@ Networking overview

@ Systems issues

@ 0S networking facilities

@ Implementing networking in the kernel

© Network file systems

1/53

Computer networking

Application

Application

» Goal: two applications on different computers exchange data
» Requires inter-process (not just inter-node) communication

2/53

The 7-Layer and 4-Layer Models

Qs TCP/IP

7 lication

Aep Applications
é Presentation (FTP, SMTP,
5 Session
4 Transport TCP (host-to-host)
3 Network P
2 Data link Network access
: Physical (usually Ethernet)

3/53

Physical Layer

« Computers send bits over physical links
- E.g., Coax, twisted pair, fiber, radio, ...
- Bits may be encoded as multiple lower-level “chips”

» Two categories of physical links
- Point-to-point networks (e.g., fiber, twisted pair): O\(&
- Shared transmission medium networks (e.g., coax, radio):

000000

> Any message can be seen by all nodes
> Allows broadcast/multicast, but introduces contention

» One important constraint: speed of light

- ~ 300,000 km/sec in a vacum, slower in fiber

SF 2 ~15 msec s NYC Moore’s law does not apply!

4/53

Link Layer, Indirect Connectivity

« When no direct physical connection to destination
» Hop through multiple devices

G >—swich —estnaion >

- Allows links and devices to be shared for multiple purposes

- Must determine which bits are part of which messages intended
for which destinations

o Packet switched networks

- Pack a bunch of bytes together intended for same destination
- Slap a header on packet describing where it should go

5/53

Link Layer: Ethernet

» Originally designed for shared medium (coax), now generally
not shared medium (switched)
» Vendors give each device a unique 48-bit MAC address
- Specifies which card should receive a packet
» Ethernet switches can scale to switch local area networks
(thousands of hosts), but not much larger

64 48 48 16 32

Dest Src
« Packet format: | Preamble| - addr |1YPe B°dV%CRC

Preamble helps device recognize start of packet
CRC allows receiving card to ignore corrupted packets
Body up to 1,500 bytes for same destination

All other fields must be set by sender’s 0OS
(NIC cards tell the OS what the card’s MAC addressiis,
Special addresses used for broadcast/multicast)

6/53

Network Layer: Internet Protocol (IP)

» IP used to connect multiple networks
- Runs over a variety of physical networks
- Hence can connect Ethernet, DSL, mobile networks, etc.
- Most computers today speak IP
» Every host has a unique 4-byte IP address (16-bytes for IPv6)
- (Or at least thinks it has, when there is address shortage)
- E.g., www.ietf.org — 104.20.0.85
« Packets are routed based on destination IP address

- Address space is structured to make
routing practical at global scale

- E.g.,171.66.** goes to Stanford

- So packets need IP addresses in addition
to MAC addresses

UDP and TCP

« UDP and TCP most popular protocols on IP
- Both use 16-bit port number as well as 32-bit IP address
- Applications bind a port & receive traffic to that port

o UDP - unreliable datagram protocol

- Exposes packet-switched nature of Internet
- Sent packets may be dropped, reordered, even duplicated (but
generally not corrupted)
« TCP - transmission control protocol

- Provides illusion of a reliable “pipe” between two processes on
two different machines

- Masks lost & reordered packets so apps don’t have to worry

- Handles congestion & flow control

8/53

Principles: Packet Switching & Layering

» Packet switching

- A packet is a self contained unit of data which contains information
necessary for it to reach its destination

- Independently, for each arriving packet, compute its outgoing link

- Makes forwarding simple (depends only on packet)

» Layering
- Break system functionality into a hierarchy of layers

- Each layer uses only the service of the layer below it
- Layers communicate sequentially with the layers above or below

9/53

Principle: Encapsulation

« Stick packets inside packets
« How you realize packet switching and layering in a system

- E.g., an Ethernet packet may encapsulate an IP packet

- An IP router forwards a packet from one Ethernet to another,
creating a new Ethernet packet containing the same IP packet

- In principle, an inner layer should not depend on outer layers (not
always true)

Application

Transport (TCP) TCP

Network level (IP)

Link level (eth)

10/53

@ Networking overview

@ Systems issues

@ O0S networking facilities

@ Implementing networking in the kernel

© Network file systems

11/53

Unreliability of IP

Network does not deliver packets reliably

- May drop packets, reorder packets, delay packets
- May even corrupt packets, or duplicate them

How to implement reliable TCP on top of IP network?
- Note: This is entirely the job of the OS at the end nodes

Straw man: Wait for ack for each packet

- Send a packet, wait for acknowledgment, send next packet
- If no ack, timeout and try again

Problems?

