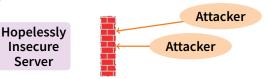
## Administrivia Outline


- Last project due Friday
- Final Exam
  - Monday, March 19th, 3:30-6:30pm
  - Open notes (except textbook)
  - Covers all lectures including topics already on the midterm
  - Make sure you understand all answers to midterm before final
- Final review session Friday (recorded)
- Pre-exam office hours for me 2pm-3pm Friday

- Confining code with legacy OSes
- 2 Virtual machines
- 3 Implementing virtual machines
- 4 Binary translation
- 6 Hardware-assisted virtualization
- 6 Memory management optimizations

1/45

## Confining code with legacy OSes

- Often want to confine code on legacy OSes
- Analogy: Firewalls



- Your machine runs hopelessly insecure software
- Can't fix it—no source or too complicated
- Can reason about network traffic
- Can we similarly block untrusted code within a machine
  - Have OS limit what the code can interact with

# **Using chroot**

- chroot (char \*dir) "changes root directory"
  - Kernel stores root directory of each process
  - File name "/" now refers to dir
  - Accessing ".." in dir now returns dir
- Need root privileges to call chroot
  - But subsequently can drop privileges
- $\bullet$  Ideally "Chrooted process" wouldn't affect parts of the system outside of  ${\tt dir}$ 
  - Even process still running as root shouldn't escape chroot
- In reality, many ways to cause damage outside dir

3/45 4/45

## **Escaping chroot**

- Re-chroot to a lower directory, then chroot .../.../...
  - Each process has one root directory in process structure
  - Implementation special-cases / (always) & . . in root directory
  - chroot does not alway change current directory
  - So chrooting to a lower directory puts you above your new root (Can re-chroot to real system root)
- · Create devices that let you access raw disk
- Send signals to or ptrace non-chrooted processes
- Create setuid program for non-chrooted processes to run
- Bind privileged ports, mess with clock, reboot, etc.
- Problem: chroot was not originally intended for security
  - FreeBSD jail, Linux cgroups have tried to address problems

## System call interposition

- Why not use ptrace or other debugging facilities to control untrusted programs?
- Almost any "damage" must result from system call
  - delete files → unlink
  - overwrite files → open/write
  - attack over network → socket/bind/connect/send/recv
  - leak private data  $\rightarrow$  open/read/socket/connect/write ...
- So enforce policy by allowing/disallowing each syscall
  - Theoretically much more fine-grained than chroot
  - Plus don't need to be root to do it
- Q: Why is this not a panacea?

5/45 6/45

## **Limitations of syscall interposition**

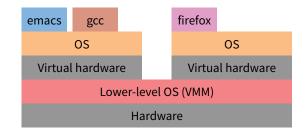
- Hard to know exact implications of a system call
  - Too much context not available outside of kernel (e.g., what does this file descriptor number mean?)
  - Context-dependent (e.g., /proc/self/cwd)
- Indirect paths to resources
  - File descriptor passing, core dumps, "unhelpful processes"
- Race conditions
  - Remember difficulty of eliminating TOCCTOU bugs?
  - Now imagine malicious application deliberately doing this
  - Symlinks, directory renames (so ".." changes), ...
- See [Garfinkel] for a more detailed discussion

### **Outline**

- Confining code with legacy OSes
- 2 Virtual machines
- 3 Implementing virtual machines
- 4 Binary translation

9/45

- 6 Hardware-assisted virtualization
- 6 Memory management optimizations


7/45 8/45

## **Review: What is an OS**

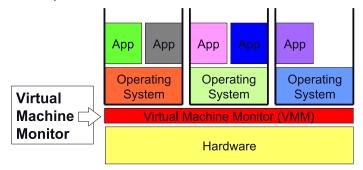


- OS is software between applications and hardware/external reality
  - Abstracts hardware to makes applications portable
  - Makes finite resources (memory, # CPU cores) appear much larger
  - Protects processes and users from one another

### What if...



• The process abstraction looked just like hardware?


