CS140 Project 3:
Virtual Memory

TA: Diveesh Singh

High level Project requirements

High level goal: Remove current limitation that the number and size
of programs running in Pintos is limited by main memory size.

High level components:

HEINERE]E

Supplemental page table

Swap table

Modifying the page fault handler
Stack growth

Mmap/Munmap system calls

Physical memory (Pintos)

e Physical memory is divided up into physical pages or frames
e Divided up into two pools: user pool and kernel pool

e Every kernel virtual address directly maps to a physical address
o Translated by PHYS_BASE
e Every user virtual address has a corresponding kernel virtual

address

o User virtual address points to kernel virtual address which points to physical

address

Physical memory (Pintos)

PHYS_BASE + 64“1'3 e

User Pool

Kernel Pool

PHYS_BASE
Stack

G777

mmap()ed file

VA S S SIS IS4

Uninitialized Data

Initialized Data

Virtual Memory

k A physical page

(aka a frame)

0
Physical Memory

There are two virtual
addresses each user

page!

Terminology review

e Page: acontiguous region of virtual memory

e Frame: a contiguous region of physical memory

e Page Table: data structure to translate a virtual address to a
physical address (i.e a page to a frame)

e Eviction: removing a page from its frame and potentially writing
it to swap/FS

e Swap slot: where evicted pages are written to in the swap

partition

What exactly are you doing?

e You have limited physical memory, many processes want to use
physical memory

e Physical memory isn’t big enough to house every process’s pages
all the time

e Ifapageisn’'t needed in physical memory, gets “paged out”

o OSSlang: “paged out” = contents of a page in physical memory getting
written out to the swap table or file system (more details later)

e When a process needs a page and it’s not in physical memory, it
has to get “paged in” (usually “paging out” another page)

You will need to design...

e Supplemental Page Table
o Per-process data structure that keeps track of supplemental data for each
page, such as location of data (frame/disk/swap), pointer to corresponding
kernel virtual address, active vs inactive, etc.
e Frame Table
o Global data structure that keeps track of physical frames that are
allocated/free.
e Swap Table
o Keeps track of swap slots.
e File Mapping Table

o Table to keep track of which memory-mapped files are mapped to which
pages.

Lots of options for data structures!

Arrays
o Simplest approach
o Sparsely populated array wastes memory
e Lists
o Also pretty simple
o Traversing a list can take lots of time
Bitmaps
o Array of bits, each of which can be true or false
o Usedtotrack usage in a set of identical resources
o Supported by Pintos (check out lib/kernel/bitmap.c and lib/kernel/bitmap.h)
e Hash Tables
o Also supported by Pintos (check out lib/kernel/hash.c and lib/kernel/hash.h)

Frame table: vm/frame. [ch]

e Frame =one chunk of physical memory
e Data structure that keeps track of which user page occupies
which slot of physical memory (frame)
o Which thread owns which slot/frame?

e Obtain pointers toframes viapalloc _get page(PAL_USER)

o returns a kernel vaddr, directly corresponding a slot of physical memory
e Think of frames like actual picture frames, user pages as pictures

Frame table: vm/frame. [ch]

e Frame = one chunk of physical memory
e Data structure that keeps track of which user page occupies
which slot of physical memory (frame)
o Which thread owns which slot/frame?
e Obtain pointers toframes viapalloc _get page(PAL_USER)

o returns a kernel vaddr, directly corresponding a slot of physical memory
e Think of frames like actual picture frames, user pages as pictures

Frame table: vm/frame. [ch]

e Frame = one chunk of physical memory
e Datastructure that keeps track of which user page occupies
which slot of physical memory (frame)
o Which thread owns which slot/frame?

e Obtain pointers toframes viapalloc _get page(PAL_USER)

o returns a kernel vaddr, directly corresponding a slot of physical memory
Think of frames like actual picture frames, user pages as pictures

Frame table: vm/frame. [ch]

e Frame = one chunk of physical memory
e Data structure that keeps track of which user page occupies
which slot of physical memory (frame)
o Which thread owns which slot/frame?