12/53

Unreliability of IP

Network does not deliver packets reliably

- May drop packets, reorder packets, delay packets
- May even corrupt packets, or duplicate them

How to implement reliable TCP on top of IP network?
- Note: This is entirely the job of the OS at the end nodes

Straw man: Wait for ack for each packet

- Send a packet, wait for acknowledgment, send next packet
- If no ack, timeout and try again

Problems:

- Low performance over high-delay network
(bandwidth is one packet per round-trip time)

- Possible congestive collapse of network
(if everyone keeps retransmitting when network overloaded)

12/53

Performance: Bandwidth-delay

Network delay over WAN will never improve much

But throughput (bits/sec) is constantly improving

Can view network as a pipe
Delay

Bandwidth] .)

- For full utilization want # bytes in flight > bandwidthxdelay
(But don’t want to overload the network, either)

What if protocol doesn’t involve bulk transfer?
- E.g., ping-pong protocol will have poor throughput

Another implication: Concurrency & response time critical for
good network utilization

13/53

A little bit about TCP

Want to save network from congestion collapse

- Packet loss usually means congestion, so back off exponentially
Want multiple outstanding packets at a time

- Get transmit rate up to n-packet window per round-trip
Must figure out appropriate value of n for network

- Slowly increase transmission by one packet per acked window
- When a packet is lost, cut window size in half

Connection set up and teardown complicated
- Sender never knows when last packet might be lost
- Must keep state around for a while after close

Lots more hacks required for good performance

- Initially ramp n up faster (but too fast caused collapse in
1986 [Jacobson], so TCP had to be changed)

- Fast retransmit when single packet lost

14/53

https://www.eecs.berkeley.edu/~sylvia/papers/congavoid.pdf

Lots of OS issues for TCP

Have to track unacknowledged data
- Keep a copy around until recipient acknowledges it
- Keep timer around to retransmit if no ack
- Receiver must keep out of order segments & reassemble
When to wake process receiving data?
E.g.,sender callswrite (fd, message, 8000);
First TCP segment arrives, but is only 512 bytes
Could wake recipient, but useless w/o full message
TCP sets “PusH” bit at end of 8000 byte write data
When to send short segment, vs. wait for more data
- Usually send only one unacked short segment
- But bad for some apps, so provide NODELAY option
Must ack received segments very quickly
- Otherwise, effectively increases RTT, decreasing bandwidth

15/53

@ Networking overview

@ Systems issues

©® O0S networking facilities

@ Implementing networking in the kernel

© Network file systems

16/53

« Abstraction for communication between machines

» Datagram sockets: Unreliable message delivery
- With IP, gives you UDP
- Send atomic messages, which may be reordered or lost
- Special system calls to read/write: send/recv

» Stream sockets: Bi-directional pipes

- With IP, gives you TCP
- Bytes written on one end read on the other
- Reads may not return full amount requested—must re-read

17/53

Socket naming

» TCP & UDP name communication endpoints by
- E.g., 32-bit IPv4 address specifies machine (128 bits for IPv6)
- 16-bit TCP/UDP port number demultiplexes within host
« A connection is thus named by 5 components
- Protocol (TCP), local IP, local port, remote IP, remote port
- TCP requires connected sockets, but not UDP
» OS keeps connection state in protocol control block (PCB)
structure

- Keep all PCB’s in a hash table

- When packet arrives (if destination IP address belongs to host), use
5-tuple to find PCB and determine what to do with packet

18/53

System calls for using TCP

Client Server
socket — make socket
bind - assign address
listen - listen for clients

socket — make socket
bind* - assign address
connect - connect to listening socket
accept — accept connection

*This call to bind is optional; connect can choose address & port.