10 / 45

## How do process abstraction & HW differ?

| Process                                      | Hardware                                                                     |
|----------------------------------------------|------------------------------------------------------------------------------|
| Non-privileged registers and instructions    | All registers and instructions                                               |
| Virtual memory                               | Both virtual and physical<br>memory, MMU functions,<br>TLB/page tables, etc. |
| Errors, signals                              | Trap architecture, interrupts                                                |
| File system, directories, files, raw devices | I/O devices accessed using programmed I/O, DMA, interrupts                   |

### **Virtual Machine Monitor**

- Thin layer of software that virtualizes the hardware
  - Exports a virtual machine abstraction that looks like the hardware



11/45 12/45

### Old idea from the 1960s

- See [Goldberg] from 1974
- IBM VM/370 A VMM for IBM mainframe
  - Multiplex multiple OS environments on expensive hardware
  - Desirable when few machines around
- Interest died out in the 1980s and 1990s
  - Hardware got cheap
  - Compare Windows NT vs. N DOS machines
- Today, VMs are used everywhere
  - Used to solve different problems (software management)
  - But VMM attributes more relevant now than ever

### **VMM** benefits

### Software compatibility

- VMMs can run pretty much all software
- Can get low overheads/high performance
  - Near "raw" machine performance for many workloads
  - With tricks can have direct execution on CPU/MMU
- Isolation
  - Seemingly total data isolation between virtual machines
  - Leverage hardware memory protection mechanisms
- Encapsulation
  - Virtual machines are not tied to physical machines
  - Checkpoint/migration

13/45

## OS backwards compatibility

### Backward compatibility is bane of new OSes

- Huge effort require to innovate but not break
- Security considerations may make it impossible
  - Choice: Close security hole and break apps or be insecure
- Example: Windows XP is end of life
  - Eventually hardware running WinXP will die
  - What to do with legacy WinXP applications?
  - Not all applications will run on later Windows
  - Given the number of WinXP applications, practically any OS change will break something

if (OS == WinXP)...

- Solution: Use a VMM to run both WinXP and Win10
  - Obvious for OS migration as well: Windows  $\rightarrow$  Linux

## Logical partitioning of servers

### Run multiple servers on same box (e.g., Amazon EC2)

- Ability to give away less than one machine Modern CPUs more powerful than most services need
- Server consolidation trend: N machines → 1 real machine
- 0.10U rack space machine less power, cooling, space, etc.

### Isolation of environments

- Printer server doesn't take down Exchange server
- Compromise of one VM can't get at data of others<sup>1</sup>

### Resource management

- Provide service-level agreements
- Heterogeneous environments
  - Linux, FreeBSD, Windows, etc.

<sup>1</sup>In practice not so simple because of side-channel attacks [Ristenpart]

16 / 45

# Outline

15 / 45

- Confining code with legacy OSes
- Virtual machines
- 3 Implementing virtual machines
- 4 Binary translation
- G Hardware-assisted virtualization
- 6 Memory management optimizations

## **Complete Machine Simulation**

- Simplest VMM approach, used by bochs
- Build a simulation of all the hardware
  - CPU A loop that fetches each instruction, decodes it, simulates its effect on the machine state
  - Memory Physical memory is just an array, simulate the MMU on all memory accesses
  - I/O Simulate I/O devices, programmed I/O, DMA, interrupts
- Problem: Too slow!
  - CPU/Memory 100x CPU/MMU simulation
  - I/O Device < 2× slowdown.
  - 100× slowdown makes it not too useful
- Need faster ways of emulating CPU/MMU

