
CS140 Final Review

March 16, 2018

Processes and Threads

• A process is a single program (think an app on a phone).

• A thread is a single execution context. There can be many threads

in a single process (e.g. each tab in a web-browser might be a

differen thread).

• The different threads of a given process share the same virtual

memory address space, but have individual registers and program

counters.

1

Process and Threads

Two threading models:

• Kernel level threads: Creating a new thread is a syscall. This syscall

is very similar to producing a new process, but it doesn’t need to

create a new VM address space.

• This can be slow because syscalls are slow.

• User level threads (green threads): implement threading in

user-mode. Use a timer function (supplied by the kernel) to simulate

the timer interrupts the kernel uses to preempt threads. Replace all

blocking calls with wrappers that switch threads.

2

Concurrency

• Sequential consistency is the property that the order in which things

actually happen is equal to the order in which they are written in

your code.

• Often sequential consistency is not guaranteed in order to allow for

easier optimization in the hardware or compiler.

• Races include:

• “ordinary” race conditions, which you can often reason about

assuming sequential consistency: Thread A and thread B are both

writing a different string to a buffer. At the end the buffer may not

look like either of their strings.

• data races: when thread A and B both access a given memory

location simultaneously and one of them is doing a write.

3

Virtual Memory

• Use Page directories and page tables to allow user processes to

believe they have the whole memory to themselves.

• MMU manages page faults in hardware. On every memory access, it

decomposes the address into an offset into a page and a virtual page

number and looks up the physical page in the page table structure,

which is at a location specified by the CR2 register.

• TLB is used to cache recently used MMU activity so that you don’t

have to perform too many indirections on each memory access.

• Pages are kept on swap when not in use.

• Bringing a page in from swap is very slow. If there are too many

processes running, then the computer spends all of its time bringing

in pages from swap and nothing gets done (thrashing).

4

Compiling Linking Loading

• Compiler: one C file in, one object files (.o) out.

• Linker: many object files in, one executable file out.

• Loader: one executable file in, running processes out.

• Compile each source file in a project individually, link them together,

then load to run the program.

5

Compiling Linking Loading

• Compiler: transform C code into machine instructions, doesn’t know

addresses of anything, but does know relative offsets of addresses

within a segment. (e.g. the virtual address of the start of the

function foo is 56 bytes below the address of the start of function

bar).

• Linker: Lays out the different compiled segments in memory. This

involves coalescing like segments (e.g. put the code segments from

foo.c and bar.c together), and choosing virtual address for

everything.

6

Compiling

• Don’t need to know details of how compilers work (there’s a whole

class for that).

• Compilers cannot produce executables because they only look at one

file at a time, and files can reference external variables that are not

defined in the file.

• “So? why not have the compiler just look at all the files?”

• Modularity makes life much easier in the long run.

7

Compiling

• Anatomy of a machine instruction:

68 0a 00 00 00

The first four bytes are called the opcode - it specifies which

operation the cpu should perform. In this case, 68 corresponds to

PUSH. The rest of the instruction is the argument to the operation,

in this case 10.

• Compilers leave in dummy values for variables they don’t see in the

file:

external_function(external_variable)

becomes

68 00 00 00 00 = push $0

R_386_32 external_variable

e8 fc ff ff ff = call -4

R_386_PC32 external_function

• The R_382_32 codes are annotations for the linker - they tell the

linker that some external reference needs to be patched, and how to

perform the patch given the unknown address. 8

Compiling

• the “call” operation takes a relative offset as an argument (e.g. call

-5) would be an infinite loop because the call instruction is 5 words

long.

• This way, calls to functions within a given file are correct even if the

compiler doesn’t know the absolute virtual address of any value in

the file.

9

Linker: 2 passes

• Pass 1: Decide on actual virtual addresses for all parts of the

program. Then, build a table of all symbols shared accross object

files and what their virtual addresses are.

• Pass 2: Go back over the executable and perform all the relocations

using the table.

10

ELF executable format

• .text, .data etc are called sections. Sections are grouped into

segments. The program header table tells where the segments are,

the section header table tells where the segments are. Sections are

useful when the ELF file is describing a shared library to be

dynamically linked in. Segments are useful when the loader is

actually going to execute the program stored in the file. 11

Dynamic Linking

• Library functions like printf are common for many programs, so we’d

like to share code to conserve memory.

• GOT: Global offset table: a list of addresses of library functions with

unspecified values at runtime.