19/53

Using UDP

» Call socket with SOCK_DGRAM, bind as before

» New system calls for sending individual packets

- int sendto(int s, const void *msg, int len, int flags,
const struct sockaddr *to, socklen_t tolen);

- int recvfrom(int s, void *buf, int len, int flags,
struct sockaddr *from, socklen_t *fromlen);

- Must send/get peer address with each packet

e Can use UDP in connected mode

- comnnect assigns remote address
- send/recv syscalls, like sendto/recvfrom w/o last 2 args

20/53

Uses of connected UDP sockets

» Kernel demultplexes packets based on port
- Allows different processes getting packets from different peers
- For security, ports < 1024 usually can’t be bound
- But can safely inherit UDP port below that connected to one
particular peer
» Feedback based on ICMP messages

- Say no process has bound UDP port you sent packet to...
- With sendto, you might think network dropping packets

- Server sends port unreachable message, but only detect it when
using connected sockets

21/53

@ Networking overview

@ Systems issues

@ 0S networking facilities

@ Implementing networking in the kernel

© Network file systems

22/53

Socket implementation

» Need to implement layering efficiently

- Add UDP header to data, Add IP header to UDP packet, ...

- De-encapsulate Ethernet packet so IP code doesn’t get confused
by Ethernet header

» Don’t store packets in contiguous memory
- Moving data to make room for new header would be slow

» BSD solution: mbufs [Leffler]
(Note [Leffler] calls m_nextpkt by old name m_act)

- Small, fixed-size (256 byte) structures
- Makes allocation/deallocation easy (no fragmentation)

« BSD Mbufs working example for this lecture
- Linux uses sk_buffs, which are similar idea

23/53

http://www.scs.stanford.edu/18wi-cs140/sched/readings/sockets.pdf
http://vger.kernel.org/~davem/skb.html

mbuf details

» Packets made up of multiple mbufs

z:gizzpkt ------------ - Chain?d together by m_next '
‘m den T - Such linked mbufs called chains
'm_data » Chains linked with m_nextpkt
‘m_type - Linked chains known as queues
m_type - E.g, device output queue
m_flags « Total mbuf size 256 B = ~230 data
pkt.len bytes (depends on size of pointers)
pkt.rcvif - Firstin chain has pkt header
ext.buf o Cluster mbufs have more data
ext free dat - ext header points to data
ext.size | [°- - Up to 2 KB not collocated with mbuf

\ - m_dat not used

/ » m_flags is bitwise or of various bits
optional - E.g., if cluster, or if pkt header used

24/53

Adding/deleting data with mbufs

m_data always points to start of data

- Can bem_dat, or ext.buf for cluster mbuf
- Or can point into middle of that area

To strip off a packet header (e.g., TCP/IP)
- Incrementm_data, decrementm_len

To strip off end of packet
- Decrementm_len
Can add data to mbuf if buffer not full

Otherwise, add data to chain
- Chain new mbuf at head/tail of existing chain

25/53

mbuf utility functions

mbuf *m_copym(mbuf *m, int off, int len, int wait);

- Creates a copy of a subset of an mbuf chain
- Doesn’t copy clusters, just increments reference count
- wait says what to do if no memory (wait or return NULL)

void m_adj(struct mbuf *mp, int len);

- Trim |1len| bytes from head or (if negative) tail of chain

mbuf *m_pullup(struct mbuf *n, int len);

- Put first 1en bytes of chain contiguously into first mbuf

Example: Ethernet packet containing IP datagram

- Trim Ethernet header using m_adj
- Callm_pullup (n, sizeof (ip_hdr));
- Access IP header as regular C data structure

26/53

Socket implementation

» Each socket fd has associated socket structure with:

- Send and receive buffers

- Queues of incoming connections (on listen socket)
- A protocol control block (PCB)

- Aprotocol handle (struct protosw *)

» PCB contains protocol-specific info. E.g., for TCP:

Pointer to IP TCB with source/destination IP address and port
Information about received packets & position in stream
Information about unacknowledged sent packets
Information about timeouts

Information about connection state (setup/teardown)

27/53

protosw structure

» Goal: abstract away differences between protocols

- In C++, might use virtual functions on a generic socket struct
- Here just put function pointers in protosw structure

o Alsoincludes a few data fields

- type, domain, protocol - to match socket syscall args, so know
which protosw to select

- flags - to specify important properties of protocol
« Some protocol flags:

