
CS140 HW4: File Systems

March 2, 2018



Main Tasks

• Buffer Cache.

• Indexed and Extensible Files.

• De-Coarsening File System Synchronization.

• New syscalls.

1



Getting Started

• You may choose to base this project off of either project 2 or project

3.

• If you base off of project 3, you can opt for some extra credit by

enabling vm testing in filesys/Make.vars:

#Uncomment the lines below to enable VM.

#kernel.bin: DEFINES += -DVM

#KERNEL_SUBDIRS += vm

#TEST_SUBDIRS += tests/vm

#GRADING_FILE = $(SRCDIR)/tests/filesys/Grading.with-vm

To build off project 3, but without enabling extra-credit grading, just

uncomment the first two lines.

2



Disk Abstraction

• Can think of disk as a sequence of numbered sectors, each of which

is BLOCK_SECTOR_SIZE bytes long.

• Read/write individual sectors via block_read and block_write in

devices/block.h.

Sector 0 Sector 1 Sector 2 Sector 3 Sector 4 Sector 5

3



Buffer Cache



Buffer Cache

Current Setup

file_write calls block_write (by way of inode_write_at).

Buffer Cache Behavior

file_write calls a cached_block_write (or equivalent design).

Should decouple timings of file system operations from disk operations as

much as possible. Hence the name “buffer”.

4



Buffer Cache Diagram

Cache ←→ Disk

Cached Sector 3

Cached Sector 1

Cached Sector 4

Evictions →
Fetch uncached sectors ←
Flush cache →

Disk Sector 0

Disk Sector 1

Disk Sector 2

Disk Sector 3

Disk Sector 4

Disk Sector 5

l

File System Operations

file_write,

file_read

5



Buffer Cache Requirements

• Write-behind: don’t immediately write dirty cached sectors to disk

(remember we want to decouple disk operations from file system

operations).

• Write to disk on cache-eviction.

• Periodically flush cache (e.g. write all dirty cached sectors to disk

every 30 seconds - perhaps a good time for a new kernel thread and

timer_sleep!).

• Read-ahead: when you read sector N into the cache, also read in

sector N + 1.

• Return control to calling thread as soon as sector N has been read in

- read in sector N + 1 asynchronously (need a different thread!)

• Eviction algorithm should approximate LRU at least as well as the

clock algorithm.

6



Indexed and Extensible Files



Indexed and Extensible Files

• Indexed: avoid fragmentation by allowing file data to be scattered

over the disk rather than limited to a contiguous range.

• Extensible: allow file sizes to change after file creation.

7



Indexed and Extensible Files: Inodes

• An inode records which sectors on disk store the data for a file.

• Inodes are stored on disk themselves, so how do we find them?

• The inode for the root directory file is in a hard-coded sector.

• A directory is just a special file whose contents are an array of

filename-to-inode location mappings.

/* A single directory entry. */

struct dir_entry

{

block_sector_t inode_sector; /* Sector number of inode.*/

char name[NAME_MAX + 1]; /* Null terminated file name.*/

...

};

8



Inodes

Current Inode Implementation

File data uses a contiguous block of sectors:

/* On-disk inode. */

struct inode_disk

{

block_sector_t start; /* First data sector. */

off_t length; /* File size in bytes. */

unsigned magic; /* Magic number. */

uint32_t unused[125]; /* Not used. */

};

9



Inodes

Inode Indirect Block Doubly Indirect Block

Metadata (e.g. file size)

Data Sector 1

. . .

Data Sector N

Indirect Sector

Doubly Indirect Sector

Triply Indirect Sector

Data Sector N + 1

Data Sector N + 2

. . .

. . .

. . .

. . .

Data Sector N + M

Indirect Sector

Indirect Sector

. . .

. . .

. . .

. . .

Indirect Sector

• Keep sizeof(inode_disk) = BLOCK_SECTOR_SIZE,

sizeof(indirect_block) = BLOCK_SECTOR_SIZE etc. This keeps

life simpler.

• N will depend how you structure your inodes. M > N is just the

number of sector numbers you can fit in a sector.

10



Example Inode Block

Inode [Sector 10] [Sector 23] [Sector 33] [Sector 5]

Metadata

Data Sector [4]

Data Sector [12]

. . .

Indirect [23]

Doubly Indirect [33]

Triply Indirect [87]

Data [66]

Data [123]

. . .

. . .

. . .

. . .

Data [17]

Indirect [5]

Indirect [NULL]

. . .

. . .

. . .

. . .

Indirect [34]

Data [40]

Data [NULL]

. . .

. . .

. . .

. . .

Data [91]

• File data can be found on sectors 4, 12, 66, 40, etc.

