CS 140 Midterm Review Session


Brendon Go



Administrivia

* Project 2

 Midterm is in class on Monday

— Open notes, but...
— No textbook!

— No electronic devices!
— Can print any material you want

* 50% of class grade is from exames:
max(midterm > 0 ? final : 0, (midterm + final)/2)


Brendon Go


Brendon Go



Material Covered

Threads and Processes
Concurrency

Scheduling

Virtual Memory Hardware
Virtual Memory OS Techniques
Synchronization

Memory Allocation


Brendon Go



Threads and Processes

e A process is an instance of a program running

* Process Control Block (PCB) contains: page
directory (defines the virtual address space),
saved registers, file descriptors, process ID,
priority, pointer to PCB of next process to run,
accounting information (e.g recent CPU time)
— Tracks state of process

— Includes information necessary to run

* During a context switch, save state into PCB
(registers, address spaces) and reload state from
the next PCB



Threads and Processes

* Athread is a schedulable execution context
— Most popular abstraction for concurrency
— Lighter weight abstraction than processes
— Allows one process to use multiple CPUs/cores
— Allows programs to overlap 1/0 and computation

* Kernel threads can take advantage of
multiprocessor, but are heavy-weight

* User threads are more light-weight and
flexible, but can’t take advantage of multiple
CPUs



Concurrency

* Prevent data races by defining critical sections
(require mutual exclusion, progress, and
bounded waiting)

* Multiple synchronization primitives
— Locks: useful for mutual exclusion; put lock around
code if you want to make it atomic

— Condition variables: generally used to avoid busy
waiting; use wait and signal

— Semaphores: typically used with a shared resource
that changes availability based on an integer number
of things



Synchronization

* Locks create serial code
— Serial code gets no speedup from multiprocessors
* Deadlock: two or more competing actions are
waiting on each other to finish
— mutual exclusion
— no preemption
— multiple independent requests

— circularity in the request graph



Practice Problem #1
acquire(resourcel); Can this deadlock?

acquire(resource2);
doWorkA();

release(resource2);
release(resourcel);

a(){

b (1

acquire(resource?);
acquire(resource3);
doWorkB();

release(resource3);
release(resource2);

c(){

acquire(resource3);
acquire(resourcel);
doWorkC();

release(resourcel);
release(resource3);



Practice Problem #1 - Solution

a(){ .
acquire(resourcel); Can this deadlock? YES
acquire(resource?);
doWorkA(); Mutual exclusion: only one thread
release(resource2); .
release(resourcel); Cah access a resource at a time.
}
b (1 :
acquire(resource2); No preemption: resources cannot be
acquire(resource3); forcibly taken back.
doWorkB();
release(resource3);
release(resource?); Multiple independent requests: each
10{ resource is independently
acquire(resource3); requested.
acquire(resourcel);
doWorkC();
release(resourcel); Circularity: A can wait on B, which

release(resource3); can wait on C’ which can wait on A



Practice Problem #2

Assume you are given a graph that represents the relationship between four threads (T1,
T2, T3, T4). An arrow from one thread (Tx) to another (Ty) means that thread Tx must
finish its computation before Ty starts. Assume that the threads can arrive in any order.

Use semaphores to enforce this relationship specified by the graph. Be sure to show the
initial values and the locations of the semaphore operations.



Practice Problem #2 - Possible Solution

Init(semal, 0); // Initialize semalto 0
Init(sema2, 0); // Initialize sema2 to O

T1 T2 T3 T4
Computation Down(semal) Down(semal) Down(sema2)
Up(semal) Computation Computation Down(sema?2)

Up(semal) Up(sema?2) Up(sema?2) Computation




Scheduling

* CPU scheduling: decide which processes to run

* Many different scheduling algorithms attempting
to optimize for throughput, turnaround time,
response time, CPU utilization, waiting times
— FIFO
— Shortest Job First
— Round-robin
— Priority scheduling
— Multilevel feedback queue



Practice Problem #3

* True or False: as the ratio of time slice to job
length decreases, round-robin scheduling

becomes equivalent to first-come-first-serve
scheduling



Practice Problem #3 - Solution

* True or False: as the ratio of time slice to job
length decreases, round-robin scheduling
becomes equivalent to first-come-first-serve

 False

— As time slice length goes to infinity (ratio
increases), each job completes in a single time
slice (the first time it runs), equivalent to FCFS.

— As time slice length goes to O (ratio decreases),

round-robin behaves increasingly different from
FCFS.



Virtual Memory Hardware

* OS gives each program its own virtual address
space

* Segmentation: divide memory into segments;

keep track of base and bound registers

— Causes external fragmentation: enough total
memory, but not contiguous so cannot be used

* Paging: map virtual pages to physical pages

— Causes internal fragmentation: memory block
assigned to process is larger than needed



Virtual Memory OS Techniques

* Have more virtual memory than physical
memory: save unused virtual pages to disk

* Several page replacement algorithms decide
what memory to write to write to disk
— FIFO
— Clock algorithm
— LRU

* Thrashing: constant paging because working set
cannot be in memory at once

— Working set model: process can be in memory iff all
pages used by process can be in memory



Practice Problem #4a

* True or False: Increasing the page size will
likely decrease the working set size (in bytes).