ATOMIC - exchange atomic messages only (like UDP, not TCP)
ADDR - address given with messages (like unconnected UDP)
CONNREQUIRED - requires connection (like TCP)

WANTRCVD - notify socket of consumed data (e.g., so TCP can wake
up a sending process blocked by flow control)

28/53

protosw functions

pr_slowtimo - called every 1/2 sec for timeout processing
e pr_drain - called when system low on space

o pr_input - returns mbuf chain of data read from socket

« pr_output - takes mbuf chain of data written to socket

e pr_usrreq - multi-purpose user-request hook

- Used for bind/listen/accept/connect/disconnect operations
- Used for out-of-band data

29/53

Network interface cards

« Each NIC driver provides an ifnet data structure
- Like protosw, tries to abstract away the details

» Data fields:
- Interface name (e.g., “eth0”)
Address list (e.g., Ethernet address, broadcast address, ...)
Maximum packet size
Send queue

» Function pointers
- if_output - prepend header and enqueue packet
- if_start - start transmitting queued packets
- Also ioctl, timeout, initialize, reset

30/53

Input handling

» NIC driver figures out protocol of incoming packet

» Enqueues packet for appropriate protocol handler
- If queue full, drop packet (can create livelock [Mogul])

» Posts “soft interrupt” for protocol-layer processing

- Runs at lower priority than hardware (NIC) interrupt
...but higher priority than process-context kernel code

31/53

http://www.scs.stanford.edu/18wi-cs140/sched/readings/livelock.pdf

« An OS must route all transmitted packets
- Machine may have multiple NICs plus “loopback” interface

- Which interface should a packet be sent to, and what MAC address
should packet have?

Routing is based purely on the destination address
- Even if host has multiple NICs w. different IP addresses
- (Though OSes have features to redirect based on source IP)
OS maintains routing table
- Maps IP address & prefix-length — next hop
Use radix tree for efficient lookup
- Branch at each node in tree based on single bit of target
- When you reach leaf, that is your next hop
Most OSes provide packet forwarding

- Received packets for non-local address routed out another
interface

32/53

@ Networking overview

@ Systems issues

@ 0S networking facilities

@ Implementing networking in the kernel

O Network file systems

33/53

Network file systems

» What’s a network file system?
- Looks like a file system (e.g., FFS) to applications
- But data potentially stored on another machine
- Reads and writes must go over the network
- Also called distributed file systems

» Advantages of network file systems

- Easy to share if files available on multiple machines

- Often easier to administer servers than clients

- Access way more data than fits on your local disk

- Network + remote buffer cache faster than local disk
» Disadvantages

- Network + remote disk slower than local disk

- Network or server may fail even when client OK

- Complexity, security issues

34/53

NFS version 2 [Sandberg]

» Background: ND (networked disk)

- Creates disk-like device even on diskless workstations
- Can create a regular (e.g., FFS) file system on it
- Butno sharing—Why?

» ND idea still used today by Linux NBD
- Useful for network booting/diskless machines, not file sharing

» Some Goals of NFS

Access same FS from multiple machines simultaneously
Maintain Unix semantics

Crash recovery

Competitive performance with ND

» NFS version 2 protocol specified in [RFC 1094]

35/53

http://www.scs.stanford.edu/18wi-cs140/sched/readings/nfs.pdf
https://nbd.sourceforge.io/
http://www.ietf.org/rfc/rfc1094.txt

NFS version 2 [Sandberg]

» Background: ND (networked disk)

- Creates disk-like device even on diskless workstations
- Can create a regular (e.g., FFS) file system on it

- Butno sharing—Why?

- FFS assumes disk doesn’t change under it

» ND idea still used today by Linux NBD
- Useful for network booting/diskless machines, not file sharing

» Some Goals of NFS

Access same FS from multiple machines simultaneously
Maintain Unix semantics

Crash recovery

Competitive performance with ND

» NFS version 2 protocol specified in [RFC 1094]

35/53

http://www.scs.stanford.edu/18wi-cs140/sched/readings/nfs.pdf
https://nbd.sourceforge.io/
http://www.ietf.org/rfc/rfc1094.txt

NFS implementation

Virtualized the file system with vnodes

- Basically poor man’s C++ (like protosw struct)

Vnode structure represents an open (or openable) file

Bunch of generic “vnode operations”:
- lookup, create, open, close, getattr, setattr, read, write, fsync,
remove, link, rename, mkdir, rmdir, symlink, readdir, readlink, ...