e Obtain pointers toframesviapalloc _get page(PAL_USER)

o returns a kernel vaddr, directly corresponding a slot of physical memory
e Think of frames like actual picture frames, user pages as pictures

Frame table: vm/frame. [ch]

e Frame = one chunk of physical memory
e Datastructure that keeps track of which user page occupies
which slot of physical memory (frame)
o Which thread owns which slot/frame?

e Obtain pointers toframes viapalloc _get page(PAL_USER)

o returns a kernel vaddr, directly corresponding a slot of physical memory
Think of frames like actual picture frames, user pages as pictures

Frame table: Eviction

e |[fthere’s afree frame, simply return it
e |n most cases, there’s no free frame i.e. you must evict another
page from a frame
e Evictionis done lazily i.e whenever you need a frame, evict page
e Steps
o Use algorithm to choose a frame to evict, just make sure it

is at least as good as the “clock” algorithm
m Accessed and dirty bits will be extremely useful here!

o Remove references to the frame from any page table that
refers to it (supplemental page table AND pagedir)
o If necessary, write the page to the file system or to swap.

Accessed and dirty bits

e Onanyread/write to a page, the hardware sets accessed bit to 1

e On any write, hardware sets dirty bitto 1

e OS (i.e the code you are writing) can set these back to O (likely
during your eviction code)

e Two virtual addresses canrefer to the same frame => CPU only

updates the accessed/dirty bits of the page used to access
o l.eifyouaccess a page in physical memory via the user vaddr, it won’t update
the bits for the corresponding kernel vaddr and vice versa

Frame table: General Tips

e Synchronization!
o Multiple threads will be accessing your frame table and modifying frames
while trying to page in/page out
o Eviction algorithm will require you to synchronize
e Frame table manages frames for user pages ONLY (PAL_USER)

o Another way to think about it:
m Frametable acts as a layer of abstraction over palloc_get page ()
o Modify callstopalloc_get page(PAL_USER) in process.c

e threads/init.c: good place to call your frame init function
e You'reallowedtouse calloc/malloc to create your structs
that store info about each frame
O JUST MAKE SURE TO CHECK THE RETURN VALUE

Supplemental page table:
vim/page.[ch]

Not every page for a user process will be in physical memory all
the time (could be in swap or FS)

Existing page directory only keeps info regarding pages that are
in physical memory (used by the hardware)

One supplemental page table per process that keeps track of its

user pages
o Most important is to keep track of page’s current location (memory, swap, FS)
o Will need to add other fields

Swap table: vm/swap.[ch]

e Swap: Special disk partition used for managing evicted pages

e Swap table should allow picking an unused swap slot for evicting
and a page from its frame to the swap partition

e Keep track of which swap slots are occupied (data structure!)

e Make sure accesses to the swap partition are synchronized

e Lookintodevices/block.h to figure out how to get access to
swap partition

111 /% Page fault handler. This is a skeleton that must be filled in

112 to implement virtual memory. Some solutions to project 2 may

113 also require modifying this code. except ion .C
114

115 At entry, the address that faulted is in CR2 (Control Register

116 2) and information about the fault, formatted as described in

117 the PF_* macros in exception.h, is in F's error_code member. The

118 example code here shows how to parse that information. You

119 can find more information about both of these in the

120 description of "Interrupt 14—Page Fault Exception (#PF)" in

121 [TIA32-v3a] section 5.15 "Exception and Interrupt Reference". */

122 static void
123 page_fault (struct intr_frame *f)
{

124

125 T bool not_present; -/* True: not-present page, false: writing r/o page. */
126 - -bool write; - - - -/% True: access was write, false: access was read. %/
127 bool user; -+ /% True: access by user, false: access by kernel. x/
128 void xfault_addr; /* Fault address. */

129

130 /* Obtain faulting address, the virtual address that was

131 accessed to cause the fault. It may point to code or to

132 data. It is not necessarily the address of the instruction

133 that caused the fault (that's f—>eip).

