
CS251
Programming in Solidity



Agenda
● Solidity basics

● Interacting with smart contracts

● Understanding gas costs

● Security considerations

● Common patterns



Useful links
● http://bit.do/cs251solidity

● https://gist.github.com/abandeali1/74d8b73f457add6b1bf7255a90b0adf5

● https://remix.ethereum.org/

http://bit.do/cs251solidity
https://gist.github.com/abandeali1/74d8b73f457add6b1bf7255a90b0adf5
https://remix.ethereum.org/


Value types
● uint256

● address (bytes20)

○ balance, transfer, call, delegatecall

● bytes32

● bool



Reference types
● structs

● arrays

● bytes

● strings

● mappings



Globally available variables
● block

○ blockhash, coinbase, difficulty, gaslimit, number, timestamp

● gasLeft()

● msg

○ data, sender, sig, value

● tx

○ gasprice, origin

● abi

○ encode, encodePacked, encodeWithSelector, encodeWithSignature

● keccak256

● ecrecover

● require, assert



Function visibilities
● external

● internal

● public

● private

● pure

● view



Using imports
● Inheritance

○ contract A is SafeMath {}

○ uint256 a = safeAdd(b, c);

● Libraries

○ using SafeMath for uint256;

○ uint256 a = b.safeAdd(c);



ERC20 tokens
● https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

● A standard API for fungible tokens that provides basic functionality to 

transfer tokens or allow the tokens to be spent by a third party.

● An ERC20 token is itself a smart contract that contains its own ledger of 

balances.

● A standard interface allows other smart contracts to interact with all 

ERC20 tokens, rather than using special logic for each different token.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md


ERC20 token interface
● function transfer(address _to, uint256 _value) external returns (bool);

● function transferFrom(address _from, address _to, uint256 _value) external returns 

(bool);

● function approve(address _spender, uint256 _value) external returns (bool);

● function totalSupply() external view returns (uint256);

● function balanceOf(address _owner) external view returns (uint256);

● function allowance(address _owner, address _spender) external view returns (uint256);



How are ERC20 tokens transferred?
● The `transfer` function checks a few conditions, updates balances of the 

sender and receiver, and logs an event. 

● Alice wants to transfer 100 StanfordCoin to Bob. She calls 

StanfordCoin.transfer(Bob.address, 100). What is happening under the hood?



ABI encoding and decoding
● Every function has a 4 byte selector that is calculated as the first 4 

bytes of the hash of the function signature.

○ In the case of `transfer`, this looks like 

bytes4(keccak256(“transfer(address,uint256)”);

● The function arguments are then ABI encoded into a single byte array and 

concatenated with the function selector. ABI encoding simple types means 

left padding each argument to 32 bytes.

● This data is then sent to the address of the contract, which is able to 

decode the arguments and execute the code.

● Fallback function



Calling other contracts
● Addresses can be cast to contract types.

○ IERC20Token tokenContract = IERC20Token(_token);

○ ERC20Token tokenContract = ERC20Token(_token);

● When calling a function on an external contract, Solidity will 

automatically handle ABI encoding, copying to memory, and copying return 

values.

○ tokenContract.transfer(_to, _value);



Gas cost considerations
● Everything costs gas, including processes that are happening under the 

hood (ABI decoding, copying variables to memory, etc).

● How often to we expect a certain function to be called? Is the bottleneck 

the cost of deploying the contract or the cost of each individual function 

call?

● Are the variables being used in calldata, the stack, memory, or storage?



Stack variables
● Stack variables are generally the cheapest to use and can be used for any 

simple types (anything that is <= 32 bytes).

○ uint256 a = 123;

● All simple types are represented as bytes32 at the EVM level.

● Only 16 stack variables can exist within a single scope.



Calldata
● Calldata is a read-only byte array.

● Every byte of a transaction’s calldata costs gas (68 gas per non-zero 

byte, 4 gas per zero byte).

○ All else equal, a function with more arguments (and larger calldata) 

will always cost more gas.

● It is cheaper to load variables directly from calldata, rather than 

copying them to memory.

○ For the most part, this can be accomplished by marking a function as 

`external`.



Memory
● Memory is a byte array.

● Complex types (anything > 32 bytes such as structs, arrays, and strings) 

must be stored in memory or in storage.

○ string memory name = “Alice”;

● Arguments must be copied to memory before calling an `internal` function 

or when a contract makes an external call (AKA calling a function on 

another contract).

● Memory is cheap, but the cost of memory grows quadratically. 



Storage
● Using storage is very expensive and should be used sparingly.

● Writing to storage is most expensive.

● Reading from storage is cheaper, but still relatively expensive.

● mappings and state variables are always in storage.

● Some gas is refunded when storage is deleted or set to 0 (checkout 

https://gastoken.io/ for an interesting use of this).

● Variables < 32 bytes can be packed into 32 byte slots.

https://gastoken.io/


Event logs
● Event logs are a cheap way of storing data that does not need to be 

accessed by any contracts.

● Events are stored in transaction receipts, rather than in storage.

● Log arguments can be indexed for quick filtering using a block’s bloom 

filter.



Security considerations
● Are we checking math calculations for overflows and underflows?

● What assertions should be made about function inputs, return values, and 

contract state?

● Who is allowed to call each function?

● Are we making any assumptions about the functionality of external 

contracts that are being called?



Common patterns
● Approve and call

● Off-chain signed messages with on-chain verification

● Compressing data using 32 byte hash

● Low level calls



Questions?
● https://0xproject.com/

● https://github.com/0xProject/0x-monorepo/tree/development/packages/contrac

ts

https://0xproject.com/
https://github.com/0xProject/0x-monorepo/tree/development/packages/contracts
https://github.com/0xProject/0x-monorepo/tree/development/packages/contracts