- Called through function pointers, so most system calls don’t care
what type of file system a file resides on

NFS vnode operations perform Remote Procedure Calls (RPC)
- Client sends request to server over network, awaits response
- Each system call may require a series of RPCs

System mostly determined by RPC [RFC 1831] Protocol

Uses XDR protocol specification language [RFC 1832]

36/53

http://www.ietf.org/rfc/rfc1831.txt
http://www.ietf.org/rfc/rfc1832.txt

Stateless operation

Designed for “stateless operation”
- Motivated by need to recover from server crashes

Requests are self-contained

Requests are idempotent
- Unreliable UDP transport
- Client retransmits requests until it gets a reply
- Writes must be stable before server returns

Can this really work?

37/53

Stateless operation

Designed for “stateless operation”
- Motivated by need to recover from server crashes

Requests are self-contained

mostgf
Requests are , idempotent

- Unreliable UDP transport
- Client retransmits requests until it gets a reply
- Writes must be stable before server returns

Can this really work?

- Of course, FS not stateless - it stores files
- E.g., mkdir can’t be idempotent - second time dir exists
- But many operations, e.g., read, write are idempotent

37/53

Same general architecture as NFS 2

Specified in RFC 1813 (subset of Open Group spec)

- XDR defines C structures that can be sent over network;
includes tagged unions (to know which union field active)

- Protocol defined as a set of Remote Procedure Calls (RPCs)

New access RPC

- Supports clients and servers with different uids/gids

Better support for caching

- Unstable writes while data still cached at client
- More information for cache consistency

Better support for exclusive file creation

38/53

http://www.ietf.org/rfc/rfc1813.txt
http://www.opengroup.org/onlinepubs/9629799/toc.htm

NFSv3 File handles

struct nfs_fh3 {
/* XDR notation for variable-length array
* with 0-64 opaque bytes: */
opaque data<64>;

b

» Server assigns an opaque file handle to each file
- Client obtains first file handle out-of-band (mount protocol)
- File handle hard to guess - security enforced at mount time
- Subsequent file handles obtained through lookups

« File handle internally specifies file system & file
- Device number, i-number, generation number, ...
- Generation number changes when inode recycled

» Handle generally doesn’t contain filename
- Clients may keep accessing an open file after it’s renamed

39/53

File attributes

struct fattr3 { specdata3 rdev;
ftype3 type; uint64 fsid;
uint32 mode; uint64 fileid;
uint32 nlink; nfstime3 atime;
uint32 uid; nfstime3 mtime;
uint32 gid; nfstime3 ctime;
uint64 size; };

uint64 used;

» Most operations can optionally return fattr3

» Attributes used for cache-consistency

40/53

struct diropargs3 { struct lookup3resok {

nfs_fh3 dir; nfs_fh3 object;

filename3 name; post_op_attr obj_attributes;
}; post_op_attr dir_attributes;

>

union lookup3res switch (nfsstat3 status) {
case NFS3_0OK:

lookup3resok resok;
default:

post_op_attr resfail;

H

e Maps (directory handle, filename) — handle

- Client walks hierarchy one file at a time
- No symlinks or file system boundaries crossed
- Client must expand symlinks

41/53

struct create3args {
diropargs3 where;
createhow3 how;

};

union createhow3 switch (createmode3 mode) {
case UNCHECKED:
case GUARDED:
sattr3 obj_attributes;
case EXCLUSIVE:
createverf3 verf;

};

o UNCHECKED - succeed if file exists
o GUARDED - fail if file exists
» EXCLUSIVE - persistent record of create

42/53

struct read3args { struct read3resok {

nfs_fh3 file; post_op_attr file_attributes;
uint64 offset; uint32 count;
uint32 count; bool eof;

}; opaque data<>;

b

union read3res switch (nfsstat3 status) {
case NFS3_0K:

read3resok resok;
default:

post_op_attr resfail;

s

» Offset explicitly specified (not implicit in handle)

o Client can cache result

43/53

« Client can cache blocks of data read and written

» Consistency based on times in fattr3

- mtime: Time of last modification to file

- ctime: Time of last change to inode
(Changed by explicitly setting mtime, increasing size of file,
changing permissions, etc.)

