
cs 140 project 1:
threads

9 January 2015



git

The basics:

git clone

git add

git commit

git branch

git merge

git stash

git pull

git push

git rebase



git

Some guidelines & ideas:

I Write helpful commit and stash messages. They exist
only for you and your team!

I Host your code on Github or Bitbucket as a “master”
copy. Use a private repository!

I Create per-assignment branches. Work on topic
branches; merge into assignment branches and delete
once the topic is “done”.

I Stay synchronized with your team: fetch and push often.

I Commit often. Use git bisect to find regression bugs.

Read or skim Pro Git1 for fuller advice.

1http://git-scm.com/book/en/v2

http://git-scm.com/book/en/v2


git

Some guidelines & ideas:

I Write helpful commit and stash messages. They exist
only for you and your team!

I Host your code on Github or Bitbucket as a “master”
copy. Use a private repository!

I Create per-assignment branches. Work on topic
branches; merge into assignment branches and delete
once the topic is “done”.

I Stay synchronized with your team: fetch and push often.

I Commit often. Use git bisect to find regression bugs.

Read or skim Pro Git1 for fuller advice.

1http://git-scm.com/book/en/v2

http://git-scm.com/book/en/v2


git

Some guidelines & ideas:

I Write helpful commit and stash messages. They exist
only for you and your team!

I Host your code on Github or Bitbucket as a “master”
copy. Use a private repository!

I Create per-assignment branches. Work on topic
branches; merge into assignment branches and delete
once the topic is “done”.

I Stay synchronized with your team: fetch and push often.

I Commit often. Use git bisect to find regression bugs.

Read or skim Pro Git1 for fuller advice.

1http://git-scm.com/book/en/v2

http://git-scm.com/book/en/v2


git

Some guidelines & ideas:

I Write helpful commit and stash messages. They exist
only for you and your team!

I Host your code on Github or Bitbucket as a “master”
copy. Use a private repository!

I Create per-assignment branches. Work on topic
branches; merge into assignment branches and delete
once the topic is “done”.

I Stay synchronized with your team: fetch and push often.

I Commit often. Use git bisect to find regression bugs.

Read or skim Pro Git1 for fuller advice.

1http://git-scm.com/book/en/v2

http://git-scm.com/book/en/v2


git

Some guidelines & ideas:

I Write helpful commit and stash messages. They exist
only for you and your team!

I Host your code on Github or Bitbucket as a “master”
copy. Use a private repository!

I Create per-assignment branches. Work on topic
branches; merge into assignment branches and delete
once the topic is “done”.

I Stay synchronized with your team: fetch and push often.

I Commit often. Use git bisect to find regression bugs.

Read or skim Pro Git1 for fuller advice.

1http://git-scm.com/book/en/v2

http://git-scm.com/book/en/v2


Synchronization

Serializing access to shared resource.

Disabling interrupts Turns off thread preëmption, so only one
thread can run. Undesirable unless absolutely
necessary.

Synchronization primitives In threads/synch.h

I Semaphores
I Locks
I Condition variables



Synchronization

Serializing access to shared resource.

Disabling interrupts Turns off thread preëmption, so only one
thread can run. Undesirable unless absolutely
necessary.

Synchronization primitives In threads/synch.h

I Semaphores
I Locks
I Condition variables



Synchronization

Serializing access to shared resource.

Disabling interrupts Turns off thread preëmption, so only one
thread can run. Undesirable unless absolutely
necessary.

Synchronization primitives In threads/synch.h

I Semaphores
I Locks
I Condition variables



Thread basics

struct thread
{
tid_t tid;
enum thread_status status;
char name[16];
uint8_t *stack;
int priority;
struct list_elem allelem;
struct list_elem elem;

#ifdef USERPROG
uint32_t *pagedir;

#endif

unsigned magic;
};



Thread basics

New

Ready

RunningWaiting Terminated

Exit

Admitted

Scheduled

Interrupted

IO or wait

E
ve
nt
Co

m
ple

tion



Alarm clock

Implementing void timer_sleep (int64_t ticks)

I Remove busy waiting implementation.

