
Review: Thread package API

• tid thread_create (void (*fn) (void *), void *arg);

- Create a new thread that calls fnwith arg

• void thread_exit ();

• void thread_join (tid thread);

• The execution of multiple threads is interleaved
• Can have non-preemptive threads:

- One thread executes exclusively until it makes a blocking call

• Or preemptive threads:
- May switch to another thread between any two instructions.

• Usingmultiple CPUs is inherently preemptive
- Even if you don’t take CPU0 away from thread T, another thread on
CPU1 can execute “between” any two instructions of T

1 / 39

Program A

int flag1 = 0, flag2 = 0;

void p1 (void *ignored) {
flag1 = 1;
if (!flag2) { critical_section_1 (); }

}

void p2 (void *ignored) {
flag2 = 1;
if (!flag1) { critical_section_2 (); }

}

int main () {
tid id = thread_create (p1, NULL);
p2 ();
thread_join (id);

}

Q: Can both critical sections run?
2 / 39

Program B

int data = 0, ready = 0;

void p1 (void *ignored) {
data = 2000;
ready = 1;

}

void p2 (void *ignored) {
while (!ready)
;

use (data);
}

int main () { ... }

Q: Can use be called with value 0?

3 / 39

Program C

int a = 0, b = 0;

void p1 (void *ignored) {
a = 1;

}

void p2 (void *ignored) {
if (a == 1)
b = 1;

}

void p3 (void *ignored) {
if (b == 1)
use (a);

}

Q: If p1–3 run concurrently, can use be called with value 0?

4 / 39

Correct answers

• Program A: I don’t know
• Program B: I don’t know
• Program C: I don’t know
• Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

• Note: Examples, other content from
• Another great reference:

5 / 39

Correct answers

• Program A: I don’t know

• Program B: I don’t know
• Program C: I don’t know
• Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

• Note: Examples, other content from
• Another great reference:

5 / 39

Correct answers

• Program A: I don’t know
• Program B: I don’t know

• Program C: I don’t know
• Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

• Note: Examples, other content from
• Another great reference:

5 / 39

Correct answers

• Program A: I don’t know
• Program B: I don’t know
• Program C: I don’t know
• Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

• Note: Examples, other content from [Adve & Gharachorloo]
• Another great reference: Why Memory Barriers

5 / 39

http://www.scs.stanford.edu/18wi-cs140/sched/readings/shmem-tut.pdf
http://www.scs.stanford.edu/18wi-cs140/sched/readings/why-memory-barriers.pdf

Sequential Consistency

Definition
Sequential consistency: The result of execution is as if all operations
were executed in some sequential order, and the operations of each
processor occurred in the order specified by the program.
– Lamport

• Boils down to two requirements:
1. Maintaining program order on individual processors
2. Ensuringwrite atomicity

• Without SC (Sequential Consistency), multiple CPUs can be
“worse”—i.e., less intuitive—than preemptive threads
- Result may not correspond to any instruction interleaving on 1 CPU

• Why doesn’t all hardware support sequential consistency?
6 / 39

http://www.scs.stanford.edu/18wi-cs140/sched/readings/sequential-consistency.pdf

SC thwarts hardware optimizations

• Complicates write bu�ers
- E.g., read flagn before flag(2− n)written through in Program A

• Can’t re-order overlapping write operations
- Concurrent writes to di�erent memory modules
- Coalescing writes to same cache line

• Complicates non-blocking reads
- E.g., speculatively prefetch data in Program B

• Makes cache coherencemore expensive
- Must delay write completion until invalidation/update (Program B)
- Can’t allow overlapping updates if no globally visible order
(Program C)

7 / 39

SC thwarts compiler optimizations

• Codemotion
• Caching value in register

- Collapse multiple loads/stores of same address into one operation

• Common subexpression elimination
- Could cause memory location to be read fewer times

• Loop blocking
- Re-arrange loops for better cache performance

• So�ware pipelining
- Move instructions across iterations of a loop to overlap instruction
latency with branch cost