17/45 18/45

## Virtualizing the CPU

- Observations: Most instructions are the same regardless of processor privileged level
  - Example: incl %eax
- Why not just give instructions to CPU to execute?
  - One issue: Safety How to get the CPU back? Or stop it from stepping on us? How about cli/halt?
  - Solution: Use protection mechanisms already in CPU
- Run virtual machine's OS directly on CPU in unprivileged user mode
  - "Trap and emulate" approach
  - Most instructions just work
  - Privileged instructions trap into monitor and run simulator on instruction
  - Makes some assumptions about architecture

### **Virtualizing traps**

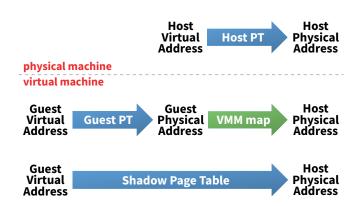
- What happens when an interrupt or trap occurs
  - Like normal kernels: we trap into the monitor
- What if the interrupt or trap should go to guest OS?
  - Example: Page fault, illegal instruction, system call, interrupt
  - Re-start the guest OS simulating the trap
- x86 example:

19 / 45

- Give CPU an IDT that vectors back to VMM
- Look up trap vector in VM's "virtual" IDT
- Push virtualized %cs, %eip, %eflags, on stack
- Switch to virtualized privileged mode

20/45

## Virtualizing memory


### Basic MMU functionality:

- OS manages physical memory (0...MAX\_MEM)
- OS sets up page tables mapping VA → PA
- CPU accesses to VA should go to PA (if paging off, PA = VA)
- Used for every instruction fetch, load, or store

### Need to implement a virtual "physical memory"

- Logically need additional level of indirection
- VM's Guest VA → VM's Guest PA → Host PA
- Note "Guest physical" memory no longer mans hardware bits
- Hardware is host physical memory (a.k.a. machine memory)
- Trick: Use hardware MMU to simulate virtual MMU
  - Point hardware at shadow page table
  - Directly maps Guest VA → Host PA

## **Memory mapping summary**



21/45

## **Shadow page tables**

### VMM responsible for maintaining shadow PT

- And for maintaining its consistency (including TLB flushes)

### Shadow page tables are a cache

- Have true page faults when page not in VM's guest page table
- Have hidden page faults when just misses in shadow page table

### On a page fault, VMM must:

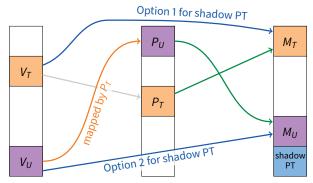
- Lookup guest VPN → guest PPN in guest's page table
- Determine where guest PPN is in host physical memory
- Insert guest VPN → host PPN mapping in shadow page table
- Note: Monitor can demand-page the virtual machine

### Uses hardware protection

### **Shadow PT issues**

22 / 45

### Hardware only ever sees shadow page table


- Guest OS only sees it's own VM page table, never shadow PT
- Consider the following
  - Guest OS has a page table T mapping  $V_U \rightarrow P_U$
  - T itself resides at guest physical address  $P_T$
  - Another guest page table entry maps  $V_T \rightarrow P_T$  (e.g., in Pintos,  $V_T = P_T + PHYS\_BASE$ )
  - VMM stores  $P_U$  in host physical address  $M_U$  and  $P_T$  in  $M_T$

### • What can VMM put in shadow page table?

- Safe to map  $V_T \longrightarrow M_T$  or  $V_U \longrightarrow M_U$
- Not safe to map both simultaneously!
  - If OS writes to  $P_T$ , may make  $V_U \longrightarrow M_U$  in shadow PT incorrect
  - If OS reads/writes  $V_U$ , may require accessed/dirty bits to be changed in  $P_T$  (hardware can only change shadow PT)

23/45 24/45

### Illustration



- Option 1: Page table accessible at V<sub>T</sub>, but changes won't be reflected in shadow PT or TLB; access to V<sub>U</sub> dangerous
- Option 2: V<sub>U</sub> accessible, but hardware sets accessed/dirty bits only in shadow PT, not in guest PT at P<sub>T</sub>/M<sub>T</sub>