134 See [IA32-v2a] "MOV-—Move to/from Control Registers" and

135 [IA32-v3al 5.15 "Interrupt 14—Page Fault Exception

136 (#PF)". */

137 asm ("movl %%cr2, %" : "=r" (fault_addr));

138

139 /% Turn interrupts back on (they were only off so that we could

140 be assured of reading CR2 before it changed). %/

141 intr_enable ();

142

143 /* Count page faults. */

144 page_fault_cnt++;

145

146 /* Determine cause. */

147 not_present = (f->error_code & PF_P) == 0;
148 write = (f—>error_code & PF_W) != 0;

149 user = (f->error_code & PF_U) != 0;

150

151 /* To implement virtual memory, delete the rest of the function
152 body, and replace it with code that brings in the page to
153 which fault_addr refers. %/

154 printf ("Page fault at %p: %s error %s page in %s context.\n",
155 - fault_addr,

156 - ‘not_present ? "not present" : "rights violation",

157 write ? "writing" : "reading",

158 - user 7 "user" : "kernel");

159 kill (f);

160

161

162

111
112
113
114
JhLs
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

/* Page fault handler. This is a skeleton that must be filled in
to implement virtual memory. Some solutions to project 2 may
also require modifying this code.

At entry, the address that faulted is in CR2 (Control Register

2) and information about the fault, formatted as described in

the PF_* macros in exception.h, is in F's error_code member. The

example code here shows how to parse that information. You

can find more information about both of these in the

description of "Interrupt 14—Page Fault Exception (#PF)" in

[IA32-v3a] section 5.15 "Exception and Interrupt Reference". %/
static void
page_fault (struct intr_frame *f}
{
= bool not_present; - /* True: not-present page, false: writing r/o page. */
- -bool write; - - - - .. /% True: access was write, false: access was read. %/

bool user; -+ /% True: access by user, false: access by kernel. x/

void xfault_addr; /* Fault address. */

/* Obtain faulting address, the virtual address that was

accessed to cause the fault. It may point to code or to
data. It is not necessarily the address of the instruction
that caused the fault (that's f—>eip).
See [IA32-v2a] "MOV-—Move to/from Control Registers" and
[IA32-v3al 5.15 "Interrupt 14—Page Fault Exception
(#PF)". */

asm ("movl %%cr2, %" : "=r" (fault_addr));

/% Turn interrupts back on (they were only off so that we could
be assured of reading CR2 before it changed). */
intr_enable ();

/* Count page faults. */
page_fault_cnt++;

/* Determine cause. */

not_present = (f->error_code & PF_P) == 0;
write = (f->error_code & PF_W) !'= 0;

user = (f->error_code & PF_U) != 0;

/* To implement virtual memory, delete the rest of the function
body, and replace it with code that brings in the page to
which fault_addr refers. %/

printf ("Page fault at %p: %s error %s page in %s context.\n",

fault_addr,
‘not_present ? "not present" : "rights violation",
‘write ? "writing" : "reading",
. user: 7 "user" - : "kernet"}y
kill (f);

111
112
113
114
s
116
il
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

/* Page fault handler. This is a skeleton that must be filled in

to implement virtual memory. Some solutions to project 2 may
also require modifying this code.

At entry, the address that faulted is in CR2 (Control Register

2) and information about the fault, formatted as described in
the PF_x macros in exception.h, is in F's error_code member. The
example code here shows how to parse that information. You

can find more information about both of these in the

description of "Interrupt 14—Page Fault Exception (#PF)" in
[IA32-v3a] section 5.15 "Exception and Interrupt Reference". ¥/

static void
page_fault (struct intr_frame *f)
{

bool not_present; /% True: not-present page, false: writing r/o page. */

- -bool write; - - - /% True: access was write, false: access was read. %/
- bool user; /% True: access by user, false: access by kernel. */

void xfault_addr; /* Fault address. */

/* Obtain faulting address, the virtual address that was
accessed to cause the fault. It may point to code or to
data. It is not necessarily the address of the instruction
that caused the fault (that's f—>eip).