8 / 39

x86 consistency [intel 3a, §8.2]

• x86 supports multiple consistency/cachingmodels
- Memory Type Range Registers (MTRR) specify consistency for
ranges of physical memory (e.g., frame bu�er)

- Page Attribute Table (PAT) allows control for each 4K page

• Choices include:
- WB: Write-back caching (the default)
- WT: Write-through caching (all writes go to memory)
- UC: Uncacheable (for device memory)
- WC: Write-combining – weak consistency & no caching
(used for frame bu�ers, when sending a lot of data to GPU)

• Some instructions have weaker consistency
- String instructions (written cache-lines can be re-ordered)
- Special “non-temporal” store instructions (movnt∗) that bypass
cache and can be re-ordered with respect to other writes

9 / 39

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

x86WB consistency

• Old x86s (e.g, 486, Pentium 1) had almost SC
- Exception: A read could finish before an earlier write to a di�erent
location

- Which of Programs A, B, C might be a�ected?

• Newer x86s also let a CPU read its ownwrites early
volatile int flag1; volatile int flag2;

int p1 (void) int p2 (void)
{ {

register int f, g; register int f, g;
flag1 = 1; flag2 = 1;
f = flag1; f = flag2;
g = flag2; g = flag1;
return 2*f + g; return 2*f + g;

} }

- E.g., both p1 and p2 can return 2:
- Older CPUs would wait at “f = ...” until store complete

10 / 39

x86WB consistency

• Old x86s (e.g, 486, Pentium 1) had almost SC
- Exception: A read could finish before an earlier write to a di�erent
location

- Which of Programs A, B, C might be a�ected? Just A
• Newer x86s also let a CPU read its ownwrites early

volatile int flag1; volatile int flag2;

int p1 (void) int p2 (void)
{ {

register int f, g; register int f, g;
flag1 = 1; flag2 = 1;
f = flag1; f = flag2;
g = flag2; g = flag1;
return 2*f + g; return 2*f + g;

} }

- E.g., both p1 and p2 can return 2:
- Older CPUs would wait at “f = ...” until store complete

10 / 39

x86 atomicity

• lock prefix makes amemory instruction atomic
- Usually locks bus for duration of instruction (expensive!)
- Can avoid locking if memory already exclusively cached
- All lock instructions totally ordered
- Other memory instructions cannot be re-ordered with locked ones

• xchg instruction is always locked (even without prefix)
• Special barrier (or “fence”) instructions can prevent
re-ordering
- lfence – can’t be reordered with reads (or later writes)
- sfence – can’t be reordered with writes
(e.g., use a�er non-temporal stores, before setting a ready flag)

- mfence – can’t be reordered with reads or writes

11 / 39

Assuming sequential consistency

• O�en we reason about concurrent code assuming SC
• But for low-level code, know your memorymodel!

- May need to sprinkle barrier/fence instructions into your source
- Ormay need compiler barriers to restrict optimization

• For most code, avoid depending onmemorymodel
- Idea: If you obey certain rules (discussed later)
. . .system behavior should be indistinguishable from SC

• Let’s for now say we have sequential consistency
• Example concurrent code: Producer/Consumer

- buffer stores BUFFER_SIZE items
- count is number of used slots
- out is next empty bu�er slot to fill (if any)
- in is oldest filled slot to consume (if any)

12 / 39

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();
while (count == BUFFER_SIZE)

/* do nothing */;
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}
}

void consumer (void *ignored) {
for (;;) {

while (count == 0)
/* do nothing */;

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
consume_item (nextConsumed);

}
}

Q: What can go wrong in above threads (even with SC)?
13 / 39

Data races

• countmay have wrong value
• Possible implementation of count++ and count--

register←count register←count
register←register+ 1 register←register− 1
count←register count←register

• Possible execution (count one less than correct):
register←count
register←register+ 1

register←count
register←register− 1

count←register
count←register

14 / 39

Data races (continued)

• What about a single-instruction add?
- E.g., i386 allows single instruction addl $1,_count
- So implement count++/--with one instruction
- Now are we safe?