## Tracing

- VMM needs to get control on some memory accesses
- Guest OS changes previously used mapping in its PT
  - Must intercept to invalidate stale mappings in shadow PT, TLB
  - Note: OS should use invlpg instruction, which would trap to VMM but in practice many/most OSes are sloppy about this
- Guest OS accesses page when its VM PT is accessible
  - Accessed/dirty bits in VM PT may no longer be correct
  - Must intercept to fix up VM PT (or make VM PT inaccessible)
- Solution: Tracing
  - To track page access, make VPN(s) invalid in shadow PT
  - If guest OS accesses page, will trap to VMM w. page fault
  - VMM can emulate the result of memory access & restart guest OS, just as an OS restarts a process after a page fault

I/O device virtualization

25 / 45

26 / 45

## Tracing vs. hidden faults

- Suppose VMM never allowed access to VM PTs?
  - Every PTE access would incur the cost of a tracing fault
  - Very expensive when OS changes lots of PTEs
- Suppose OS allowed access to most page tables (except very recently accessed regions)
  - Now lots of hidden faults when accessing new region
  - Plus overhead to pre-compute accessed/dirty bits from shadow PT as page tables preemptively made valid in shadow PT
- Makes for complex trade-offs
  - But adaptive binary translation (later) can make this better

- Types of communication
  - Special instruction in/out
  - Memory-mapped I/O (PIO)
  - Interrupts
  - DMA
- Make in/out and PIO trap into monitor
- Use tracing for memory-mapped I/O
- Run simulation of I/O device
  - Interrupt Tell CPU simulator to generate interrupt
  - DMA Copy data to/from physical memory of virtual machine

27 / 45

28 / 45

## **CPU virtualization requirements**

- Need protection levels to run VMs and monitors
- All unsafe/privileged operations should trap
  - Example: disable interrupt, access I/O dev, ...
  - x86 problem: popf1 (different semantics in different rings)
- Privilege level should not be visible to software
  - Software shouldn't be able to query and find out it's in a VM
  - x86 problem: movw %cs, %ax
- Trap should be transparent to software in VM
  - Software in VM shouldn't be able to tell if instruction trapped
  - x86 problem: traps can destroy machine state
     (E.g., if internal segment register was out of sync with GDT)
- See [Goldberg] for a discussion

### **Outline**

- Confining code with legacy OSes
- Virtual machines
- 3 Implementing virtual machines
- 4 Binary translation
- 6 Hardware-assisted virtualization
- 6 Memory management optimizations

29/45 30/45

## **Binary translation**

### Cannot directly execute guest OS kernel code on x86

- Can maybe execute most user code directly
- But how to get good performance on kernel code?

### Original VMware solution: binary translation

- Don't run slow instruction-by-instruction emulator
- Instead, translate guest kernel code into code that runs in fully-privileged kernel mode, but acts safely<sup>2</sup>

### Challenges:

- Don't know the difference between code and data (guest OS might include self-modifying code)
- Translated code may not be the same size as original
- Prevent translated code from messing with VMM memory
- Performance, performance, performance, ...

### **VMware binary translator**

### VMware translates kernel dynamically (like a JIT)

- Start at guest eip
- Accumulate up to 12 instructions until next control transfer
- Translate into binary code that can run in VMM context

### Most instructions translated identically

- E.g., regular mov1 instructions

### Use segmentation to protect VMM memory

- VMM located in high virtual addresses
- Segment registers "truncated" to block access to high VAs
- gs segment not truncated; use it to access VMM data
- Any guest use of gs (rare) can't be identically translated

Details/examples from [Adams & Agesen]

32 / 45

### All branches/jumps require indirection

```
• Original: isPrime: mov %edi, %ecx # %ecx = %edi (a) mov $2, %esi # i = 2 cmp %ecx, %esi # is i >= a? jge prime # jump if yes
```