• PLT: procedure linkage table: think of this as a list of “stub version”

of library functions like printf that the linker can output. All these

functions do is call to an appropriate address in the GOT.

call PLT[5] (stub for printf)
...

PLT[5]: call GOT[5] (should be address of printf after dynamic linking)

• dlfixup function is provided by the loader, and is responsible for

finding hte library function printf, giving it a virtual memory address,

and storing that address in GOT[5].

• Laxy loading: initially GOT[5] is set to be the address of dlfixup, so

that dlfixup will only dynamically load library functions the first time

they are used. 12

Interpreter

• Files that do dynamic linking use an interpreter program to read

their ELF file.

• Think of this as a special process-specified loader. The actual OS

loader will read the ELF file, see that the file specifies an interpreter

program and then run the interpreter on the ELF file.

• The interpreter lays out the memory for the program by reading the

ELF file, making sure to create GOT as appropriate.

13

Buffer Overflow attack

void get_input() {

char buffer[100];

gets(buff);

}

• Naive programmer writes this program. Attacker runs it and provides

an input string that is more than 100 bytes long, which allows the

attacker to overwrite the return address of get_input on the stack.

• Attacker can overwrite return address to be the address of buff,

and provide a string that contains arbitrary code, allowing that code

to run.

• Attacker can also overwrite the return address to be the address of

some library function, and overwrite higher parts of the stack to be

malicious arguments to that function.

• Fix first attack by not allowing stack pages to be used as

instructions.

• Mitigate second attack by randomizing the addresses of functions so

that the attacker doesn’t know which return address to provide.
14

Communicating with Devices

• At a high level, devices are connected to CPU over the bus.

• Think of the bus as a airline bag claim belt. The CPU is in the

middle and the devices are on the outside. CPU puts information

(bags) on the belt and devices check if the bag is for them and pull

it off if so.

• Can use inb, outb functions to communicate with devices over bus.

• Port numbers are like tags that tell devices whether the data is for

them or not.

15

Issues with Ports

• inb, outb require arguments to be in specified registers, which

limits the ability of the compiler to optimize code.

• It’s not possible to write user-level device drivers because hardware

allows any code that can access ports to also be able to disable

interrupts, so a malicious user-level device driver can take over the

CPU.

16

More fancy Communicating with Devices

• Map device registers/memory to physical address: the device itself

might have internal memory, so map this device memory to some

area in a process’s address space. Writes to these addresses will

actually go to the device’s memory and not to main memory. It’s

like the CPU is reading over the devices shoulder.

• Direct Memory access: pick an area of memory for the device. The

device is allowed to access this area. to communicate with the

device, a process just writes to the memory. It’s like the device is

reading over the CPU’s shoulder.

17

Interrupts vs Polling

• How to tell if the device has new data available?

• Option 1: poll the device (just have a loop that keeps checking for

new data).

• Downside is that you are basically busywaiting

• Option 2: allow the device to trigger an interrupt when it has new

data.

• Downside is that interrupts cause context switches, which are slow.

If the device has data very frequently, then you spend all your time

context switching and you’d have been better off with polling.

18

SCSI

• SCSI is just a protocol for communicating with hardware (usually

disks).

• Each SCSI request has an initiator and a target. Intuitively, the

initiator is requesting some action from the target.

• So for example, send a request to read from a disk. The disk is the

target, and is given control of the bus. Often a request will say ”do

some action and then disconnect from the bus so I can issue other

requests while you are busy”.

• If there’s an error, no other commands are executed until the error is

read and acted on by a specific REQUEST SENSE command is used

to read the error.

19

Disk Access

• Hard disks are circular platters with data written on them that spin

very fast. There is a head that sits on the platter and reads the data

that spins by under the head.

• Therefore sequential IO is way faster on disks than random IO.

• OS takes advantage of this when writing data out of buffer cache to

disk to try to write blocks in sequential order.

• SCAN procedure: when flushing the cache, write sectors in

increasing order of sector number so that you can hopefully flush the

cache in one rotation of the disk.

20

Flash Memory

• Flash memory mitigates random access issue of disks, so it’s not as

important to use SCAN type heuristics.

• Big issue: each address of flash memory stops working after a

certain number of writes.

• Flash Translation Layer acts like a kind of virtual memory system for

the flash memory. It provides the OS with a view of the flash

memory as a ordinary set of “virtual” addresses, but will direct these

addresses to actual places on the physical flash memory in order to

prevent single physical areas being accessed too frequently (called

wear leveling).

21

Crash-safe file systems

• Computer could shut down at literally any point. Need to make sure

that the file system is never corrupted.

