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Write Record Append
Serial defined defined
SUCCESS interspersed with
Concurrent | consistent mmconsistent
SUCCESSES but undefined
Failure mconsistent

Table 1: File Region State After Mutation
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Figure 1: GFS Architecture
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6.2.4 Master Load

Table 3 also shows that the rate of operations sent to the
master was around 200 to 500 operations per second. The
master can easily keep up with this rate, and therefore is
not a bottleneck for these workloads.

In an earlier version of GFS, the master was occasionally
a bottleneck for some workloads. It spent most of its time
sequentially scanning through large directories (which con-
tained hundreds of thousands of files) looking for particular
files. We have since changed the master data structures to
allow efficient binary searches through the namespace. It
can now easily support many thousands of file accesses per
second. If necessary, we could speed it up tfurther by placing
name lookup caches in front of the namespace data struc-
tures.



