C

Le
1L AN
(Gaals

— KN
olical
\OW /
M{\QSL
xu(iu
(¢
Co-de
5191

—R
estysint

Write Record Append
Serial defined defined
SUCCESS interspersed with
Concurrent | consistent mmconsistent
SUCCESSES but undefined
Failure mconsistent

Table 1: File Region State After Mutation
UV\A(F - Aé\'ﬁ Cbuu Le 3/\4:]-‘44.‘,4‘%
WP eud —~

M?Sk(S(A\Q
Mely sy

F'le Nawme —=> (quv\kf\ Locks

Chung — Keplia s, Vessiov
ng Kﬂk(}“«e (ww‘} Leééﬁ

Check (OM\”&

_,C\Atulé S%uq S(QLQ _
Chonts LUHR

Version # . Checksym

2iial wun. leases

Applicati
pphication (file name, chunk index) GFS master - /foo/bar
GFS client | File namespace ,~ chunk 2ef0
(chunk hand}e, ,
chunk locations) Fegend:
mmmd Data messages
\)
! | Instructions to chunkserver ! g Control messages
(chunk handle, byte l‘ange) N Y Chunkserver state y
m GFS chunkserver GFS chunkserver
chunk data . . ' ——————— e
Linux file system Linux file system

gl la..

Figure 1: GFS Architecture

Client

~
\k

-

\§] Secondary

Master

Replica A
eplica c
\ l
/ Q Primary
Replica -~
l 6
\A Secondary
Replica B =

R R T L
%/TJ(@L

S@/T%Z*L

Legend:

Control

—) Data

Figure 2: Write Control and Data Flow

(’uu Pah" —> UA(‘MQ‘A. (lwwkg)/ad
/s

({cela /lnome/usp_r/?oa
'
W

’S\/\D\Q%QK r‘ —2 F)—

Levoke leaces
Q@q(,(gk Ylevame VVlaWw\Q o £

Twctease chunk vef couuts.

Co(’j SN WYY (~¢

Tell (Uuuk Syvac S Lv Male /v(al(o(j

_ Network limit 60 DeteTE
— 100+ o~
B 2
= 2 40-
O &
E :
% 304 Aggregate read rate ,%
' 204
= = Aggregate write rate
o+—7¥""-7 O e o =
0 5 10 15 0 5 10 15
Number of clients N Number of clients N
(a) Reads
Fi . ' Network limit
igure 3: Aggregate Throughputs. - {od
aa)]
2
ey
g
2 5
P]
& 4
< Aggregate append rate
o7
0 5 10 15

Number of clients N

(¢) Record appends

nciemen bl Medrsyun
(1213
BB DO

7 bold\eweck ¢
Masles

6.2.4 Master Load

Table 3 also shows that the rate of operations sent to the
master was around 200 to 500 operations per second. The
master can easily keep up with this rate, and therefore is
not a bottleneck for these workloads.

In an earlier version of GFS, the master was occasionally
a bottleneck for some workloads. It spent most of its time
sequentially scanning through large directories (which con-
tained hundreds of thousands of files) looking for particular
files. We have since changed the master data structures to
allow efficient binary searches through the namespace. It
can now easily support many thousands of file accesses per
second. If necessary, we could speed it up tfurther by placing
name lookup caches in front of the namespace data struc-
tures.