Control transfer

C source:

```
int
isPrime (int a)
{
  for (int i = 2; i < a; i++) {
    if (a % i == 0)
      return 0;
  }
  return 1;
}</pre>
```

31 / 45

33 / 45

### **Control transfer**

All branches/jumps require indirection

```
• Original: isPrime: mov %edi, %ecx # %ecx = %edi (a) mov $2, %esi # i = 2 cmp %ecx, %esi # is i >= a? jge prime # jump if yes ...
```

• Translated: isPrime': mov %edi, %ecx # IDENT
mov \$2, %esi
cmp %ecx, %esi
jge [takenAddr] # JCC
jmp [fallthrAddr]

### Brackets ([...]) indicate continuations

- First time jumped to, target untranslated; translate on demand
- Then fix up continuation to branch to translated code
- Can elide [fallthrAddr] if fallthrough next translated

33 / 45

### Non-identically translated code

### PC-relative branches & Direct control flow

- Just compensate for output address of translator on target
- Insignificant overhead

### Indirect control flow

- E.g., jump though register (function pointer) or ret
- Can't assume code is "normal" (e.g., must faithfully ret even if stack doesn't have return address)
- Look up target address in hash table to see if already translated
- "Single-digit percentage" overhead

### Privileged instructions

- Appropriately modify VMM state
- E.g., cli ⇒ vcpu.flags.IF = 0
- Can be faster than original!

## **Adaptive binary translation**

### One remaining source of overhead is tracing faults

- E.g., when modifying page table or descriptor table
- Idea: Use binary translation to speed up
  - E.g., translate write of PTE into write of guest & shadow PTE
  - Translate read of PTE to get accessed & dirty bits from shadow
- Problem: Which instructions to translate?
- Solution: "innocent until proven guilty" model
  - Initially always translate as much code identically as possible
  - Track number of tracing faults caused by an instruction
  - If high number, re-translate to non-identical code
  - May call out to interpreter, or just jump to new code

34/45 35/45

<sup>&</sup>lt;sup>2</sup>actually CPL 1, so that the VMM has its own exception stack

### **Outline**

- Confining code with legacy OSes
- Virtual machines
- Implementing virtual machines
- 4 Binary translation
- 5 Hardware-assisted virtualization
- 6 Memory management optimizations

### Hardware-assisted virtualization

- Both Intel and AMD now have hardware support
  - Different mechanisms, similar concepts
  - This lecture covers AMD (see [AMD Vol 2], Ch. 15)
  - For Intel details, see [Intel Vol 3c]
- VM-enabled CPUs support new guest mode
  - This is separate from kernel/user modes in bits 0-1 of %cs
  - Less privileged than host mode (where VMM runs)
  - Some sensitive instructions trap in guest mode (e.g., load %cr3)
  - Hardware keeps shadow state for many things (e.g., %eflags)
- Enter guest mode with vmrun instruction
  - Loads state from hardware-defined 1-KiB VMCB data structure

**Guest state saved in VMCB** 

- Various events cause EXIT back to host mode
  - On EXIT, hardware saves state back to VMCB

36 / 45

37 / 45

### **VMCB** control bits

- Intercept vector specifies what ops should cause EXIT
  - One bit for each of %cr0-%cr15 to say trap on read
  - One bit for each of %cr0-%cr15 to say trap on write
  - 32 analogous bits for the debug registers (%dr0-%dr15)
  - 32 bits for whether to intercept exception vectors 0-31
  - Bits for various other events (e.g., NMI, SMI, ...)
  - Bit to intercept writes to sensitive bits of %cr0
  - 8 bits to intercept reads and writes of IDTR, GDTR, LDTR, TR
  - Bits to intercept rdtsc, rdpmc, pushf, popf, vmrun, hlt, invlpg, int, iret, in/out (to selected ports),...
- EXIT code and reason (e.g., which inst. caused EXIT)
- Other control values
  - Pending virtual interrupt, event/exception injection