• Not atomic onmultiprocessor! (operation 6= instruction)
- Will experience exact same race condition
- Can potentially make atomic with lock prefix
- But lock potentially very expensive
- Compiler won’t generate it, assumes you don’t want penalty

• Need solution to critical section problem
- Place count++ and count-- in critical section
- Protect critical sections from concurrent execution

15 / 39

Data races (continued)

• What about a single-instruction add?
- E.g., i386 allows single instruction addl $1,_count
- So implement count++/--with one instruction
- Now are we safe?

• Not atomic onmultiprocessor! (operation 6= instruction)
- Will experience exact same race condition
- Can potentially make atomic with lock prefix
- But lock potentially very expensive
- Compiler won’t generate it, assumes you don’t want penalty

• Need solution to critical section problem
- Place count++ and count-- in critical section
- Protect critical sections from concurrent execution

15 / 39

Desired properties of solution

• Mutual Exclusion
- Only one thread can be in critical section at a time

• Progress
- Say no process currently in critical section (C.S.)
- One of the processes trying to enter will eventually get in

• Bounded waiting
- Once a thread T starts trying to enter the critical section, there is a
bound on the number of times other threads get in

• Note progress vs. bounded waiting
- If no thread can enter C.S., don’t have progress
- If thread Awaiting to enter C.S. while B repeatedly leaves and
re-enters C.S. ad infinitum, don’t have bounded waiting

16 / 39

Peterson’s solution

• Still assuming sequential consistency
• Assume two threads, T0 and T1
• Variables

- int not_turn; // not this thread’s turn to enter C.S.
- bool wants[2]; // wants[i] indicates if Ti wants to enter C.S.

• Code:

for (;;) { /* assume i is thread number (0 or 1) */
wants[i] = true;
not_turn = i;
while (wants[1-i] && not_turn == i)
/* other thread wants in and not our turn, so loop */;

Critical_section ();
wants[i] = false;
Remainder_section ();

}

17 / 39

Does Peterson’s solution work?
for (;;) { /* code in thread i */
wants[i] = true;
not_turn = i;
while (wants[1-i] && not_turn == i)
/* other thread wants in and not our turn, so loop */;

Critical_section ();
wants[i] = false;
Remainder_section ();

}
• Mutual exclusion – can’t both be in C.S.

- Would mean wants[0] == wants[1] == true,
so not_turnwould have blocked one thread from C.S.

• Progress – given demand, one thread can always enter C.S.
- If T1−i doesn’t want C.S., wants[1-i] == false, so Ti won’t loop
- If both threads want in, one thread is not the not_turn thread

• Bounded waiting – similar argument to progress
- If Ti wants lock and T1−i tries to re-enter, T1−i will set
not_turn = 1 - i, allowing Ti in

18 / 39

Mutexes

• Peterson expensive, only works for 2 processes
- Can generalize to n, but for some fixed n

• Must adapt to machinememorymodel if not SC
- If you needmachine-specific barriers anyway, might as well take
advantage of other instructions helpful for synchronization

• Want to insulate programmer from implementing
synchronization primitives

• Thread packages typically providemutexes:
void mutex_init (mutex_t *m, ...);
void mutex_lock (mutex_t *m);
int mutex_trylock (mutex_t *m);
void mutex_unlock (mutex_t *m);

- Only one thread acuires m at a time, others wait

19 / 39

Thread API contract

• All global data should be protected by amutex!
- Global = accessed by more than one thread, at least one write
- Exception is initialization, before exposed to other threads
- This is the responsibility of the application writer

• If you usemutexes properly, behavior should be
indistinguishable from Sequential Consistency
- This is the responsibility of the threads package (& compiler)
- Mutex is broken if you use properly and don’t see SC

• OS kernels also need synchronization
- Somemechanisms look like mutexes
- But interrupts complicate things (incompatible w. mutexes)

20 / 39

Same concept, many names

• Most popular application-level thread API: Pthreads
- Function names in this lecture all based on Pthreads
- Just add pthread_ prefix
- E.g., pthread_mutex_t, pthread_mutex_lock, . . .

