
CS140 Project 2: User Programs

2

• Argument passing
• Safe Memory Access
• System calls
• Process exit message
• File systems
• Denying writes to executables
• Utilities

Project Requirements

2

• Allow user programs to run on top of OS
• Restrictions:

• One thread per process (no multithreaded user
program)

• No malloc
• Restricted filesystem

• Can have multiple processes at the same time

Project Requirements

2

• threads/init.c

• userprog/process.c: process_execute()
• creates thread running start_process()
• thread loads executable file
• sets up user virtual memory (stack, data, code)
• starts executing user process (start address)

User Program Entry Point

run_actions run_task process_waitprocess_execute

10

User vs Kernel Memory Space

12

Memory Layout

6

• process_execute should allow multiple arguments to be
passed in

• use strtok_r in lib/string.c to break commandline into args
• Pus the arguments onto the user stack
• Follow calling convention

Push arguments onto user stack (not the kernel stack)

Argument Passing

Argument	Tokens
Null	Sentinel

Argument	Token’s	addresses
argv
argc

Return	Address

Calling Convention

esp

Program Startup Example

/bin/ls -l foo bar

13

• The kernel may access memory through user-provided
pointers: buffers, strings, pointers

• Dangers
• Null pointers
• Pointers to unmapped virtual addresses or kernel

addresses
• First validate address
• If invalid, then kill the process (free its resources, e.g.

locks, memory)

Safe Memory Access

14

• Approach 1: Verify every user pointer before dereferencing
(recommended)
• Ensure it is in user’s address space (below

PHYS_BASE)
• Ensure mapped (userprog/pagedir.c:pagedir_get_page)

• Approach2: Modify page fault handler in
userprog/exception.c
• Ensure pointer (or buffer) is below PHYS_BASE and

then dereference. Invalid pointers will trigger page faults

Safe Memory Access cont.

9

• Allows user programs to invoke kernel functions
• Has a syscall number and possibly argument(s)
• To user programs, like normal function calls (args in stack)
• Execute internal interrupt (int 0x30)

• userprog/syscall.c: syscall_handler(struct intr_frame *f)
• Stack pointer (f->esp) at syscall number
• Return value just like functions (f->eax). This is how you

can communicate the
• value back to user space.

System Calls

11

• userprog/syscall.c: syscall_handler()
• Read syscall number at stack pointer
• Dispatch a particular function to handle syscall
• Read (validate!) arguments (above the stack pointer)

• Validate pointers and buffers!
• syscall numbers defined in lib/syscall-nr.h

System Calls

19

create
remove
open
filesize
read
write
seek
tell
close

halt
exec
exit
wait

System Calls to Implement

16

• pid_t exec(const char *cmd line)
• Similar to UNIX fork() + execve()
• Creates a child process
• Must not return until new process has been created

(or creation failed)
• Creation is successful if child has successfully loaded

its executable and there is a thread ready to run.

System Calls: exec

17

• int wait (pid_t pid)
• Waits for a child process pid, retrieves child’s exit status
• Parent must block until child process pid exits (or

is terminated by the kernel)
• Returns exit status of the child
• If terminated by the kernel, return -1
• Must work if child has ALREADY exited
• Must fail if it has already been called on child before
• (most time consuming system call to implement!)

System Calls: wait

18

• void exit (int status)
• Exit with status and free resources
• You must print process termination message
• Parent must be able to retrieve status via wait

System Calls: exit

22

• Simple filesys impl is provided: filesys.h, file.h
• No need to modify it, but familiarize yourself
• Not thread-safe! Use a coarse lock to protect it
• Syscalls take file descriptors as args

• Pintos represents files with struct file *
• You must design the mapping

• Special cases: read from keyboard and writing to console
• write(STDOUT_FILENO, ...) use putbuf or putchar
• read(STDIN_FILENO, ...) use input_getc

Pintos File System

21

• Executables are files like any other.
• Pintos should not allow code that is currently running to be

modified.
• Use file_deny_write() to prevent writes to open file
• Closing file re-enables writes
• Keep executable open as long as the process is

running

Denying Writes to Executables

24

• You can use GDB to debug user code
• Start GDB as usual, then do:

• (gdb) loadusersymbols <userprog.o>
• User symbols will not override kernel symbol. Work around

duplicate symbols by inverting order
• Run gdb with: pintos-gdb <userprog.o>
• then load the kernel symbols: (gdb) loadusersymbols

kernel.o

Using GDB for User Programs

25

• You may build on top of Project 1 or start with a fresh copy
of Pintos.

• No code from Project 1 will be required.
• Although some of your timer implementation could be

useful for Projects 3 and 4
• Not necessary however

Getting Started

26

• Create a simulated disk called “filesys.dsk” with a 2MB
Pintos file system partition
• pintos-mkdisk filesys.dsk --filesys-size=2
• Then format pintos -f –q

• Copy simple programs to your simulated file system
• pintos -p ../../examples/echo -a echo -- -q

• Run
• pintos -q run ‘echo x’

Getting Started: Setting up the file system

27

• Argument passing:
• Change *esp = PHYS_BASE; to *esp = PHYS_BASE - 12;

• Allows running programs with no arguments
• User memory access

• All system calls need to read user memory
• System call infrastructure

• Read the system call number from the user stack and
dispatch to a handler

• Exit system call
• Write system call for “fd 1” (system console)
• Temporarily change process_wait into an infinite loop so that

Pintos doesn’t immediately power off

Getting Started: Implement this first!

PHYS_BASE

28

argv (0)
PHYS_BASE - 4

argc (0)
PHYS_BASE - 8

return address
PHYS_BASE - 12

*esp = PHYS_BASE - 12;

