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Main Tasks

• Buffer Cache.

• Indexed and Extensible Files.

• De-Coarsening File System Synchronization.

• New syscalls.
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Getting Started

• You may choose to base this project off of either project 2 or project

3.

• If you base off of project 3, you can opt for some extra credit by

enabling vm testing in filesys/Make.vars:

#Uncomment the lines below to enable VM.

#kernel.bin: DEFINES += -DVM

#KERNEL_SUBDIRS += vm

#TEST_SUBDIRS += tests/vm

#GRADING_FILE = $(SRCDIR)/tests/filesys/Grading.with-vm

To build off project 3, but without enabling extra-credit grading, just

uncomment the first two lines.
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Disk Abstraction

• Can think of disk as a sequence of numbered sectors, each of which

is BLOCK_SECTOR_SIZE bytes long.

• Read/write individual sectors via block_read and block_write in

devices/block.h.

Sector 0 Sector 1 Sector 2 Sector 3 Sector 4 Sector 5
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Buffer Cache



Buffer Cache

Current Setup

file_write calls block_write (by way of inode_write_at).

Buffer Cache Behavior

file_write calls a cached_block_write (or equivalent design).

Should decouple timings of file system operations from disk operations as

much as possible. Hence the name “buffer”.
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Buffer Cache Diagram

Cache ←→ Disk

Cached Sector 3

Cached Sector 1

Cached Sector 4

Evictions →
Fetch uncached sectors ←
Flush cache →

Disk Sector 0

Disk Sector 1

Disk Sector 2

Disk Sector 3

Disk Sector 4

Disk Sector 5

l

File System Operations

file_write,

file_read
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Buffer Cache Requirements

• Write-behind: don’t immediately write dirty cached sectors to disk

(remember we want to decouple disk operations from file system

operations).

• Write to disk on cache-eviction.

• Periodically flush cache (e.g. write all dirty cached sectors to disk

every 30 seconds - perhaps a good time for a new kernel thread and

timer_sleep!).

• Read-ahead: when you read sector N into the cache, also read in

sector N + 1.

• Return control to calling thread as soon as sector N has been read in

- read in sector N + 1 asynchronously (need a different thread!)

• Eviction algorithm should approximate LRU at least as well as the

clock algorithm.
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Indexed and Extensible Files



Indexed and Extensible Files

• Indexed: avoid fragmentation by allowing file data to be scattered

over the disk rather than limited to a contiguous range.

• Extensible: allow file sizes to change after file creation.
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Indexed and Extensible Files: Inodes

• An inode records which sectors on disk store the data for a file.

• Inodes are stored on disk themselves, so how do we find them?

• The inode for the root directory file is in a hard-coded sector.

• A directory is just a special file whose contents are an array of

filename-to-inode location mappings.

/* A single directory entry. */

struct dir_entry

{

block_sector_t inode_sector; /* Sector number of inode.*/

char name[NAME_MAX + 1]; /* Null terminated file name.*/

...

};
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Inodes

Current Inode Implementation

File data uses a contiguous block of sectors:

/* On-disk inode. */

struct inode_disk

{

block_sector_t start; /* First data sector. */

off_t length; /* File size in bytes. */

unsigned magic; /* Magic number. */

uint32_t unused[125]; /* Not used. */

};
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Inodes

Inode Indirect Block Doubly Indirect Block

Metadata (e.g. file size)

Data Sector 1

. . .

Data Sector N

Indirect Sector

Doubly Indirect Sector

Triply Indirect Sector

Data Sector N + 1

Data Sector N + 2

. . .

. . .

. . .

. . .

Data Sector N + M

Indirect Sector

Indirect Sector

. . .

. . .

. . .

. . .

Indirect Sector

• Keep sizeof(inode_disk) = BLOCK_SECTOR_SIZE,

sizeof(indirect_block) = BLOCK_SECTOR_SIZE etc. This keeps

life simpler.

• N will depend how you structure your inodes. M > N is just the

number of sector numbers you can fit in a sector.
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Example Inode Block

Inode [Sector 10] [Sector 23] [Sector 33] [Sector 5]

Metadata

Data Sector [4]

Data Sector [12]

. . .

Indirect [23]

Doubly Indirect [33]

Triply Indirect [87]

Data [66]

Data [123]

. . .

. . .

. . .

. . .

Data [17]

Indirect [5]

Indirect [NULL]

. . .

. . .

. . .

. . .

Indirect [34]

Data [40]

Data [NULL]

. . .

. . .

. . .

. . .