- Saved guest state
  - Full segment registers (i.e., base, lim, attr, not just selectors)
  - Full GDTR, LDTR, IDTR, TR
  - Guest %cr3, %cr2, and other cr/dr registers
  - Guest %eip and %eflags (%rip & %rflags for 64-bit processors)
  - Guest %rax register
- Entering/exiting VMM more expensive than syscall
  - Have to save and restore large VM-state structure

38 / 45

39 / 45

### Hardware vs. Software virtualization

### HW VM makes implementing VMM much easier

- Avoids implementing binary translation (BT)
- Hardware VM is better at entering/exiting kernel
  - E.g., Apache on Windows benchmark: one address space, lots of syscalls, hardware VM does better [Adams]
  - Apache on Linux w. many address spaces: lots of context switches, tracing faults, etc., Software faster [Adams]
- Fork with copy-on-write bad for both HW & BT
  - [Adams] reports fork benchmark where BT-based virtualization  $37\times$  and HW-based  $106\times$  slower than native!
- Today, CPUs support nested paging
  - Eliminates shadow PT & tracing faults, simplifies VMM
  - Guests can now manipulate %cr3 w/o VM EXIT
  - But dramatically increases cost of TLB misses

### **Outline**

- Confining code with legacy OSes
- Virtual machines
- 3 Implementing virtual machines
- 4 Binary translation
- 6 Hardware-assisted virtualization
- 6 Memory management optimizations

40/45 41/45

## **ESX memory management [Waldspurger]**

- Virtual machines see virtualized physical memory
  - Can let VMs use more "physical" memory than in machine
- How to apportion memory between machines?
- VMware ESX has three parameters per VM:
  - min Don't bother running w/o this much machine memory
  - max Amount of guest physical memory VM OS thinks exists
  - share How much memory to give VM relative to other VMs
- Straw man: Allocate based on share, use LRU paging
  - OS already uses LRU ⇒ double paging
  - OS will re-cycle whatever "physical" page VMM just paged out
  - So better to do random eviction
- Next: 3 cool memory management tricks

## **Reclaiming pages**

### Normally OS just uses all available memory

- But some memory much more important than other memory
- E.g., buffer cache may contain old, clean buffers; OS won't discard if doesn't need memory... but VMM may need memory
- Idea: Have guest OS return memory to VMM
  - Then VMM doesn't have to page memory to disk
- ESX trick: Balloon driver
  - Special pseudo-device driver in supported guest OS kernels
  - Communicates with VMM through special interface
  - When VMM needs memory, allocates many pages in guest OS
  - Balloon driver tells VMM to re-cycle its private pages

42/45 43/45

## Sharing pages across VMs

- Often run many VMs with same OS, programs
  - Will result in many host physical pages containing same data
- Idea: Use 1 host physical page for all copies of guest physical page (in any virtual machine)
- Keep big hash table mapping: Hash(contents)→info
  - If host physical page mapped once, info is VM/PPN where mapped.
     In that case, Hash is only a hint, as page may have changed
  - If machine page mapped copy-on-write as multiple physical pages, info is just reference count
- Scan OS pages randomly to populate hash table
- Always try sharing a page before paging it out

## **Idle memory tax**

- Need machine page? What VM to take it from?
- Normal proportional share scheme
  - Reclaim from VM with lowest "shares-to-pages" (S/P) ratio
  - If A & B both have S = 1, reclaim from larger VM
  - If A has twice B's share, can use twice the machine memory
- High-priority VMs might get more memory than needed
- Solution: Idle-memory tax
  - Use statistical sampling to determine a VM's % idle memory (randomly invalidate pages & count the number faulted back)
  - Instead of S/P, reclaim from VM with lowest  $S/\left(P(f+k(1-f))\right)$ . f = fraction of non-idle pages; k = "idle page cost" paremeter.
  - Be conservative & overestimate f to respect priorities (f is max of slow, fast, and recent memory usage samples)

44/45 45/45