• NULL indicates that no data has been written to that part of the file.

• Reads from a NULL part of the file should return all 0s.

• You may choose to actually put zeroed sectors in on disk at those

locations or not as you like.

11



Example: How big of a file can I make?

• Suppose your inodes have N = 10 direct blocks, 1 indirect block and

1 doubly indirect block. Suppose indirect blocks point to M = 12

sectors. Suppose BLOCK_SECTOR_SIZE=512. Then the maximum

file size is:

(10 + 12 + 12× 12)× 512 bytes = 84992 bytes

12



Other Structures

• You need some way to allocate new sectors to a file as it grows.

• Starter code keeps bitmap of free sectors (similar to the bitmap of

free pages in the VM). This bitmap is kept at a hard-coded sector.

See filesys/free-map.c.

13



inode_disk vs inode

/* On-disk inode. */

struct inode_disk {

block_sector_t start; /* First data sector. */

off_t length; /* File size in bytes. */

unsigned magic; /* Magic number. */

uint32_t unused[125]; /* Not used. */

};

/* In-memory inode: keep track of transient state, and sector no.*/

struct inode {

struct list_elem elem; /* Element in inode list. */

block_sector_t sector; /* Sector number of disk location. */

int open_cnt; /* Number of openers. */

bool removed; /* True if deleted, false otherwise. */

int deny_write_cnt; /* 0: writes ok, >0: deny writes. */

struct inode_disk data;/* Inode content.*/

/*^^ YOU SHOULD REMOVE THIS FIELD; RELY ON CACHE*/

}; 14



inode_disk vs inode

• inode_disk is the structure that dictates how inodes actually look

on disk.

• inode is an in-memory structure that records where to find an inode

on disk, as well as temporary information about the corresponding

file.

• The inode struct will vanish when the computer halts, but

inode_disk should still be safe on disk.

15



Synchronization



Synchronization

• Currently you probably have a global “filesystem lock” that serializes

all file operations. Now it’s time to fix that.

• Operations on different sectors should not impede each other, just

like IO in your VM shouldn’t block unrelated VM operations.

• Process B should be able to write to sector 4 in the cache while

process A is reading sector 8 into the cache from disk.

• You’ll probably need some kind of fine-grained locking on your cache

structure.

16



Synchronization

• You should allow writing or reading a file from multiple processes at

once.

• You don’t need to make any guarantees about what happens with

simultaneous writes/reads to the same part of a file - writes can

interleave, reads can see all or part or none of the writes

(synchronizing these accesses is the job of the user application).

• One exception: a write that extends the length of the file should be

atomic.

• Be careful: you still need to synchronize finding and evicting items in

the buffer cache.

17



New Syscalls



Syscalls

• bool chdir(const char *dir)

• bool mkdir(const char *dir)

• bool readdir(int fd, char *name)

• bool isdir(int fd)

• bool inumber(int fd) (It’s fine to just have this function return

the sector number of the inode for the specified file).

18



Current Directory, Subdirectories



Current Directory

• Each user process has an associated directory called the current (or

working) directory. You need to keep track of this somewhere.

• Child processes inherit the parent’s current directory at the time of

exec.

• Need to handle both relative and absolute paths in file names.

Absolute paths start with “/”. Relative paths don’t.

• A relative path should traverse the directory tree starting at the

current directory, while absolute paths start at the root directory.

19



Subdirectories

• It is not allowed to use write to edit a directory.

• Although simultaneous writes to files may be interleaved, operations

on directories must be atomic (otherwise the file system would get

corrupted).

• Take care when designing your locking scheme around directories:

when deleting a subdirectory you may need to aquire two directory

locks at the same time. How can you avoid deadlock when doing

this?

20



Things from lecture that you don’t need to do

• You don’t need to be robust to sudden power failures, so no need to

do soft updates or journaling (unless you really want to of course).

• You don’t need to implement hard or soft links, so no need for

reference counting.

• You don’t need to think about the type of disk when scheduling your

writes and reads (e.g. no need for CSCAN).

21



Miscellany

• Although directories are files, you are only allowed to delete a

directory via the remove syscall if it is empty.

• It is highly recommended to implement the buffer cache first. When

done correctly it should be totally transparent to other code and still

allow you to pass tests from previous homeworks.

• File names and paths are currently capped at 14 characters. You

may allow longer file names if you wish. You MUST allow longer

paths.

• You must support file sizes such that you can fill up the entire disk

with just one file and its accompanying metadata. The disk is 8MB

in size.

22


	Buffer Cache
	Indexed and Extensible Files
	Synchronization
	New Syscalls
	Current Directory, Subdirectories