• It’s ok for writes to a file to not happen, but we want to avoid

leaking disk space or having inodes that contain junk sector

numbers.

22

Idea 1: Fix Corruption

• Utility called fsck runs at startup (or in the background) and tries

to cleanup issues left behind by previous crash.

• Basically scans over the disk and filesystem and makes sure that all

the blocks marked unavailable in the free-map are indeed used in the

file system (catch leaks), and tries to correct errors in inodes it sees.

• Now the problem is to make sure the system isn’t so corrupted that

fsck can’t fix it. This leads to careful ordering of disk writes.

23

Ordered Updates

• Basic idea is to never have any pointers on disk to uninitialized data,

and never have any period of time in which all pointers to some

resource are only present in RAM and not on disk.

• The first point protects fsck from reading garbage data and

therefore doing garbage things. The second point keeps you from

totally losing any crucial data.

• Achieve this by enforcing orderings on disk operations. For example,

if you make a file, you must create the inode on disk before adding a

directory entry for the file.

• Can have leaks: create an inode on disk for a file, but then crash

before adding an entry to the directory telling where the file is. fsck

will run in the background and find that this inode is actually

unlinked and so decide that it’s actually free.

24

Soft updates to fix dependencies issues

• With ordered updates you can have some blocks be very slow to

write to disk. For example, if you make a bunch of files in a

directory, you will take a really long time to write that directory to

disk and so you might crash and lose all the files.

• With soft updates, we decouple the choice of which block to write

to disk from the dependencies.

• choose any block A in the buffer cache to write to disk. If this block

is supposed to be written after some other blocks to preserve

ordered updates, just temporarily roll back all changes to block A

that required dependencies and then write to disk.

• An issue: Sometimes you need to write a buffer many times with

many rollbacks.

25

Journaling

• Big idea: if we could ensure certain operations were atomic (i.e.

couldn’t be interrupted by crashes), it would be easy to be

crash-resistant.

• Writes are idempotent: if you do a write twice it’s the same as doing

it once.

• Keep a journal of actions on disk. Whenever you want to do some

atomic writing, first record the writes in the journal. Then do the

actual writes. Then record that the writes were completed in the

journal.

• Detect crash while recording the writes in the journal because

journal entry is incomplete. Just drop these writes - maybe a file

isn’t created that the user asked to make just before the crash, but

that’s ok.

• Detect crash during actual writes because the “I’m done” entry isn’t

in the journal. Recoever by just actually performing the write you

recorded in the journal. This is ok because writes are idempotent.
26

Journaling in XFS

• XFS wants to support really large file systems easily.

• In a directory with lots of files, want to look up file locations by

name quickly without linear scan.

• In a very large, maybe very sparse file, want to look up sector

number efficiently from offset without lots of indirections and file

size limits.

• Solution: B+ tree. Think a self-balancing binary tree with a larger

branching factor.

• Updating B+ trees is a complicated algorithm, need to make sure

the update doesn’t leave the state corrupted when you crash.

• Use journaling to make update operations atomic.

27

Misc File system things

• If the disk gets really full, creating and writing to new files becomes

really slow because of fragmentation. Solution: lie to the user. Tell

them the disk is only 90% of its actual size. The extra 10% free

space makes it very likely it will be easy to allocate new blocks when

needed.

• Symbolic links (symlinks) are files that are actually pointers to other

files. Think of this as a file that contains the path of another file.

You can delete the file or the symbolic link independently (although

the symbolic link will be “broken” if you delete the file).

• Hard links are your actual dir_entry structs. You make two

dir_entry structs in two directories point to the same inode. This

causes some issues: if you delete one of the hard links to a file, then

you need to keep some kind of reference count in the inode to

prevent the other hard link from pointing to freed disk space.

28

Networks

• The OS is responsible for taking information off the network and

packaging it in a way that provides a nice abstraction for user

programs.

• TCP is basically an algorithm the OS runs to convert unreliable

networks that drop packets into simple streams of data that can be

consumed by applications.

• The user-level interface provided is called a socket.

• OS provides an abstraction called a port, which is basically a way for

the user program to provide a “return address’ for any information it

sends out.

• For example, firefox opens a socket to www.google.com, while your

video game opens a socket to awesomegameserver.net. When google

and awesomegameserver send information back, the os needs to

know which application should get which packets.

29

Networks

• Networking protocols are organized in layers.

1. The actual data the application wishes to send is first wrapped in a

TCP layer, which adds some metadata needed for keeping track of

missed packets.