« Algorithm: If mtime or ctime changed by another client, flush
cached file blocks

44/53

» When is it okay to lose data after a crash?
- Local file system?

45/53

» When is it okay to lose data after a crash?

- Local file system?
If no calls to fsync, OK to lose 30 seconds of work after crash

- Network file system?

45/53

» When is it okay to lose data after a crash?

- Local file system?
If no calls to fsync, OK to lose 30 seconds of work after crash

- Network file system?
What if server crashes but not client?
Application not killed, so shouldn’t lose previous writes

« NFSv2 addresses problem by having server write data to disk
before replying to a write RPC
- Caused performance problems

» Could NFS2 clients just perform write-behind?
- Implementation issues - used blocking kernel threads on write
- Semantics - how to guarantee consistency after server crash

- Solution: small # of pending write RPCs, but write through on
close; if server crashes, client keeps re-writing until acked

45/53

struct writeargs { union attrstat
fhandle file; switch (stat status) {
unsigned beginoffset; case NFS_OK:
unsigned offset; fattr attributes;
unsigned totalcount; default:
nfsdata data; void;

}; };

attrstat NFSPROC_WRITE(writeargs) = 8;

» On successful write, returns new file attributes
» Can NFSv2 keep cached copy of file after writing it?

46/53

Write race condition

Client A Server Client B
% I
I I
I
. T
[.-e————'——““"———__————j :
I I I
V V y
» Suppose client overwrites 2-block file
- Client A knows attributes of file after writes A1 & A2
- But client B could overwrite block 1 between the A1 & A2
- No way for client A to know this hasn’t happened

- Must flush cache before next file read (or at least open)

47/53

NFSv3 Write arguments

struct write3args { enum stable_how {
nfs_fh3 file; UNSTABLE = 0,
uint64 offset; DATA_SYNC = 1,
uint32 count; FILE_SYNC = 2
stable_how stable; };

opaque data<>;

};

» Two goals for NFSv3 write:

- Don’t force clients to flush cache after writes

- Don’t equate cache consistency with crash consistency
l.e., don’t wait for disk just so another client can see data

48/53

struct write3resok { struct wcc_attr {
wcc_data file_wcc; uint64 size;
uint32 count; nfstime3 mtime;
stable_how committed; nfstime3 ctime;
writeverf3 verf; };
};
struct wcc_data {
union write3res wcc_attr xbefore;
switch (nfsstat3 status) { post_op_attr after;
case NFS3_0OK: };
write3resok resok;
default:
wcc_data resfail;
}s

» Several fields added to achieve these goals

49/53

Data caching after a write

» Write will change mtime/ctime of a file
- “after” will contain new times
- With NFSv2, would require cache to be flushed
« With NFSv3, “before” contains previous values

- If vefore matches cached values, no other client has changed file
- Okay to update attributes without flushing data cache

50/53

Write stability

Server write must be at least as stable as requested

If server returns write UNSTABLE

- Means permissions okay, enough free disk space, ...
- But data not on disk and might disappear (after crash)

If DATA_SYNC, data on disk, maybe not attributes
If FILE_SYNC, operation complete and stable

51/53

Commit operation

» Client cannot discard any UNSTABLE write
- If server crashes, data will be lost

» COMMIT RPC commits a range of a file to disk
- Invoked by client when client cleaning buffer cache
- Invoked by client when user closes/flushes a file

» How does client know if server crashed?

- Write and commit return writeverf3
- Value changes after each server crash (can be boot time)
- Client must resend all writes if verf value changes

52/53

Attribute caching

Close-to-open consistency

- Annoying if writes not visible after a file close
(Edit file, compile on another machine, get old version)

- Nowadays, all NFS opens fetch attributes from server

Still, lots of other need for attributes (e.g., 1s -al)

Attributes cached between 5 and 60 seconds

- Files recently changed more likely to change again
- Do weighted cache expiration based on age of file

Drawbacks:

- Must pay for round-trip to server on every file open
- Can get stale info when statting a file

53/53

	Networking overview
	Systems issues
	OS networking facilities
	Implementing networking in the kernel
	Network file systems

