• If you need access to lecture videos, please email cs244b-staff
 - Subject: downloadable lecture videos
 - I need the ability to download lecture videos and I promise to delete all downloaded videos at the end of the quarter.

• Please re-do poll from last class [here](#) (or class poll link on class web page)
 - Contrary to zoom documentation I was unable to get results after last lecture

• Jim office hours announcement
Plan for next three lectures

• Today: PBFT – classic BFT replication algorithm
 - First practical algorithm, still quite relevant (e.g., hyperledger)
• Wednesday: Randomized BFT algorithms
 - Very different BFT techniques with different tools, trade-offs
• Monday 5/4: Other topics in BFT, HotStuff
 - Advances since 1999 (when PBFT published)
 - Partial synchrony
• Then we switch gears and talk about higher-level systems
Voting safety in fail-stop model

Suppose you have N nodes with fail-stop behavior

Pick a quorum size $T > N/2$

If T nodes (a quorum) all vote for a value, output that value

- E.g., Quorum A unanimously votes for 9, okay to output 9
 - Nodes cannot change their vote
 - Any two quorums intersect \implies agreement

Problem: stuck states

- Failure could mean not everyone learns of unanimous quorum
- Split vote could make unanimous quorum impossible
Voting safety in fail-stop model

Suppose you have N nodes with fail-stop behavior.

Pick a quorum size $T > N/2$.

If T nodes (a quorum) all vote for a value, output that value.
- E.g., Quorum A unanimously votes for 9, okay to output 9
- Nodes cannot change their vote
- Any two quorums intersect \implies agreement

Problem: stuck states
- Failure could mean not everyone learns of unanimous quorum
 - Split vote could make unanimous quorum impossible
Voting safety in fail-stop model

- Suppose you have N nodes with fail-stop behavior
- Pick a quorum size $T > N/2$
- If T nodes (a quorum) all vote for a value, output that value
 - Nodes cannot change their vote
 - Any two quorums intersect \implies agreement
- Problem: stuck states
 - Failure could mean not everyone learns of unanimous quorum
 - Split vote could make unanimous quorum impossible
What voting gives us

- You might get system-wide agreement or you might get stuck
 - Can’t vote directly on consensus question (what RSM op to apply)
- How do you know you agreed?
 - If more than $f = N - T$ nodes fail, will always get stuck
 - If $f + 1$ nodes see T votes, even if f fail one can spread word
Byzantine agreement

<table>
<thead>
<tr>
<th>Quorum A</th>
<th>Quorum B</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v_{N-T}</td>
</tr>
<tr>
<td></td>
<td>v_{T-1}</td>
</tr>
<tr>
<td></td>
<td>v_{N-1}</td>
</tr>
</tbody>
</table>

- **What if nodes may experience Byzantine failure?**
 - Byzantine nodes can illegally change their votes
 - In fail-stop case, safety required any two quorums to share a node
 - Now, any two quorums to share a *non-faulty* node

- **Safety requires:**
 - # failures $\leq f_S = 2T - N - 1$

- **Liveness requires:**
 - # failures $\leq f_L = N - T$
 - At least one entirely non-faulty quorum exists

- **Typically set** $N = 3f + 1$ and $T = 2f + 1$ so $f_S = f_L = f$
What if nodes may experience Byzantine failure?
- Byzantine nodes can illegally change their votes
- In fail-stop case, safety required any two quorums to share a node
- Now, any two quorums to share a *non-faulty* node

Safety requires: \# failures \(\leq f_S = 2T - N - 1 \)

Liveness requires: \# failures \(\leq f_L = N - T \)
- At least one entirely non-faulty quorum exists

Typically set \(N = 3f + 1 \) and \(T = 2f + 1 \) so \(f_S = f_L = f \)
What if nodes may experience Byzantine failure?
- Byzantine nodes can illegally change their votes
- In fail-stop case, safety required any two quorums to share a node
- Now, any two quorums to share a non-faulty node

Safety requires: \(\# \) failures \(\leq f_S = 2T - N - 1 \)

Liveness requires: \(\# \) failures \(\leq f_L = N - T \)
- At least one entirely non-faulty quorum exists

Typically set \(N = 3f + 1 \) and \(T = 2f + 1 \) so \(f_S = f_L = f \)
When has a vote succeeded?

- If $f_S + 1 = 2T - N$ nodes malicious, system loses safety
- Suppose $f_S + 1$ nodes all claim to have seen T votes for a
 - Can assume system is a-valent with no loss of safety
 - In fact, $f_S + 1$ signed msgs = proof of system state (or unsafety)
- Now say $f_L + f_S + 1 = T$ nodes all make same assertion
 - If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
 - If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
 - So either catastrophe or all non-faulty nodes will eventually hear it
When has a vote succeeded?

- If $f_S + 1 = 2T - N$ nodes malicious, system loses safety

Suppose $f_S + 1$ nodes all claim to have seen T votes for a
- Can assume system is a-valent with no loss of safety
- In fact, $f_S + 1$ signed msgs = proof of system state (or unsafety)

Now say $f_L + f_S + 1 = T$ nodes all make same assertion
- If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
- If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
- So either catastrophe or all non-faulty nodes will eventually hear it
When has a vote succeeded?

If $f_S + 1 = 2T - N$ nodes malicious, system loses safety

- **Suppose** $f_S + 1$ nodes all claim to have seen T votes for a
 - Can assume system is a-valent with no loss of safety
 - In fact, $f_S + 1$ signed msgs = proof of system state (or unsafety)

- **Now say** $f_L + f_S + 1 = T$ nodes all make same assertion
 - If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
 - If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
 - So either catastrophe or all non-faulty nodes will eventually hear it
When has a vote succeeded?

- If $f_S + 1 = 2T - N$ nodes malicious, system loses safety
 - Suppose $f_S + 1$ nodes all claim to have seen T votes for a
 - Can assume system is a-valent with no loss of safety
 - In fact, $f_S + 1$ signed msgs = proof of system state (or unsafety)
 - Now say $f_L + f_S + 1 = T$ nodes all make same assertion
 - If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
 - If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
 - So either catastrophe or all non-faulty nodes will eventually hear it
When has a vote succeeded?

- If $f_S + 1 = 2T - N$ nodes malicious, system loses safety
- Suppose $f_S + 1$ nodes all claim to have seen T votes for a
 - Can assume system is a-valent with no loss of safety
 - In fact, $f_S + 1$ signed msgs = proof of system state (or unsafety)

Now say $f_L + f_S + 1 = T$ nodes all make same assertion
- If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
- If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
- So either catastrophe or all non-faulty nodes will eventually hear it