2. The TCP packet is then wrapped in an IP packet, which contains

metadata needed to route the packet from the destination computer

to the target computer in the internet.

3. The IP packet is wrapped in an ethernet packet, which contains the

information needed to physically communicate between two

computers that are “adjacent” in the internet, meaning the are

connected by a physical wire.

30

Networks

• The OS needs to manage all these layers, which involves adding

various headers at various times to the packet.

• To avoid reallocating memory and copying data when

adding/removing headers, use mbuf to store packets.

• mbufs are basically linked-lists whose items are small 230 byte

strings. To prepend to a packet, just add another node to the list at

the beginning. To remove the beginning of a string, you can just

drop some items at the beginning.

• Sometimes a header is split accross the first two consecutive nodes

in the linked list. This is annoying:

• m_pullup function refactors the list so that a given number of bytes

is contained in the first node. This allows you to easily access a

header by first calling m_pullup and then casting a pointer to a

header struct pointer.

31

Permissions

• Give each (user, file) pair a set of permissions (e.g. read, write,

execute).

• Unix stores all (user, file) pairs for a given file with that file. When a

user accesses a file, the OS checks the pairs associated with the file

to make sure the user has permission to do the desired action.

• To avoid having to store a pair for every single user of the system.

Unix uses groups congomerate users.

• We don’t want users to be able to read the passwords file. So the

passwords file only allows root to read it, and the login program runs

as root.

• This causes problems when changing passwords, so need “effective

user id”, a way to allow some programs that were made by root to

pretend to be root even when run by a different user.

32

Security Issues

• TOCTOU (Time of check to time of use) bugs are like race

conditions:

• a root process may be doing some file system maintainence. First it

checks if a file should be deleted, then deletes the file.

• Attacker intervenes between the check and delete to replace

directory the file is in with a symlink to a directory containing a

critical file of the same name.

• Fix this by either having some way to lock file system resources, or

by having OS transactions that make some file system operations

atomic.

33

More Security

• Try to protect classified information: maintain guarantee that any

process that reads a classified file cannot subsequently write to an

unclassified file.

• Every file has a security level: (c , s). c is a classification level, and s

is an identifying set that the resource belongs to.

• We say (c , s) dominates (c ′, s ′) if c > c ′ and s ⊃ s ′.

• To prevent leaking classified info, kill any process that attempts to

write to a with security level (c ′, s ′) if it has already read from a file

with security level (c , s) where (c , s) dominates (c ′, s ′). For

example, kill any process that tries to write to an unclassified memo

after reading a classified intelligence report.

• LOMACS: use this scheme to provent destruction of sensitive files

rather than leaking sensitive info: if a process reads or comes from a

low-sensitivity area (like the network), then it might be compromised

so don’t let it write to high-sensitivity files (like the kernel code).

• In practice there are many other channels that make guarantees hard

to come by. 34

Extra Channels

• Exit value: low-clearance level file spawns child. Child reads

classified file and becomes high-clearance. Child sets exit value equal

to ith bit in file and exits. Low-clearance process getds to see the

exit value, and just repeats for all bits in the file.

• CPU utilization: high clearance process encodes the sensitive file the

“CPU utilization graph” that you see on the activity monitor in your

computer: go into a busy loop for a second to encode a 1, sleep and

yield cpu for a second for a 0.

35

Virtual Machines

• Want to run old/insecure software. Maybe want to run many OSs

on one computer (e.g. if you are Amazon).

• One solution: write a emulator that literally simulates the hardware.

Sometimes you might have to do this (e.g. if you’re emulating

graphing calculator or a gameboy on your PC).

• In general this is super slow. If the guest OS is supposed to run on

the same hardware, perhaps you can actually let it run since most

operations aren’t sensitive.

• Idea: make the OS run in user mode. Whenever it tries to do

something that is really OS-specific, it will trap to a “meta-OS” (the

Virtual Machine Monitor), which can inspect the state of memory,

find out what the guest OS was trying to do and perform the actions

for it.

36

Virtual Machines

• Guest OS’s need to believe they are managing the page tables,

which means they need to think they know where things are in

physical memory.

• We instead give them a guest physical address, which they think is a

physical address but is actually a virtual address. The VMM

maintains a mapping from guest physical address to host (i.e. real)

physical addresses, just like an ordinary OS does virtual memory.

• We translate the guest OS’s page table entries (which map from

guest virtual address to guest physical addresses) to the real page

tables, which map from guest virtual addresses to host physical

address.

• VMs are so popular now that modern hardware actually provides

help for supporting them.

37