Data [91]

• File data can be found on sectors 4, 12, 66, 40, etc.

• NULL indicates that no data has been written to that part of the file.

• Reads from a NULL part of the file should return all 0s.

• You may choose to actually put zeroed sectors in on disk at those

locations or not as you like.
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Example: How big of a file can I make?

• Suppose your inodes have N = 10 direct blocks, 1 indirect block and

1 doubly indirect block. Suppose indirect blocks point to M = 12

sectors. Suppose BLOCK_SECTOR_SIZE=512. Then the maximum

file size is:

(10 + 12 + 12× 12)× 512 bytes = 84992 bytes
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Other Structures

• You need some way to allocate new sectors to a file as it grows.

• Starter code keeps bitmap of free sectors (similar to the bitmap of

free pages in the VM). This bitmap is kept at a hard-coded sector.

See filesys/free-map.c.
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inode_disk vs inode

/* On-disk inode. */

struct inode_disk {

block_sector_t start; /* First data sector. */

off_t length; /* File size in bytes. */

unsigned magic; /* Magic number. */

uint32_t unused[125]; /* Not used. */

};

/* In-memory inode: keep track of transient state, and sector no.*/

struct inode {

struct list_elem elem; /* Element in inode list. */

block_sector_t sector; /* Sector number of disk location. */

int open_cnt; /* Number of openers. */

bool removed; /* True if deleted, false otherwise. */

int deny_write_cnt; /* 0: writes ok, >0: deny writes. */

struct inode_disk data;/* Inode content.*/

/*^^ YOU SHOULD REMOVE THIS FIELD; RELY ON CACHE*/
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inode_disk vs inode

• inode_disk is the structure that dictates how inodes actually look

on disk.

• inode is an in-memory structure that records where to find an inode

on disk, as well as temporary information about the corresponding

file.

• The inode struct will vanish when the computer halts, but

inode_disk should still be safe on disk.
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Synchronization



Synchronization

• Currently you probably have a global “filesystem lock” that serializes

all file operations. Now it’s time to fix that.

• Operations on different sectors should not impede each other, just

like IO in your VM shouldn’t block unrelated VM operations.

• Process B should be able to write to sector 4 in the cache while

process A is reading sector 8 into the cache from disk.

• You’ll probably need some kind of fine-grained locking on your cache

structure.
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Synchronization

• You should allow writing or reading a file from multiple processes at

once.

• You don’t need to make any guarantees about what happens with

simultaneous writes/reads to the same part of a file - writes can

interleave, reads can see all or part or none of the writes

(synchronizing these accesses is the job of the user application).

• One exception: a write that extends the length of the file should be

atomic.

• Be careful: you still need to synchronize finding and evicting items in

the buffer cache.
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New Syscalls



Syscalls

• bool chdir(const char *dir)

• bool mkdir(const char *dir)

• bool readdir(int fd, char *name)

• bool isdir(int fd)

• bool inumber(int fd) (It’s fine to just have this function return

the sector number of the inode for the specified file).
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Current Directory, Subdirectories



Current Directory

• Each user process has an associated directory called the current (or

working) directory. You need to keep track of this somewhere.

• Child processes inherit the parent’s current directory at the time of

exec.

• Need to handle both relative and absolute paths in file names.

Absolute paths start with “/”. Relative paths don’t.

• A relative path should traverse the directory tree starting at the

current directory, while absolute paths start at the root directory.
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Subdirectories

• It is not allowed to use write to edit a directory.

• Although simultaneous writes to files may be interleaved, operations

on directories must be atomic (otherwise the file system would get

corrupted).

• Take care when designing your locking scheme around directories:

when deleting a subdirectory you may need to aquire two directory

locks at the same time. How can you avoid deadlock when doing

this?
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Things from lecture that you don’t need to do

• You don’t need to be robust to sudden power failures, so no need to

do soft updates or journaling (unless you really want to of course).

• You don’t need to implement hard or soft links, so no need for

reference counting.

• You don’t need to think about the type of disk when scheduling your

writes and reads (e.g. no need for CSCAN).
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Miscellany

• Although directories are files, you are only allowed to delete a

directory via the remove syscall if it is empty.

• It is highly recommended to implement the buffer cache first. When

done correctly it should be totally transparent to other code and still

allow you to pass tests from previous homeworks.

• File names and paths are currently capped at 14 characters. You

may allow longer file names if you wish. You MUST allow longer

paths.

• You must support file sizes such that you can fill up the entire disk

with just one file and its accompanying metadata. The disk is 8MB

in size.
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