I What to do with a struct thread if you don’t want to
touch it again until after time passes?



Alarm clock

Implementing void timer_sleep (int64_t ticks)

I Remove busy waiting implementation.

I What to do with a struct thread if you don’t want to
touch it again until after time passes?



Alarm clock

Implementing void timer_sleep (int64_t ticks)

I Remove busy waiting implementation.

I What to do with a struct thread if you don’t want to
touch it again until after time passes?



Priority scheduling

Replace round-robin scheduler with a priority-based scheduler.
Key points:

I Most code will be in thread.[hc].

I When scheduling, pick the highest priority thread.

I When lowering thread’s priority, it should yield if another
thread has higher priority.

I When a higher priority thread wakes up from alarm clock
or a lock, it should preëmpt the current thread.



Priority scheduling

Replace round-robin scheduler with a priority-based scheduler.
Key points:

I Most code will be in thread.[hc].

I When scheduling, pick the highest priority thread.

I When lowering thread’s priority, it should yield if another
thread has higher priority.

I When a higher priority thread wakes up from alarm clock
or a lock, it should preëmpt the current thread.



Priority scheduling

Replace round-robin scheduler with a priority-based scheduler.
Key points:

I Most code will be in thread.[hc].

I When scheduling, pick the highest priority thread.

I When lowering thread’s priority, it should yield if another
thread has higher priority.

I When a higher priority thread wakes up from alarm clock
or a lock, it should preëmpt the current thread.



Priority scheduling

Replace round-robin scheduler with a priority-based scheduler.
Key points:

I Most code will be in thread.[hc].

I When scheduling, pick the highest priority thread.

I When lowering thread’s priority, it should yield if another
thread has higher priority.

I When a higher priority thread wakes up from alarm clock
or a lock, it should preëmpt the current thread.



Priority scheduling

Replace round-robin scheduler with a priority-based scheduler.
Key points:

I Most code will be in thread.[hc].

I When scheduling, pick the highest priority thread.

I When lowering thread’s priority, it should yield if another
thread has higher priority.

I When a higher priority thread wakes up from alarm clock
or a lock, it should preëmpt the current thread.



Priority inversion

If the lowest priority thread holds a lock that a high priority
thread wants, the high priority thread blocks until every other
thread finishes running.
Solution: priority donation. Things to consider:

I To how many threads can a donor donate its priority?
From how many threads may a donee receive priority?

I What happens when a priority recipient donates to
another thread?



Advanced scheduler

I BSD scheduler computes thread CPU usage statistics to
calculate thread priorities.

I thread_set_priority ignored in BSD scheduler mode.

I No priority donation.

I Will require you to write a simple fixed-point arithmetic
library.

I Global Boolean variable thread_mlfqs indicates which
mode to use.

Fullest information available in Pintos handbook.2

2http://www.scs.stanford.edu/15wi-cs140/pintos/pintos_7.html

http://www.scs.stanford.edu/15wi-cs140/pintos/pintos_7.html


Advanced scheduler

I BSD scheduler computes thread CPU usage statistics to
calculate thread priorities.

I thread_set_priority ignored in BSD scheduler mode.

I No priority donation.

I Will require you to write a simple fixed-point arithmetic
library.

I Global Boolean variable thread_mlfqs indicates which
mode to use.

Fullest information available in Pintos handbook.2

2http://www.scs.stanford.edu/15wi-cs140/pintos/pintos_7.html

http://www.scs.stanford.edu/15wi-cs140/pintos/pintos_7.html


Advanced scheduler

I BSD scheduler computes thread CPU usage statistics to
calculate thread priorities.

I thread_set_priority ignored in BSD scheduler mode.

I No priority donation.

I Will require you to write a simple fixed-point arithmetic
library.