• Same abstraction in Pintos under di�erent name
struct lock;
void lock_init (struct lock *);
void lock_acquire (struct lock *);
bool lock_try_acquire (struct lock *);
void lock_release (struct lock *);

• Extra Pintos feature:
- Release checks that lock was acquired by same thread
- bool lock_held_by_current_thread (struct lock *lock);

21 / 39

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html#tag_13_35_07
http://www.scs.stanford.edu/18wi-cs140/pintos/pintos_6.html#SEC103

Improved producer

mutex_t mutex = MUTEX_INITIALIZER;

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex); /* <--- Why? */
thread_yield ();
mutex_lock (&mutex);

}

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
mutex_unlock (&mutex);

}
}

22 / 39

Improved consumer

void consumer (void *ignored) {
for (;;) {

mutex_lock (&mutex);
while (count == 0) {
mutex_unlock (&mutex);
thread_yield ();
mutex_lock (&mutex);

}

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

}

23 / 39

Condition variables

• Busy-waiting in application is a bad idea
- Consumes CPU even when a thread can’t make progress
- Unnecessarily slows other threads/processes or wastes power

• Better to inform scheduler of which threads can run
• Typically done with condition variables
• struct cond_t; (pthread_cond_t or condition in Pintos)
• void cond_init (cond_t *, ...);

• void cond_wait (cond_t *c, mutex_t *m);
- Atomically unlock m and sleep until c signaled
- Then re-acquire m and resume executing

• void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);
- Wake one/all threads waiting on c

24 / 39

http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_destroy.html
http://www.scs.stanford.edu/18wi-cs140/pintos/pintos_6.html#SEC104

Improved producer

mutex_t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE)
cond_wait (&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
cond_signal (&nonempty);
mutex_unlock (&mutex);

}
}

25 / 39

Improved consumer

void consumer (void *ignored) {
for (;;) {

mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty, &mutex);

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

}

26 / 39

Re-check conditions

• Always re-check condition on wake-up
while (count == 0) /* not if */
cond_wait (&nonempty, &mutex);

• Otherwise, breaks with spurious wakeup or two consumers
- Start where Consumer 1 has mutex but bu�er empty, then:

Consumer 1 Consumer 2 Producer
cond_wait (...); mutex_lock (...);...

count++;
cond_signal (...);

mutex_lock (...); mutex_unlock (...);
if (count == 0)...
use buffer[out] . . .
count--;
mutex_unlock (...);

use buffer[out] . . . ←− No items in bu�er
27 / 39

Condition variables (continued)

• Whymust cond_wait both release mutex & sleep?
• Why not separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}

• Can end up stuck waiting when bad interleaving

Producer
while (count == BUFFER_SIZE)
mutex_unlock (&mutex);

cond_wait (&nonfull);

Consumer

mutex_lock (&mutex);
...
count--;
cond_signal (&nonfull);

• Problem: cond_wait & cond_signal do not commute

28 / 39

Condition variables (continued)

• Whymust cond_wait both release mutex & sleep?
• Why not separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}
• Can end up stuck waiting when bad interleaving

Producer
while (count == BUFFER_SIZE)
mutex_unlock (&mutex);

cond_wait (&nonfull);

Consumer

mutex_lock (&mutex);
...
count--;
cond_signal (&nonfull);

• Problem: cond_wait & cond_signal do not commute
28 / 39

Other thread package features

• Alerts – cause exception in a thread
• Timedwait – timeout on condition variable
• Shared locks – concurrent read accesses to data
• Thread priorities – control scheduling policy

- Mutex attributes allow various forms of priority donation
(will be familiar concept a�er lab 1)