Practice Problem #4a - Solution

* True or False: Increasing the page size will
likely decrease the working set size (in bytes).

— False


Brendon Go



Practice Problem #4b

* True or False: Increasing the page size will
likely decrease the working set size (in bytes).
— False

* True or False: Increasing the page size will
likely decrease the chance that page
revocation requires a disk write.


Brendon Go



Practice Problem #4b - Solution

* True or False: Increasing the page size will
likely decrease the working set size (in bytes).
— False

* True or False: Increasing the page size will
likely decrease the chance that page
revocation requires a disk write.

— False: As page size increases, the likelihood that

page is dirty increases. Dirty pages are evicted to
disk rather than cache.


Brendon Go



Memory Allocation

* Dynamic allocation’s main problem is
fragmentation: memory is allocated in non-
continuous blocks, resulting in a lot of unusable

unallocated memory
* Various memory allocation techniques
— First fit
— Best fit: smallest block it’ll fit in
— Segregated free lists
* Garbage collection techniques
— Stop-and-copy: split memory in half
— Reference counting



Practice Problem #5

* Explain a situation where reference counting
GC may leak memory that a stop-and-copy GC
would probably collect?



Practice Problem #5 - Solution

* Explain why a reference counting GC may leak
memory that a stop-and-copy GC would
probably collect?

— A data structure may be unreachable from any
global pointers yet have a cycle. For example, in
the case of A->B->C->A, A, B, and C will have a
ref count of 1 and not be collected under
reference counting, while stop-and-copy would

not reach these objects and thus wouldn’t copy
them to the new heap.



Practice Problem 6

You operate a restaurant that makes very simple hamburgers: just
two(identical) buns and a patty. Your job is to make sure that all
hamburgers have exactly two buns and one patty.

When a new bun has been baked, it will call the bunArrived()
function. This function should only return once the bun has been
used to make a hamburger.

When a new patty has been cooked, it calls the pattyArrived()
function. This function should only return once the patty has been
used to make a hamburger.

Note: while you are processing bunArrived(), a call to pattyArrived()
may interrupt you, so be careful about modifying shared state.

Define global variables, and implement the init(), bunArrived() and
pattyArrived() functions using locks and condition variables as
defined in Pintos (init() will run to completion before any buns or
patties arrive):


Brendon Go
6


Practice Pro

KA AR A A AR A AR A A AR A AR A AR I A AR A AR A AN A A A A AR A AR A AR AR A A A AR A Ak, kK

struct lock

void lock init (struct lock *lock)

void lock acquire (struct lock *lock)
bool lock try acquire (struct lock *lock)
void lock release (struct lock *lock)

struct condition
void cond init (struct condition * cond)

void cond wait (struct condition *cond, struct lock *lock)

void cond signal (struct condition *cond, struct lock *lock)
E i b b b b b b b b b b b db b b b db b b b b b b b b I b I b b b b b b b b db b i b b b b b b b b b b db b b b I b b b b i

// Global Variables

init () {
bunArrived () {

pattyArrived () {

blem 6


Brendon Go
6


Practice Problem 6

// Global Variables

struct lock global lock;
struct cond bun;

struct cond patty;

int waiting buns;

int walting patties;

int buns cleared to leave;
int patties cleared to leave;

init () {
lock init (global lock);
cond init(wait bun);
cond 1init(walt patty);

walting buns = 0;
walting patties = 0;

buns cleared to leave = 0;

patties cleared to leave 0;


Brendon Go
6


Practice Problem

bunArrived () {
lock acquire (global lock);
waiting buns++;

// if any buns are "finished" we're good to leave
while (buns cleared to leave == 0)
{
if (waiting buns >= 2 && waiting patties >= 1)
{
waiting buns -= 2;
waiting patties -= 1;
buns cleared to leave += 2;
patties cleared to leave += 1;
cond signal (bun, global lock);
cond signal (patty, global lock);
}
else
{
// if not enough ready, wait
cond wait (bun, global lock);

}
buns cleared to leave--;
lock release (global lock);


Brendon Go
6


Practice Problem

pattyArrived() {
lock acquire (global lock);
waiting patties++;

// if any patties are "finished" we're good to leave
while (patties cleared to leave == 0)
{
if (waiting buns >= 2 && waiting patties >= 1)
{
waiting buns -= 2;
waiting patties -= 1;
buns cleared to leave += 2;
patties cleared to leave += 1;
cond signal (bun, global lock);
cond signal (bun, global lock);
}
else
{
// if not enough ready, wait
cond wait (patty, global lock);

}
patties cleared to leave--;
lock release (global lock);


Brendon Go
6


General Tips

Practice with the old exams
— Time yourself accordingly

— Don’t just look at questions and solutions for
every archived exam

Ask questions on Google Groups
Rewatch lectures on SCPD
Don’t rely on notes; know the material



Good luck!



