Midterm feedback (thanks)

- Points to need for more structure/signposting
 - Will try to start more classes with a few slides
- Maybe try some other communication tool [poll]
- Experiment: try to mitigate “race to answer” with breakout rooms (1–2 times per lecture)
 - Discuss among yourselves for 1 minute
 - One person reports back in main chat with member SUNet IDs
 E.g., [sunet1,sunet2,sunet3] Answer...
 - Jim will read out the best answer(s)
- A majority finds project discussions helpful
 - Clarification: fine to meet with me multiple times
 - Will have another round of meetings May 4–15

CS244b so far

- Seen how to transact atomically across systems using 2PC
 - E.g., lets you shard a database for scalability
- Seen how to replicate deterministic systems with consensus
 - Replication provides greater availability and reliability
 - Understand how at least one of (Raft, Paxos) works
- Seen an example replicated system: zookeeper
 - Nice, clean abstraction barrier between RSM and consensus (ZAB)
- Next week: Byzantine failure

Today’s learning goals

- Add a few more techniques to our arsenal
 - Primary copy replication, Witnesses
 - “Leases” (even though paper doesn’t use the term)
- More experience thinking about replication, consistency, logs
 - Reinforce concepts from multiple angles before doing Byzantine
- See a real system that is not perfectly clean, faces trade-offs
 - Violating abstraction barriers (RPC, NFS, replication)
 - Making hardware assumptions (clocks, batteries)
 - Failing to meet expected semantics (atime)

Who are the authors?

- Barbara Liskov
 - One of Stanford’s most distinguished CS Ph.D.s
 - Co-invented viewstamped replication (published before Paxos)
 - Co-invented practical Byzantine fault tolerant replication
 - Other contributions: parametric polymorphism, decentralized information flow control
 - ACM Turing award 2008 for inventing abstract data types
 - If Harp violates abstraction boundaries, probably a good reason!
- Sanjay Ghemawat
 - Highly respected engineer at Google
 - Numerous contributions including map-reduce, GFS, Spanner