• Thread-specific global data
- Need for things like errno

• Di�erent synchronization primitives (in a few slides)

29 / 39

Implementing synchronization

• User-visible mutex is straight-forward data structure
typedef struct mutex {
bool is_locked; /* true if locked */
thread_id_t owner; /* thread holding lock, if locked */
thread_list_t waiters; /* threads waiting for lock */

lower_level_lock_t lk; /* Protect above fields */
};

• Need lower-level lock lk for mutual exclusion
- Internally, mutex_* functions bracket code with
lock(&mutex->lk) . . . unlock(&mutex->lk)

- Otherwise, data races! (E.g., two threads manipulating waiters)

• How to implement lower_level_lock_t?
- Could use Peterson’s algorithm, but typically a bad idea
(too slow and don’t knowmaximum number of threads)

30 / 39

Approach #1: Disable interrupts

• Only for apps with n : 1 threads (1 kthread)
- Cannot take advantage of multiprocessors
- But sometimes most e�icient solution for uniprocessors

• Typical setup: periodic timer signal caught by thread
scheduler

• Have per-thread “do not interrupt” (DNI) bit
• lock (lk): sets thread’s DNI bit
• If timer interrupt arrives

- Check interrupted thread’s DNI bit
- If DNI clear, preempt current thread
- If DNI set, set “interrupted” (I) bit & resume current thread

• unlock (lk): clears DNI bit and checks I bit
- If I bit is set, immediately yields the CPU

31 / 39

Approach #2: Spinlocks

• Most CPUs support atomic read-[modify-]write
• Example: int test_and_set (int *lockp);

- Atomically sets *lockp = 1 and returns old value
- Special instruction – can’t be implemented in portable C (<C11)

• Use this instruction to implement spinlocks:
#define lock(lockp) while (test_and_set (lockp))
#define trylock(lockp) (test_and_set (lockp) == 0)
#define unlock(lockp) *lockp = 0

• Spinlocks implement mutex’s lower_level_lock_t
• Can you use spinlocks instead of mutexes?

- Wastes CPU, especially if thread holding lock not running
- Mutex functions have short C.S., less likely to be preempted
- Onmultiprocessor, sometimes good to spin for a bit, then yield

32 / 39

Synchronization on x86

• Test-and-set only one possible atomic instruction
• x86 xchg instruction, exchanges reg with mem

- Can use to implement test-and-set

_test_and_set:
movl 4(%esp), %edx # %edx = lockp
movl $1, %eax # %eax = 1
xchgl %eax, (%edx) # swap (%eax, *lockp)
ret

• CPU locks memory system around read and write
- Recall xchgl always acts like it has implicit lock prefix
- Prevents other uses of the bus (e.g., DMA)

• Usually runs at memory bus speed, not CPU speed
- Much slower than cached read/bu�ered write

33 / 39

Synchronization on alpha

• ldl_l – load locked
stl_c – store conditional (reg←0 if not atomic w. ldl_l)

_test_and_set:
ldq_l v0, 0(a0) # v0 = *lockp (LOCKED)
bne v0, 1f # if (v0) return
addq zero, 1, v0 # v0 = 1
stq_c v0, 0(a0) # *lockp = v0 (CONDITIONAL)
beq v0, _test_and_set # if (failed) try again
mb
addq zero, zero, v0 # return 0

1:
ret zero, (ra), 1

• Note: Alphamemory consistency weaker than x86
- Want all CPUs to think memory accesses in C.S. happened a�er
acquiring lock, before releasing

- Memory barrier instruction, mb, ensures this, like mfence on x86
34 / 39

http://www.scs.stanford.edu/18wi-cs140/sched/readings/alphahb.pdf

Kernel Synchronization

• Should kernel use locks or disable interrupts?
• Old UNIX had non-preemptive threads, nomutexes

