6. Read swap.py, alice.py, and bob.py. Compare to the pseudocode in
https://en.bitcoin.it/wiki/Atomic cross-chain trading. This will be very helpful in under-
standing this assignment.

3 Submitting your code

Please submit all code for this assignment. Make sure design doc.txt is filled out and your code
verifies when run with broadcast transactions=False. Please create a single .tar or .zip file that
includes all your deliverables for all three exercises. Submit via Gradescope.

4 Exercises

Exercise 1. Consider the ScriptPubKey necessary for creating a transaction necessary for a cross-
chain atomic swap. This transaction must be redeemable by the recipient (if they have a
secret x that corresponds to Hash(x)), or redeemable with signatures from both the sender
and the recipient.

Write this ScriptPubKey in coinExchangeScript in swap scripts.py.

Exercise 2. Write the accompanying ScriptSigs:

(a) Write the ScriptSig necessary to redeem the transaction in the case where the recipient
knows the secret x. Write this in coinExchangeScriptSig1 in swap scripts.py.

(b) Write the ScriptSig necessary to redeem the transaction in the case where both the
sender and the recipient sign the transaction. Write this in coinExchangeScriptSig2 in
swap scripts.py.

Exercise 3. Run your code! We aren’t requiring that the transactions be broadcasted, as that
requires some waiting to validate transactions. Running with broadcast transactions=False

2

https://coinfaucet.eu/en/btc-testnet/
https://accounts.blockcypher.com/
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading

will validate that ScriptSig + ScriptPK return true. Try this for alice redeems=True as well
as alice redeems=False.

OPTIONAL: Try with broadcast transactions=True, which will make the code sleep for
an appropriate amount of time to post everything to the blockchain and verify correctly.
Warning: will take 20-60 minutes to run.

Exercise 4. Fill in design doc.txt. Write a short (1-3 paragraph) design document about this
project. Please include the following:

(a) An explanation of what you wrote and how the coinExchangeScript work.

(b) Briefly, how the coinExchangeScript you wrote fits into the bigger picture of this atomic
swap.

(c) Consider the case of Alice sending coins to Bob with coinExchangeScript:

Why can Alice always get her money back if Bob doesn’t redeem it?

Why can’t this be solved with a simple 1-of-2 multisig?

3

	Introduction
	Cross-chain Atomic Swap
	How does it work?

	Setup
	Submitting your code
	Exercises