I Global Boolean variable thread_mlfqs indicates which
mode to use.

Fullest information available in Pintos handbook.2

2http://www.scs.stanford.edu/15wi-cs140/pintos/pintos_7.html

http://www.scs.stanford.edu/15wi-cs140/pintos/pintos_7.html


Advanced scheduler

I BSD scheduler computes thread CPU usage statistics to
calculate thread priorities.

I thread_set_priority ignored in BSD scheduler mode.

I No priority donation.

I Will require you to write a simple fixed-point arithmetic
library.

I Global Boolean variable thread_mlfqs indicates which
mode to use.

Fullest information available in Pintos handbook.2

2http://www.scs.stanford.edu/15wi-cs140/pintos/pintos_7.html

http://www.scs.stanford.edu/15wi-cs140/pintos/pintos_7.html


Advanced scheduler

I BSD scheduler computes thread CPU usage statistics to
calculate thread priorities.

I thread_set_priority ignored in BSD scheduler mode.

I No priority donation.

I Will require you to write a simple fixed-point arithmetic
library.

I Global Boolean variable thread_mlfqs indicates which
mode to use.

Fullest information available in Pintos handbook.2

2http://www.scs.stanford.edu/15wi-cs140/pintos/pintos_7.html

http://www.scs.stanford.edu/15wi-cs140/pintos/pintos_7.html


Advanced scheduler

I BSD scheduler computes thread CPU usage statistics to
calculate thread priorities.

I thread_set_priority ignored in BSD scheduler mode.

I No priority donation.

I Will require you to write a simple fixed-point arithmetic
library.

I Global Boolean variable thread_mlfqs indicates which
mode to use.

Fullest information available in Pintos handbook.2

2http://www.scs.stanford.edu/15wi-cs140/pintos/pintos_7.html

http://www.scs.stanford.edu/15wi-cs140/pintos/pintos_7.html


Miscellaneous

I Match existing code style; don’t stick out.

I Debug with gdb, not with printf.

I bochs is reproducible. Use the “jitter” flag -j to generate
alternate reproducible runs.

I Read the design document template first and work on it
as you write code and debug.

I Design your solution, data structures, and
synchronization scheme before writing code.



Miscellaneous

I Match existing code style; don’t stick out.

I Debug with gdb, not with printf.

I bochs is reproducible. Use the “jitter” flag -j to generate
alternate reproducible runs.

I Read the design document template first and work on it
as you write code and debug.

I Design your solution, data structures, and
synchronization scheme before writing code.



Miscellaneous

I Match existing code style; don’t stick out.

I Debug with gdb, not with printf.

I bochs is reproducible. Use the “jitter” flag -j to generate
alternate reproducible runs.

I Read the design document template first and work on it
as you write code and debug.

I Design your solution, data structures, and
synchronization scheme before writing code.



Miscellaneous

I Match existing code style; don’t stick out.

I Debug with gdb, not with printf.

I bochs is reproducible. Use the “jitter” flag -j to generate
alternate reproducible runs.

I Read the design document template first and work on it
as you write code and debug.

I Design your solution, data structures, and
synchronization scheme before writing code.



Miscellaneous

I Match existing code style; don’t stick out.

I Debug with gdb, not with printf.

I bochs is reproducible. Use the “jitter” flag -j to generate
alternate reproducible runs.

I Read the design document template first and work on it
as you write code and debug.

I Design your solution, data structures, and
synchronization scheme before writing code.



Miscellaneous

I Match existing code style; don’t stick out.

I Debug with gdb, not with printf.

I bochs is reproducible. Use the “jitter” flag -j to generate
alternate reproducible runs.

I Read the design document template first and work on it
as you write code and debug.

I Design your solution, data structures, and
synchronization scheme before writing code.


	Git
	Synchronization
	Threads
	Lab 1
	Alarm clock
	Priority scheduling
	BSD scheduler

	Miscellaneous