See [IA32-v2a] "MOV—Move to/from Control Registers" and
[IA32-v3a] 5.15 "Interrupt 14—Page Fault Exception
(#PF)". */

~asm ("movl %%cr2, %0" : "=r" (fault_addr));

/% Turn interrupts back on (they were only off so that we could

- /x Determine cause. */
- not_present = (f->error_code & PF_P) == 0;

- printf ("Page fault at %p: %s error %s page in %s context.\n",

I~

- user = (f->error code & PF_U) != 0;

be assured of reading CR2 before it changed). */
intr_enable ();

/* Count page faults. */
page_fault_cnt++;

write = (f->error_code & PF_W) !'= 0;

- /* To implement virtual memory, delete the rest of the function

body, and replace it with code that brings in the page to
which fault_addr refers. %/

fault_addr,
‘‘‘‘‘‘ not_present ? "not present" : "rights violation"
~write ? "writing" : "reading",
ser ? "user" : "kerne

You'll want to check the faulting address to
see if the page has can be paged in, and
return if page in is successful

Prior to this project, all
page faults would end
like this

Page fault handler: exception.c

Verify whether the read/write access was legal

If legal, and the page has been evicted, load back in from FS or
swap

o Useyour supplemental page table to figure out where the page is
Obtain a frame to store the page

Fetch data into the frame via FS or swap

Update your supplemental page table accordingly

Make sure that the original pagedir implementation is aware of
the new page in physical memory

O See function process_install page() OF pagedir_set page()

Page fault handler: General tips

e Canstill make callsto thread _current() frominside the page
fault handler

e After paginginthe appropriate page, call return to continue
process execution

e Page faults also occur if a process tries to write to a read-only
page (even if it’s in physical memory)

o Sonot EVERY page fault is going to end up paging something into physical
memory

Stack growth

e Your implementation currently pre-allocates space for a user
process’s stack (remember Project 2 process.c)

e Now need todynamically allocate more pages for a process
stack as needed

e Valid stack accesses may cause the following page faults
o PUSH: 4 bytes below ESP
o PUSHA: 32 bytes below ESP

e Allocate new page in page fault handler if valid stack access
e Read spec carefully for details of how to get access to the
current esp at the time of the page fault

Memory mapped files

mmap() and munmap()

Processes may map files into their address space
Memory mapped pages must be loaded from the disk
lazily

mmap() will return error status if
o Thesize of thefileis O bytes
o File will overlap with another already mapped page
o addr isnot page aligned

When you evict an mmap’d page, write changes to it
back to the original file
All mappings are implicitly unmapped on process exit

. mmapped

uninitialized data (bss)

initialized data

static
read-only data

code (text)

Address space divided into “segments”
Text, read-only data, data, bss, heap (dynamic data), and stack
Recall gec told assembler in which segments to put what contents

Where to page out/evict to?

e There are different “types” of pages that can be paged out
e User stack pages => page out to swap

e File pages (i.e mmap’d files) => page out to file system

o Ifit'sdirty, write changes out to the corresponding file

o Ifit’s not dirty, simply deallocate because you can reload from file system
e What about the loaded executable?

o Ifit'sdirty, you must page out to swap (treat it like another user stack page)
o Ifit's not dirty, simply deallocate because you can reload from file system
(treat it like any other clean file page)

Suggested implementation order

e Fixany project 2 errors

e Frame table:

o Change process.c to use frame table allocator instead of directly calling
palloc_get page (PAL_USER)
o Kernel should still pass Project 2 tests

e Supplemental page table

e Stack growth, memory mapped files (mmap), and page
reclamation on process exit

e Eviction/pagingin and out

\ General tips

e SpendaLOT of time designing your locking scheme
o Ensure that locks are ALWAYS acquired and released in the
same order
o Page fault handler can be fired at ANY point
e START EARLY!!!
e Thisis (in most people’s opinion) the most time-consuming
project of the class