- Interface designed for single CPU, so count++ etc. not data race
- . . .Unlessmemory shared with an interrupt handler

int x = splhigh (); /* Disable interrupts */
/* touch data shared with interrupt handler ... */
splx (x); /* Restore previous state */

- C.f., intr_disable / intr_set_level in Pintos, and
preempt_disable / preempt_enable in linux

• Used arbitrary pointers like condition variables
- int [t]sleep (void *ident, int priority, ...);
put thread to sleep; will wake up at priority (∼cond_wait)

- int wakeup (void *ident);
wake up all threads sleeping on ident (∼cond_broadcast)

35 / 39

http://www.scs.stanford.edu/18wi-cs140/pintos/pintos_6.html#SEC101
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/preempt-locking.txt

Kernel locks

• Nowadays, should design for multiprocessors
- Even if first version of OS is for uniprocessor
- Someday may want multiple CPUs and need preemptive threads
- That’s why Pintos uses sleeping locks
(sleeping locks means mutexes, as opposed to spinlocks)

• Multiprocessor performance needs fine-grained locks
- Want to be able to call into the kernel on multiple CPUs

• If kernel has locks, should it ever disable interrupts?

- Yes! Can’t sleep in interrupt handler, so can’t wait for lock
- So evenmodern OSes have support for disabling interrupts
- O�en uses DNI trick when cheaper thanmasking interrupts in
hardware

36 / 39

Kernel locks

• Nowadays, should design for multiprocessors
- Even if first version of OS is for uniprocessor
- Someday may want multiple CPUs and need preemptive threads
- That’s why Pintos uses sleeping locks
(sleeping locks means mutexes, as opposed to spinlocks)

• Multiprocessor performance needs fine-grained locks
- Want to be able to call into the kernel on multiple CPUs

• If kernel has locks, should it ever disable interrupts?
- Yes! Can’t sleep in interrupt handler, so can’t wait for lock
- So evenmodern OSes have support for disabling interrupts
- O�en uses DNI trick when cheaper thanmasking interrupts in
hardware

36 / 39

Semaphores [Dijkstra]

• A Semaphore is initialized with an integer N
• Provides two functions:

- sem_wait (S) (originally called P, called sema_down in Pintos)
- sem_signal (S) (originally called V , called sema_up in Pintos)

• Guarantees sem_waitwill return only Nmore times than
sem_signal called
- Example: If N == 1, then semaphore acts as a mutex with
sem_wait as lock and sem_signal as unlock

• Semaphores give elegant solutions to some problems
• Linux primarily uses semaphores for sleeping locks

- sema_init, down_interruptible, up, . . .
- Also weird reader-writer semaphores, rw_semaphore [Love]

37 / 39

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
http://www.scs.stanford.edu/18wi-cs140/pintos/pintos_6.html#SEC102
http://www.scs.stanford.edu/18wi-cs140/pintos/pintos_6.html#SEC102
http://www.linuxjournal.com/article/5833

Semaphore producer/consumer

• Initialize full to 0 (block consumer when bu�er empty)
• Initialize empty to N (block producer when queue full)

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();
sem_wait (&empty);
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
sem_signal (&full);

}
}
void consumer (void *ignored) {

for (;;) {
sem_wait (&full);
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
sem_signal (&empty);
consume_item (nextConsumed);

}
} 38 / 39

Various synchronizationmechanisms

• Other more esoteric primitives youmight encounter
- Plan 9 used a rendezvous mechanism
- Haskell uses MVars (like channels of depth 1)

• Many synchronizationmechanisms equally expressive
- Pintos implements locks, condition vars using semaphores
- Could have been vice versa
- Can even implement condition variables in terms of mutexes

• Why base everything around semaphore implementation?
- High-level answer: no particularly good reason
- If you want only onemechanism, can’t be condition variables
(interface fundamentally requires mutexes)

- Unlike condition variables, sem_wait and sem_signal commute,
eliminating problem of condition variables w/o mutexes

39 / 39

http://doc.cat-v.org/plan_9/4th_edition/papers/sleep

